Immune Checkpoint Inhibitors for Gastrointestinal Malignancies: An Update
Abstract
:Simple Summary
Abstract
1. Introduction
2. Esophageal and Gastric Cancers
Trial | Year | Trial Design | Location | Study Arms | Patient Population | N | Outcome |
---|---|---|---|---|---|---|---|
ATTRACTION 2 [24] | 2017 | Phase III, randomized, double blind | Japan, South Korea, Taiwan | Nivolumab monotherapy vs. placebo | Advanced disease, progressed after second line therapy | 493 | Improved median OS in nivolumab arm vs. placebo arm (5.26 months vs. 4.14 months, HR 0.63, 95% CI 0.51–0.78, p < 0.0001) |
KEYNOTE 059 [15] | 2018 | Phase II, open label | Global, 17 countries | Pembrolizumab monotherapy | Advanced disease, progressed after second line therapy | 259 | ORR 11.6%, CR 2.3%, MDR 8.4 months, 17.8% of pts experienced grade 3–5 treatment related adverse events |
CheckMate 032 [26] | 2018 | Phase II, open label | US and 5 European countries | Nivolumab monotherapy vs. nivolumab + ipilimumab (low dose) vs. nivolumab + ipilimumab (high dose) | Advanced disease, progressed after first line or subsequent therapy | 160 | ORR 12% (95% CI, 5% to 23%) in nivolumab arm, 24% (95% CI, 13% to 39%) in NIVO/IPI1 arm, 8% in NIVO/IPI3 arm (95% CI, 2% to 19%) |
KEYNOTE 061 [17] | 2018 | Phase III, randomized, open label | Global, 30 countries | Pembrolizumab monotherapy vs. paclitaxel | Advanced disease, progressed after first line therapy | 592 (395 with CPS ≥ 1) | Improved median OS in pembrolizumab arm vs. paclitaxel arm for pts with CPS ≥ 1 (9.1 vs. 8.3 months, HR 0.82, 95% CI 0.66–1.03, one-sided p = 0.0421) |
ATTRACTION 4 [25] | 2019 | Phase II–III, randomized, double blind | Japan, South Korea, Taiwan | Nivolumab + chemotherapy vs. placebo + chemotherapy | Previously untreated, HER2 negative, unresectable disease | 724 | Improved median PFS in nivolumab arm (10.45 vs. 8.34 months, HR 0.68, 98.51% CI 0.51–0.90, p = 0.0007), no significant difference in OS |
KEYNOTE 590 [20] | 2019 | Phase III, randomized, controlled, double blinded | Global, 26 countries | Pembrolizumab + chemotherapy vs. chemotherapy alone | Previously untreated, advanced esophageal or GEJ cancer (mainly SCC) | 749 | Improved median OS in pembrolizumab + chemo arm vs. chemo alone arm for all pts (12.4 vs. 9.8 months, p < 0.0001) and for SCC histology with CPS ≥10 (13.9 vs. 8.8 months, p < 0.001) |
KEYNOTE 062 [19] | 2020 | Phase III, randomized, controlled, partly blinded | Global, 29 countries | Pembrolizumab vs. pembrolizumab + chemotherapy vs. chemotherapy alone | Previously untreated, advanced disease, CPS ≥1 | 763 | Pembrolizumab non-inferior to chemotherapy with improved safety profile. Improved median OS in pembrolizumab arm vs. chemotherapy alone arm for pts with CPS ≥10 (17.4 vs. 10.8 months, HR 0.69, 95% CI 0.49–0.97, not statistically tested). |
KEYNOTE 181 [21] | 2020 | Phase III, randomized, open label | Global, 32 countries | Pembrolizumab monotherapy vs. chemotherapy alone | Advanced disease, progressed after first line therapy | 628 | Improved OS in pembrolizumab arm vs. chemotherapy arm for patients with CPS ≥10 (9.3 vs. 6.7 months, HR 0.69, 95% CI 0.52–0.93, p = 0.0074); effect seen only in SCC, not in adenocarcinoma |
CheckMate 577 [27] | 2021 | Phase III, randomized, double blind | Global, 29 countries | Nivolumab vs. placebo as adjuvant treatment | Esophageal or GEJ cancer status post neoadjuvant chemoradiation and resection | 1085 | Improved median DFS in nivolumab arm vs. placebo arm (22.4 months vs. 11.0 months, HR 0.69, 96.4% CI 0.56–0.86, p < 0.001) |
CheckMate 649 [28] | 2021 | Phase III, randomized, open label | Global, 29 countries | Nivolumab + chemotherapy vs. nivolumab + ipilimumab vs. chemotherapy alone | Previously untreated, unresectable, HER2 negative | 1581 | Improved median OS in nivo + chemo arm vs. chemo alone arm in CPS ≥5 group (14.4 vs. 11.1 months, HR 0.71, 98.4% CI 0.59–0.86, p < 0.0001), CPS ≥1 group (14.0 vs. 11.3 months, HR 0.77, 99.3% CI 0.64–0.92, p < 0.0001) and overall population (13.8 vs. 11.6 months, HR 0.80, 99.3% CI 0.68–0.94, p = 0.0002) |
KEYNOTE 811 [9] | 2021 | Phase III, randomized, double blind | Global, 20 countires | Pembrolizumab + trastuzumab + chemotherapy vs trastuzumab + chemotherapy | Previously untreated HER2+ metastatic disease | 264 analyzed in first interim analysis | Improved ORR in pembrolizumab + SOC arm vs. placebo + SOC arm (74.4% vs. 51.9%, difference 22.7 percentage points, 95% CI 11.2–33.7, p = 0.00006] |
ASCO [23] | 2021 | Phase II, randomized, open label | US | Neoadjuvant pembrolizumab + chemoradiotherapy vs. neoadjuvant chemoradiotherapy alone | Previously untreated, resectable disease, eligible for curative surgery | 31 analyzed to date | Improved MPR rate (50.0%) compared to historical data |
Checkmate 648 [30] | 2022 | Phase III, randomized, open label | Global, 26 countries | Nivolumab + chemotherapy vs. nivolumab + ipilimumab vs. chemotherapy alone | Previously untreated, unresectable advanced, recurrent or metastatic esophageal squamous cell carcinoma | 970 | Improved median OS in nivo + chemo arm vs. chemo alone arm both in PD-L1 >1% group (15.4 vs. 9.1 months, HR 0.54, 99.5% CI 0.37–0.80, p < 0.001) and overall population (13.2 vs. 10.7 months, HR 0.74, 99.1% CI 0.59–0.96, p = 0.002) Improved median OS in nivo + ipi arm vs. chemo alone arm in PD-L1 >1% group (13.7 vs. 9.1 months, HR 0.64, 98.6% CI 0.46–0.90, p = 0.001) and overall population (12.7 vs. 10.7 months, HR 0.78, 98.2% CI 0.62–0.98, p = 0.01) |
KEYNOTE 859 [22] | Not yet published | Phase III, randomized, double blind | Global, 33 countries | Pembrolizumab + chemotherapy vs. placebo + chemotherapy | Previously untreated, unresectable, HER2 negative | N/A | Forthcoming |
3. Colorectal Cancer
Trial | Year | Trial Design | Location | Study Arms | Patient Population | N | Outcome |
---|---|---|---|---|---|---|---|
CheckMate 142 [38] | 2017 | Phase II, open label | 8 countries | Nivolumab monotherapy | Metastatic dMMR/MSI-H disease, progressed on at least 1 prior line of treatment | 74 | ORR 31.1% (95% CI 20.8–42.9%) at median follow up of 12 months |
KEYNOTE 177 [37] | 2020 | Phase III, randomized, open label | 23 countries | Pembrolizumab vs. 5-FU-based chemotherapy +/− bevacizumab or cetuximab | Metastatic dMMR/MSI-H disease, no prior systemic therapy | 307 | Improved median PFS in pembrolizumab arm vs. chemotherapy arm (16.5 vs. 8.2 months, HR 0.60, 95% CI 0.45–0.80, p = 0.0002) |
CheckMate 142 [39] | 2022 | Phase II, open label | 6 countries | Nivolumab + ipilimumab | Metastatic dMMR/MSI-H disease, no prior systemic therapy | 45 | ORR 69% (95% CI 53–82%) at median follow up of 29 months |
4. Hepatocellular Carcinoma
Trial | Year | Trial Design | Location | Study Arms | Patient Population | N | Outcome |
---|---|---|---|---|---|---|---|
CheckMate 040 [48] | 2017 | Phase I/II, open-label, non-comparative, dose escalation and expansion trial | 11 countries | Nivolumab monotherapy | Advanced disease, progressed on or unable to tolerate sorafenib | 262 (28 dose-escalation, 214 dose-expansion) | ORR 15% (95% CI 6–28%) in dose escalation phase; 20% (95% CI 15–26) in dose expansion phase |
CheckMate 040 [49] | 2020 | Nivolumab 1 mg/kg plus ipilimumab 3 mg/kg Q3 weeks × 4 followed by nivolumab 240 mg Q2 weeks (A) vs. nivolumab 3 mg/kg plus ipilimumab 1 mg/kg Q3 weeks × 4 followed by nivolumab 240 mg Q2 weeks (B) vs. nivolumab nivolumab 3 mg/kg Q2 weeks plus ipilimumab 1 mg/kg Q6 weeks (C) | 148 | ORR 32% (95% CI 20–47%) in arm A, 27% (95% CI 15–41%) in arm B, 29% (95% CI 17–43%) in arm C | |||
CheckMate 040 [50] | 2020 | Nivolumab plus cabozantinib vs. nivolumab plus ipilimumab plus cabozantinib | 71 | ORR 17% in nivolumab plus cabozantinib arm; ORR 26% in nivolumab plus ipilimumab plus cabozantinib arm | |||
KEYNOTE 224 [55] | 2018 | Phase II, non-randomized | 10 countries | Pembrolizumab monotherapy | Advanced disease, progressed on or unable to tolerate sorafenib | 104 | ORR 17% (95% CI 11–26%) |
KEYNOTE 240 [56] | 2020 | Phase III, randomized, double blind | 27 countries | Pembrolizumab vs. placebo | Advanced disease, progressed on first line sorafenib | 413 | Did not meet primary endpoints in OS and PFS |
IMbrave150 [53] | 2020 | Phase III, randomized, open label | 17 countries | Atezolizumab plus bevacizumab vs. sorafenib | Unresectable disease with no previous systemic treatment | 501 | Improved HR for death in atezolizumab-bevacizumab arm vs. sorafenib arm (0.58, 95% CI 0.42–0.79, p < 0.001); improved OS at 12 months (67.2%, 95% CI 61.3–73.1 vs. 54.6%, 95% CI 45.2–64.0) |
CheckMate 459 [52] | 2022 | Phase III, randomized, open label | 22 countries | Niviolumab monotherapy vs. sorafenib monotherapy | Advanced disease with no previous systemic treatment | 743 | Improved median OS in nivolumab vs. sorafenib group (16.4 vs. 14.7 months, HR 0.85, 95% CI 0.72–1.02, p = 0.075), not statistically significant |
KEYNOTE 394 [57] | 2022 | Phase III, randomized, double blind | Asia | Pembrolizumab vs. placebo | Advanced disease, progressed on first line therapy | 453 | Improved OS in pembrolizumab vs. placebo group (14.6 vs. 13.0 months, HR 0.79, 95% CI 0.63–0.99, p = 0.018) |
HIMALAYA [60] | 2022 | Phase III, randomized, open-label | 16 countries | Tremelimumab plus durvalumab vs. sorafenib vs. durvalumab | Unresectable disease, no prior systemic therapy | 1171 | Improved 3 year OS in tremelimumab plus durvalumab vs. sorafenib group (30.7% vs. 20.2%, HR 0.78, 96% CI 0.65–0.92, p = 0.0035) |
5. Cholangiocarcinoma
6. Anal Cancer
7. Pancreatic Cancer
8. Small Bowel Cancer
9. Neuroendocrine Neoplasms
10. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA A Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Estimated Age-Standardized Incidence and Mortality Rates (World) in 2020, Worldwide, Both Sexes, All Ages. In Global Cancer Observatory; 2022. Available online: https://gco.iarc.fr/today (accessed on 12 May 2022).
- Fan, J.; Liu, Z.; Mao, X.; Tong, X.; Zhang, T.; Suo, C.; Chen, X. Global Trends in the Incidence and Mortality of Esophageal Cancer from 1990 to 2017. Cancer Med. 2020, 9, 6875–6887. [Google Scholar] [CrossRef]
- Brown, L.M.; Devesa, S.S.; Chow, W.-H. Incidence of Adenocarcinoma of the Esophagus Among White Americans by Sex, Stage, and Age. J. Natl. Cancer Inst. 2008, 100, 1184–1187. [Google Scholar] [CrossRef]
- Wagner, A.D.; Syn, N.L.; Moehler, M.; Grothe, W.; Yong, W.P.; Tai, B.-C.; Ho, J.; Unverzagt, S. Chemotherapy for Advanced Gastric Cancer. Cochrane Database Syst. Rev. 2017, 8, CD004064. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in Combination with Chemotherapy Versus Chemotherapy Alone for Treatment of HER2-Positive Advanced Gastric or Gastro-Oesophageal Junction Cancer (Toga): A Phase 3, Open-Label, Randomised Controlled Trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Yanez, P.E.; Luo, S.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. Pembrolizumab Plus Trastuzumab and Chemotherapy for HER2+ Metastatic Gastric or Gastroesophageal Junction (G/GEJ) Cancer: Initial Findings of the Global Phase 3 KEYNOTE-811 Study. J. Clin. Oncol. 2021, 39, 4013. [Google Scholar] [CrossRef]
- Shitara, K.; Bang, Y.-J.; Iwasa, S.; Sugimoto, N.; Ryu, M.-H.; Sakai, D.; Chung, H.-C.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N. Engl. J. Med. 2020, 382, 2419–2430. [Google Scholar] [CrossRef]
- Al-Batran, S.-E.; Hartmann, J.T.; Probst, S.; Schmalenberg, H.; Hollerbach, S.; Hofheinz, R.; Rethwisch, V.; Seipelt, G.; Homann, N.; Wilhelm, G.; et al. Phase III Trial in Metastatic Gastroesophageal Adenocarcinoma with Fluorouracil, Leucovorin Plus Either Oxaliplatin or Cisplatin: A Study of the Arbeitsgemeinschaft Internistische Onkologie. J. Clin. Oncol. 2008, 26, 1435–1442. [Google Scholar] [CrossRef]
- Enzinger, P.C.; Burtness, B.A.; Niedzwiecki, D.; Ye, X.; Douglas, K.; Ilson, D.H.; Villaflor, V.M.; Cohen, S.J.; Mayer, R.J.; Venook, A.; et al. CALGB 80403 (Alliance)/E1206: A Randomized Phase II Study of Three Chemotherapy Regimens Plus Cetuximab in Metastatic Esophageal and Gastroesophageal Junction Cancers. J. Clin. Oncol. 2016, 34, 2736–2742. [Google Scholar] [CrossRef]
- Kato, K.; Cho, B.C.; Takahashi, M.; Okada, M.; Lin, C.-Y.; Chin, K.; Kadowaki, S.; Ahn, M.-J.; Hamamoto, Y.; Doki, Y.; et al. Nivolumab Versus Chemotherapy in Patients with Advanced Oesophageal Squamous Cell Carcinoma Refractory or Intolerant to Previous Chemotherapy (ATTRACTION-3): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2019, 20, 1506–1517. [Google Scholar] [CrossRef]
- Park, Y.; Koh, J.; Na, H.Y.; Kwak, Y.; Lee, K.-W.; Ahn, S.-H.; Park, D.J.; Kim, H.-H.; Lee, H.S. PD-L1 Testing in Gastric Cancer by the Combined Positive Score of the 22C3 PharmDx and SP263 Assay with Clinically Relevant Cut-offs. Cancer Res. Treat. 2020, 52, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.-P.; et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients with Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef] [PubMed]
- Center for Drug Evaluation and Research. FDA Grants Accelerated Approval to Pembrolizumab for Advanced Gastric Cancer. U.S. Food and Drug Administration, FDA. 22 September 2017. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-advanced-gastric-cancer (accessed on 12 May 2022).
- Shitara, K.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.-H.; Fornaro, L.; Olesiński, T.; Caglevic, C.; Chung, H.C.; et al. Pembrolizumab Versus Paclitaxel for Previously Treated, Advanced Gastric or Gastro-Oesophageal Junction Cancer (KEYNOTE-061): A Randomised, Open-Label, Controlled, Phase 3 Trial. Lancet 2018, 392, 123–133. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandala, M.; Ryu, M.-H.; Fornaro, L.; Olesinski, T.; Caglevic, C.; Chung, H.C.; et al. Pembrolizumab Versus Paclitaxel for Previously Treated PD-L1-Positive Advanced Gastric or Gastroesophageal Junction Cancer: 2-Year Update of the Randomized Phase 3 KEYNOTE-061 Trial. Gastric Cancer 2021, 25, 197–206. [Google Scholar] [CrossRef]
- Shitara, K.; Van Cutsem, E.; Bang, Y.-J.; Fuchs, C.; Wyrwicz, L.; Lee, K.-W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J.; et al. Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs Chemotherapy Alone for Patients with First-line, Advanced Gastric Cancer: The KEYNOTE-062 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1571–1580. [Google Scholar] [CrossRef]
- Sun, J.-M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.-P.; Li, Z.; Kim, S.-B.; et al. Pembrolizumab Plus Chemotherapy Versus Chemotherapy Alone for First-Line Treatment of Advanced Oesophageal Cancer (KEYNOTE-590): A Randomised, Placebo-Controlled, Phase 3 Study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef]
- Kojima, T.; Shah, M.A.; Muro, K.; Francois, E.; Adenis, A.; Hsu, C.-H.; Doi, T.; Moriwaki, T.; Kim, S.-B.; Lee, S.-H.; et al. Randomized Phase III KEYNOTE-181 Study of Pembrolizumab Versus Chemotherapy in Advanced Esophageal Cancer. J. Clin. Oncol. 2020, 38, 4138–4148. [Google Scholar] [CrossRef]
- Tabernero, J.; Bang, Y.-J.; Van Cutsem, E.; Fuchs, C.S.; Janjigian, Y.Y.; Bhagia, P.; Li, K.; Adelberg, D.; Qin, S.K. KEYNOTE-859: A Phase III Study of Pembrolizumab Plus Chemotherapy in Gastric/Gastroesophageal Junction Adenocarcinoma. Futur. Oncol. 2021, 17, 2847–2855. [Google Scholar] [CrossRef]
- Shah, M.A.; Almhanna, K.; Iqbal, S.; Thakkar, P.; Schneider, B.J.; Yantiss, R.; Wu, Y.; Futamura, E.; Port, J.L.; Spinelli, C.; et al. Multicenter, Randomized Phase II Study of Neoadjuvant Pembrolizumab Plus Chemotherapy and Chemoradiotherapy in Esophageal Adenocarcinoma (EAC). J. Clin. Oncol. 2021, 39, 4005. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Boku, N.; Satoh, T.; Ryu, M.-H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.-S.; Muro, K.; Kang, W.K.; et al. Nivolumab in Patients with Advanced Gastric or Gastro-Oesophageal Junction Cancer Refractory to, or Intolerant of, At Least Two Previous Chemotherapy Regimens (ONO-4538-12, ATTRACTION-2): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef]
- Boku, N.; Ryu, M.-H.; Kato, K.; Chung, H.; Minashi, K.; Lee, K.-W.; Cho, H.; Kang, W.; Komatsu, Y.; Tsuda, M.; et al. Safety and Efficacy of Nivolumab in Combination with S-1/Capecitabine Plus Oxaliplatin in Patients with Previously Untreated, Unresectable, Advanced, or Recurrent Gastric/Gastroesophageal Junction Cancer: Interim Results of a Randomized, Phase II Trial (ATTRACTION-4). Ann. Oncol. 2019, 30, 250–258. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Bendell, J.; Calvo, E.; Kim, J.W.; Ascierto, P.A.; Sharma, P.; Ott, P.A.; Peltola, K.; Jaeger, D.; Evans, J.; et al. CheckMate-032 Study: Efficacy and Safety of Nivolumab and Nivolumab Plus Ipilimumab in Patients with Metastatic Esophagogastric Cancer. J. Clin. Oncol. 2018, 36, 2836–2844. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lièvre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Bragagnoli, A.C.; et al. First-Line Nivolumab Plus Chemotherapy Versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal Junction, And Oesophageal Adenocarcinoma (Checkmate 649): A Randomised, Open-Label, Phase 3 Trial. Lancet 2021, 3, 27–40. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research. FDA Approves Nivolumab in Combination with Chemotherapy for Metastatic Gastric Cancer and Esophageal Adenocarcinoma. U.S. Food and Drug Administration, FDA. 16 April 2021. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-nivolumab-combination-chemotherapy-metastatic-gastric-cancer-and-esophageal (accessed on 12 May 2022).
- Doki, Y.; Ajani, J.A.; Kato, K.; Xu, J.; Wyrwicz, L.; Motoyama, S.; Ogata, T.; Kawakami, H.; Hsu, C.-H.; Adenis, A.; et al. Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma. N. Engl. J. Med. 2022, 386, 449–462. [Google Scholar] [CrossRef]
- Lacy, J.; Cecchini, M. PD-1 Inhibition in First-Line Treatment of Advanced Esophageal Squamous Cell Carcinoma: More to Come on New Paradigm. The ASCO Post. 25 May 2022. Available online: https://ascopost.com/issues/may-25-2022/pd-1-inhibition-in-first-line-treatment-of-advanced-esophageal-squamous-cell-carcino-ma-more-to-come-on-new-paradigm/?utm_source=TAP%2DEN%2D062122%2DTrending%5FGI&utm_medium=email&utm_term=f22bf6a2d2efedfb950b157da3ded2ae?bc_md5=f22bf6a2d2efedfb950b157da3ded2ae (accessed on 12 May 2022).
- Center for Drug Evaluation and Research. FDA Approves Opdivo in Combination with Chemotherapy and Opdivo in Com-bination with Yervoy for First-Line Esophageal Squamous Cell Carcinoma Indications. U.S. Food and Drug Administration, FDA. 27 May 2022. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-opdivo-combination-chemotherapy-and-opdivo-combination-yervoy-first-line-esophageal (accessed on 12 May 2022).
- Moehler, M.; Dvorkin, M.; Boku, N.; Özgüroğlu, M.; Ryu, M.-H.; Muntean, A.S.; Lonardi, S.; Nechaeva, M.; Bragagnoli, A.C.; Coşkun, H.S.; et al. Phase III Trial of Avelumab Maintenance After First-Line Induction Chemotherapy Versus Continuation of Chemotherapy in Patients with Gastric Cancers: Results from JAVELIN Gastric 100. J. Clin. Oncol. 2021, 39, 966–977. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Ruiz, E.; Van Cutsem, E.; Lee, K.-W.; Wyrwicz, L.; Schenker, M.; Alsina, M.; Ryu, M.-H.; Chung, H.-C.; Evesque, L.; et al. Phase III, Randomised Trial of Avelumab Versus Physician’s Choice of Chemotherapy as Third-Line Treatment of Patients with Advanced Gastric or Gastro-Oesophageal Junction Cancer: Primary Analysis of JAVELIN Gastric 300. Ann. Oncol. 2018, 29, 2052–2060. [Google Scholar] [CrossRef]
- Jing, C.; Wang, J.; Zhu, M.; Bai, Z.; Zhao, B.; Zhang, J.; Yin, J.; Yang, X.; Liu, Z.; Zhang, Z.; et al. Camrelizumab Combined with Apatinib and S-1 as Second-Line Treatment for Patients with Advanced Gastric or Gastroesophageal Junction Adenocarcinoma: A Phase 2, Single-Arm, Prospective Study. Cancer Immunol. Immunother. 2022, 1–12. [Google Scholar] [CrossRef]
- Peng, Z.; Wei, J.; Wang, F.; Ying, J.; Deng, Y.; Gu, K.; Cheng, Y.; Yuan, X.; Xiao, J.; Tai, Y.; et al. Camrelizumab Combined with Chemotherapy Followed by Camrelizumab plus Apatinib as First-line Therapy for Advanced Gastric or Gastroesophageal Junction Adenocarcinoma. Clin. Cancer Res. 2021, 27, 3069–3078. [Google Scholar] [CrossRef] [PubMed]
- André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability–High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.-J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; et al. Nivolumab in Patients with Metastatic DNA Mismatch Repair-Deficient or Microsatellite Instability-High Colorectal Cancer (Checkmate 142): An Open-Label, Multicentre, Phase 2 Study. Lancet Oncol. 2017, 18, 1182–1191. [Google Scholar] [CrossRef]
- Lenz, H.-J.; Van Cutsem, E.; Limon, M.L.; Wong, K.Y.M.; Hendlisz, A.; Aglietta, M.; García-Alfonso, P.; Neyns, B.; Luppi, G.; Cardin, D.B.; et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study. J. Clin. Oncol. 2022, 40, 161–170. [Google Scholar] [CrossRef]
- Eng, C.; Kim, T.W.; Bendell, J.; Argilés, G.; Tebbutt, N.C.; Di Bartolomeo, M.; Falcone, A.; Fakih, M.; Kozloff, M.; Segal, N.H.; et al. Atezolizumab with or without Cobimetinib Versus Regorafenib in Previously Treated Metastatic Colorectal Cancer (IMblaze370): A Multicentre, Open-Label, Phase 3, Randomised, Controlled Trial. Lancet Oncol. 2019, 20, 849–861. [Google Scholar] [CrossRef]
- Grothey, A.; Tabernero, J.; Arnold, D.; De Gramont, A.; Ducreux, M.; O’Dwyer, P.; Van Cutsem, E.; Bosanac, I.; Srock, S.; Mancao, C.; et al. Fluoropyrimidine (FP) + Bevacizumab (BEV) + Atezolizumab Vs FP/BEV In Brafwt Metastatic Colorectal Cancer (Mcrc): Findings from Cohort 2 Of MODUL—A Multicentre, Randomized Trial of Biomarker-Driven Maintenance Treatment Following First-Line Induction Therapy. Ann. Oncol. 2018, 29, viii714–viii715. [Google Scholar] [CrossRef]
- Chen, E.X.; Jonker, D.J.; Loree, J.; Kennecke, H.F.; Berry, S.R.; Couture, F.; Ahmad, C.E.; Goffin, J.R.; Kavan, P.; Harb, M.; et al. Effect of Combined Immune Checkpoint Inhibition vs Best Supportive Care Alone in Patients with Advanced Colorectal Cancer. JAMA Oncol. 2020, 6, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Lai, E.; Liscia, N.; Donisi, C.; Mariani, S.; Tolu, S.; Pretta, A.; Persano, M.; Pinna, G.; Balconi, F.; Pireddu, A.; et al. Molecular-Biology-Driven Treatment for Metastatic Colorectal Cancer. Cancers 2020, 12, 1214. [Google Scholar] [CrossRef]
- Cercek, A.; Lumish, M.; Sinopoli, J.; Weiss, J.; Shia, J.; Lamendola-Essel, M.; El Dika, I.H.; Segal, N.; Shcherba, M.; Sugarman, R.; et al. PD-1 Blockade in Mismatch Repair–Deficient, Locally Advanced Rectal Cancer. N. Engl. J. Med. 2022, 386, 2363–2376. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73 (Suppl. S1), 4–13. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; De Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Breous, E.; Thimme, R. Potential of Immunotherapy for Hepatocellular Carcinoma. J. Hepatol. 2011, 54, 830–834. [Google Scholar] [CrossRef] [PubMed]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling, T.H., 3rd; et al. Nivolumab in Patients with Advanced Hepatocellular Carcinoma (Checkmate 040): An Open-Label, Non-Comparative, Phase 1/2 Dose Escalation and Expansion Trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Yau, T.; Zagonel, V.; Santoro, A.; Acosta-Rivera, M.; Choo, S.P.; Matilla, A.; He, A.R.; Gracián, A.C.; El-Khoueiry, A.B.; Sangro, B.; et al. Nivolumab (NIVO) + Ipilimumab (IPI) + Cabozantinib (CABO) Combination Therapy in Patients (Pts) With Advanced Hepatocellular Carcinoma (Ahcc): Results from Checkmate 040. J. Clin. Oncol. 2020, 38, 478. [Google Scholar] [CrossRef]
- Yau, T.; Kang, Y.-K.; Kim, T.-Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.-M.; Matilla, A.; et al. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib: The CheckMate 040 Randomized Clinical Trial. JAMA Oncol. 2020, 6, e204564. [Google Scholar] [CrossRef] [PubMed]
- Center for Drug Evaluation and Research. FDA Grants Accelerated Approval to Nivolumab and Ipilimumab Combination for Hepatocellular Carcinoma. U.S. Food and Drug Administration, FDA. 11 March 2020. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-nivolumab-and-ipilimumab-combination-hepatocellular-carcinoma (accessed on 12 May 2022).
- Yau, T.; Park, J.-W.; Finn, R.S.; Cheng, A.-L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O.; et al. Nivolumab Versus Sorafenib in Advanced Hepatocellular Carcinoma (Checkmate 459): A Randomised, Multicentre, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 23, 77–90. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research. FDA Approves Atezolizumab Plus Bevacizumab for Unresectable Hepatocellular Carcinoma. U.S. Food and Drug Administration, FDA. 29 May 2020. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-atezolizumab-plus-bevacizumab-unresectable-hepatocellular-carcinoma (accessed on 12 May 2022).
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib (KEYNOTE-224): A Non-Randomised, Open-Label Phase 2 Trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.-Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab as Second-Line Therapy in Patients with Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef]
- Qin, S.; Chen, Z.; Weijia, F.; Ren, Z.; Xu, R.; Ryoo, B.-Y.; Meng, Z.; Bai, Y.; Chen, X.; Liu, X.; et al. Pembrolizumab Plus Best Supportive Care Versus Placebo Plus Best Supportive Care As Sec-Ond-Line Therapy In Patients In Asia With Advanced Hepatocellular Carcinoma (HCC): Phase 3 KENOTE-394 Study. J. Clin. Oncol. 2022, 404 (Suppl. S4), 383. [Google Scholar]
- Merck. Merck’s KEYTRUDA (pembrolizumab) Significantly Improved Overall Survival (OS) Versus Placebo in Certain Patients with Advanced Hepatocellular Carcinoma (HCC) Previously Treated with Sorafenib. 18 February 2022. Available online: https://www.merck.com/news/mercks-keytruda-pembrolizumab-significantly-improved-overall-survival-os-versus-placebo-in-certain-patients-with-advanced-hepatocellular-carcinoma-hcc-previously-treated-with-sora/ (accessed on 12 May 2022).
- Finn, R.S.; Ikeda, M.; Zhu, A.X.; Sung, M.W.; Baron, A.D.; Kudo, M.; Okusaka, T.; Kobayashi, M.; Kumada, H.; Kaneko, S.; et al. Phase Ib Study of Lenvatinib Plus Pembrolizumab in Patients with Unresectable Hepatocellular Carcinoma. J. Clin. Oncol. 2020, 38, 2960–2970, Erratum in JAMA Oncol. 2021, 7, 140. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Chan, S.L.; Kudo, M.; Lau, G.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Dao, T.V.; De Toni, E.N.; et al. Phase 3 Randomized, Open-Label, Multicenter Study of Tremelimumab (T) And Durvalumab (D) As First-Line Therapy in Patients (Pts) With Unresectable Hepatocellular Carcinoma (Uhcc): HIMALAYA. J. Clin. Oncol. 2022, 40 (Suppl. S4), 379. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology. Hepatobiliary Cancers Version 1. 29 March 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/hepatobiliary.pdf (accessed on 12 May 2022).
- Piha-Paul, S.A.; Oh, D.; Ueno, M.; Malka, D.; Chung, H.C.; Nagrial, A.; Kelley, R.K.; Ros, W.; Italiano, A.; Nakagawa, K.; et al. Efficacy and Safety of Pembrolizumab for the Treatment of Advanced Biliary Cancer: Results from the KEYNOTE -158 and KEYNOTE -028 Studies. Int. J. Cancer 2020, 147, 2190–2198. [Google Scholar] [CrossRef]
- Valle, J.; Wasan, H.; Palmer, D.H.; Cunningham, D.; Anthoney, A.; Maraveyas, A.; Madhusudan, S.; Iveson, T.; Hughes, S.; Pereira, S.P.; et al. Cisplatin Plus Gemcitabine Versus Gemcitabine for Biliary Tract Cancer. N. Engl. J. Med. 2010, 362, 1273–1281. [Google Scholar] [CrossRef]
- Kim, R.D.; Chung, V.; Alese, O.B.; El-Rayes, B.F.; Li, D.; Al-Toubah, T.E.; Schell, M.J.; Zhou, J.-M.; Mahipal, A.; Kim, B.H.; et al. A Phase 2 Multi-Institutional Study of Nivolumab for Patients with Advanced Refractory Biliary Tract Cancer. JAMA Oncol. 2020, 6, 888–894. [Google Scholar] [CrossRef]
- Kemp, A. Imfinzi Plus Chemotherapy Granted Priority Review in US for Patients with Locally Advanced or Metastatic Biliary Tract Cancer Based On TOPAZ-1 Phase III Trial. 4 May 2022. Available online: https://www.astrazeneca.com/media-centre/press-releases/2022/imfinzi-combo-granted-priority-review-for-btc.html (accessed on 12 May 2022).
- Oh, D.-Y.; He, A.R.; Qin, S.; Chen, L.-T.; Okusaka, T.; Vogel, A.; Kim, J.W.; Suksombooncharoen, T.; Lee, M.A.; Kitano, M.; et al. A Phase 3 Randomized, Double-Blind, Placebo-Controlled Study of Durvalumab in Combination with Gemcitabine Plus Cisplatin (Gemcis) in Patients (Pts) with Advanced Biliary Tract Cancer (BTC): TOPAZ-1. J. Clin. Oncol. 2022, 40, 378. [Google Scholar] [CrossRef]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair–Deficient Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Grulich, A.E.; Poynten, I.M.; Machalek, D.A.; Jin, F.; Templeton, D.J.; Hillman, R.J. The Epidemiology of Anal Cancer. Sex. Health 2012, 9, 504–508. [Google Scholar] [CrossRef]
- Rao, S.; Sclafani, F.; Eng, C.; Adams, R.A.; Guren, M.G.; Sebag-Montefiore, D.; Benson, A.; Bryant, A.; Peckitt, C.; Segelov, E.; et al. International Rare Cancers Initiative Multicenter Randomized Phase II Trial of Cisplatin and Fluorouracil Versus Carboplatin and Paclitaxel in Advanced Anal Cancer: InterAAct. J. Clin. Oncol. 2020, 38, 2510–2518. [Google Scholar] [CrossRef]
- Morris, V.K.; E Salem, M.; Nimeiri, H.; Iqbal, S.; Singh, P.; Ciombor, K.; Polite, B.; Deming, D.; Chan, E.; Wade, J.L.; et al. Nivolumab for Previously Treated Unresectable Metastatic Anal Cancer (NCI9673): A Multicentre, Single-Arm, Phase 2 Study. Lancet Oncol. 2017, 18, 446–453. [Google Scholar] [CrossRef]
- Ott, P.A.; Piha-Paul, S.A.; Munster, P.; Pishvaian, M.J.; van Brummelen, E.M.J.; Cohen, R.B.; Gomez-Roca, C.; Ejadi, S.; Stein, M.; Chan, E.; et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. Ann. Oncol. 2017, 28, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology. Anal Carcinoma Version 1. 2 March 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/anal.pdf (accessed on 12 May 2022).
- Protti, M.P.; De Monte, L. Immune Infiltrates as Predictive Markers of Survival in Pancreatic Cancer Patients. Front. Physiol. 2013, 4, 210. [Google Scholar] [CrossRef] [PubMed]
- Vonderheide, R.H.; Bayne, L.J. Inflammatory Networks and Immune Surveillance of Pancreatic Carcinoma. Curr. Opin. Immunol. 2013, 25, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, V.P.; Beatty, G.L.; Dougan, S.K. Broadening the Impact of Immunotherapy to Pancreatic Cancer: Challenges and Opportunities. Gastroenterology 2019, 156, 2056–2072. [Google Scholar] [CrossRef]
- Royal, R.E.; Levy, C.; Turner, K.; Mathur, A.; Hughes, M.; Kammula, U.S.; Sherry, R.M.; Topalian, S.L.; Yang, J.C.; Lowy, I.; et al. Phase 2 Trial of Single Agent Ipilimumab (Anti-CTLA-4) for Locally Advanced or Metastatic Pancreatic Adenocarcinoma. J. Immunother. 2010, 33, 828–833. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Hochster, H.S.; Kim, E.J.; George, B.; Kaylan, A.; Chiorean, E.G.; Waterhouse, D.M.; Guiterrez, M.; Parikh, A.R.; Jain, R.; et al. Open-label, Phase I Study of Nivolumab Combined with nab-Paclitaxel Plus Gemcitabine in Advanced Pancreatic Cancer. Clin. Cancer Res. 2020, 26, 4814–4822. [Google Scholar] [CrossRef]
- Kamath, S.D.; Kalyan, A.; Kircher, S.; Nimeiri, H.; Fought, A.J.; Benson, A.; Mulcahy, M. Ipilimumab and Gemcitabine for Advanced Pancreatic Cancer: A Phase Ib Study. Oncologist 2019, 25, e808–e815. [Google Scholar] [CrossRef]
- O’Reilly, E.M.; Oh, D.-Y.; Dhani, N.; Renouf, D.J.; Lee, M.A.; Sun, W.; Fisher, G.; Hezel, A.; Chang, S.-C.; Vlahovic, G.; et al. Durvalumab With or Without Tremelimumab for Patients With Metastatic Pancreatic Ductal Adenocarcinoma: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 1431–1438. [Google Scholar] [CrossRef]
- Le, D.T.; Picozzi, V.J.; Ko, A.H.; Wainberg, Z.A.; Kindler, H.; Wang-Gillam, A.; Oberstein, P.E.; Morse, M.A.; Zeh, H.J.; Weekes, C.D.; et al. Results from a Phase IIb, Randomized, Multicenter Study of GVAX Pancreas and CRS-207 Compared with Chemotherapy in Adults with Previously Treated Metastatic Pancreatic Adenocarcinoma (ECLIPSE Study). Clin. Cancer Res. 2019, 25, 5493–5502. [Google Scholar] [CrossRef]
- Bernhardt, S.L.; Gjertsen, M.K.; Trachsel, S.; Møller, M.; A Eriksen, J.; Meo, M.; Buanes, T.; Gaudernack, G. Telomerase Peptide Vaccination of Patients with Non-Resectable Pancreatic Cancer: A Dose Escalating Phase I/II Study. Br. J. Cancer 2006, 95, 1474–1482. [Google Scholar] [CrossRef]
- Middleton, G.; Silcocks, P.; Cox, T.; Valle, J.; Wadsley, J.; Propper, D.; Coxon, F.; Ross, P.; Madhusudan, S.; Roques, T.; et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in Patients with Locally Advanced or Metastatic Pancreatic Cancer (Telovac): An Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2014, 15, 829–840. [Google Scholar] [CrossRef]
- Hu, Z.I.; Shia, J.; Stadler, Z.K.; Varghese, A.M.; Capanu, M.; Salo-Mullen, E.; Lowery, M.A.; Diaz, L.A.; Mandelker, D.; Yu, K.H.; et al. Evaluating Mismatch Repair Deficiency in Pancreatic Adenocarcinoma: Challenges and Recommendations. Clin. Cancer Res. 2018, 24, 1326–1336. [Google Scholar] [CrossRef] [PubMed]
- Zamarin, D.; Hamid, O.; Nayak-Kapoor, A.; Sahebjam, S.; Sznol, M.; Collaku, A.; Fox, F.E.; Marshall, M.A.; Hong, D.S. Mogamulizumab in Combination with Durvalumab or Tremelimumab in Patients with Advanced Solid Tumors: A Phase I Study. Clin. Cancer Res. 2020, 26, 4531–4541. [Google Scholar] [CrossRef] [PubMed]
- Leidner, R.; Silva, N.S.; Huang, H.; Sprott, D.; Zheng, C.; Shih, Y.-P.; Leung, A.; Payne, R.; Sutcliffe, K.; Cramer, J.; et al. Neoantigen T-Cell Receptor Gene Therapy in Pancreatic Cancer. N. Engl. J. Med. 2022, 386, 2112–2119. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, K.S.; Foster, N.R.; Overman, M.J.; Boland, P.M.; Kim, S.S.; Arrambide, K.A.; Jaszewski, B.L.; Bekaii-Saab, T.; Graham, R.P.; Welch, J.; et al. ZEBRA: A Multicenter Phase II Study of Pembrolizumab in Patients with Advanced Small-Bowel Adenocarcinoma. Clin. Cancer Res. 2021, 27, 3641–3648. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499, 214–218. [Google Scholar] [CrossRef]
- Vijayvergia, N.; Boland, P.M.; Handorf, E.; Gustafson, K.S.; Gong, Y.; Cooper, H.S.; Sheriff, F.; Astsaturov, I.; Cohen, S.J.; Engstrom, P.F. Molecular profiling of neuroendocrine malignancies to identify prognostic and therapeutic markers: A Fox Chase Cancer Center Pilot Study. Br. J. Cancer 2016, 115, 564–570. [Google Scholar] [CrossRef]
- Strosberg, J.R.; Mizuno, N.; Doi, T.; Grande, E.; Delord, J.-P.; Shapira-Frommer, R.; Bergsland, E.K.; Shah, M.H.; Fakih, M.; Takahashi, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Neuroendocrine Tumors: Results From the Phase II KEYNOTE-158 Study. Clin. Cancer Res. 2020, 26, 2124–2130. [Google Scholar] [CrossRef]
- Patel, S.P.; Othus, M.; Chae, Y.K.; Giles, F.J.; Hansel, D.E.; Singh, P.P.; Fontaine, A.; Shah, M.H.; Kasi, A.; Al Baghdadi, T.; et al. A Phase II Basket Trial of Dual Anti–CTLA-4 and Anti–PD-1 Blockade in Rare Tumors (DART SWOG 1609) in Patients with Nonpancreatic Neuroendocrine Tumors. Clin. Cancer Res. 2020, 26, 2290–2296. [Google Scholar] [CrossRef]
- Patel, S.P.; Ms, E.M.; Chae, Y.K.; Strosberg, J.; Wang, J.; Konda, B.; Bs, J.H.; AA, C.M.M.; Chen, H.X.; Sharon, E.; et al. A phase II basket trial of Dual Anti–CTLA–4 and Anti–PD–1 Blockade in Rare Tumors (DART) SWOG S1609: High-grade neuroendocrine neoplasm cohort. Cancer 2021, 127, 3194–3201. [Google Scholar] [CrossRef]
- Al-Toubah, T.; Halfdanarson, T.; Gile, J.; Morse, B.; Sommerer, K.; Strosberg, J. Efficacy of ipilimumab and nivolumab in patients with high-grade neuroendocrine neoplasms. ESMO Open 2021, 7, 100364. [Google Scholar] [CrossRef] [PubMed]
- Balli, D.; Rech, A.J.; Stanger, B.Z.; Vonderheide, R.H. Immune Cytolytic Activity Stratifies Molecular Subsets of Human Pancreatic Cancer. Clin. Cancer Res. 2017, 23, 3129–3138. [Google Scholar] [CrossRef]
- Jenkins, R.W.; Barbie, D.A.; Flaherty, K.T. Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 2018, 118, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DeCarli, K.; Strosberg, J.; Almhanna, K. Immune Checkpoint Inhibitors for Gastrointestinal Malignancies: An Update. Cancers 2022, 14, 4201. https://doi.org/10.3390/cancers14174201
DeCarli K, Strosberg J, Almhanna K. Immune Checkpoint Inhibitors for Gastrointestinal Malignancies: An Update. Cancers. 2022; 14(17):4201. https://doi.org/10.3390/cancers14174201
Chicago/Turabian StyleDeCarli, Kathryn, Jonathan Strosberg, and Khaldoun Almhanna. 2022. "Immune Checkpoint Inhibitors for Gastrointestinal Malignancies: An Update" Cancers 14, no. 17: 4201. https://doi.org/10.3390/cancers14174201
APA StyleDeCarli, K., Strosberg, J., & Almhanna, K. (2022). Immune Checkpoint Inhibitors for Gastrointestinal Malignancies: An Update. Cancers, 14(17), 4201. https://doi.org/10.3390/cancers14174201