Targeted Approaches in Metastatic Castration-Resistant Prostate Cancer: Which Data?
Abstract
:Simple Summary
Abstract
1. Introduction
2. New Therapeutic Approaches for Metastatic Castration-Resistant Prostate Cancer
2.1. DNA Damage Repair Pathways
2.2. MSI-H/dMMR Pathway
2.3. PI3K/AKT/mTOR Pathway
3. Potential Further Novel Agents for the Management of Metastatic Castration-Resistant Prostate Cancer
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Culp, M.B.; Soerjomataram, I.; Efstathiou, J.A. Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. Eur. Urol. 2020, 77, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, C.J.; Chen, Y.; Carducci, M. Chemohormonal therapy in metastatic hormonesensitive prostate cancer. N. Engl. J. Med. 2015, 373, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Fizazi, K.; Tran, N.; Fein, L. Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration-sensitive prostate cancer (LATITUDE): Final overall survival analysis of a randomised, double-blind, phase 3 trial. Lancet Oncol. 2019, 20, 686–700. [Google Scholar] [CrossRef]
- Chi, K.N.; Chowdhury, S.; Bjartell, A. Apalutamide in Patients With Metastatic Castration-Sensitive Prostate Cancer: Final Survival Analysis of the Randomized, Double-Blind, Phase III TITAN Study. J. Clin. Oncol. 2021, 39, 2294–2303. [Google Scholar] [CrossRef]
- Armstrong, A.J.; Szmulewitz, R.Z.; Petrylak, D.P. ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy With Enzalutamide or Placebo in Men With Metastatic Hormone-Sensitive Prostate Cancer. J. Clin. Oncol. 2019, 37, 2974–2986. [Google Scholar] [CrossRef]
- Davis, I.D.; Martin, A.J.; Stockle, M.R. Enzalutamide with Standard First-Line Therapy in Metastatic Prostate Cancer. N. Engl. J. Med. 2019, 381, 121–131. [Google Scholar] [CrossRef]
- Smith, M.R.; Hussain, M.; Saad, F. Darolutamide and Survival in Metastatic, Hormone-Sensitive Prostate Cancer. N. Engl. J. Med. 2022, 386, 1132–1142. [Google Scholar] [CrossRef]
- Beer, T.M.; Armstrong, A.J.; Rathkopf, D.E. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med. 2014, 371, 424–433. [Google Scholar] [CrossRef]
- Crowley, F.; Sterpi, M.; Buckley, C. A Review of the Pathophysiological Mechanisms Underlying Castration-resistant Prostate Cancer. Res. Rep. Urol. 2021, 13, 457–472. [Google Scholar] [PubMed]
- Robinson, D.; Van Allen, E.M.; Wu, Y.-M. Integrative Clinical Genomics of Advanced Prostate Cancer. Cell 2015, 161, 1215–1228. [Google Scholar] [CrossRef] [Green Version]
- Abida, W.; Cheng, M.L.; Armenia, J. Analysis of the Prevalence of Microsatellite Instability in Prostate Cancer and Response to Immune Checkpoint Blockade. JAMA Oncol. 2019, 5, 471–478. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef]
- Wright, W.D.; Shah, S.S.; Heyer, W.-D. Homologous recombination and the repair of DNA double-strand breaks. J. Biol. Chem. 2018, 293, 10524–10535. [Google Scholar] [CrossRef]
- Mateo, J.; Boysen, G.; Barbieri, C.E. DNA Repair in Prostate Cancer: Biology and Clinical Implications. Eur. Urol. 2017, 71, 417–425. [Google Scholar] [CrossRef]
- Aparicio, T.; Baer, R.; Gautier, J. DNA double-strand break repair pathway choice and cancer. DNA Repair 2014, 19, 169–175. [Google Scholar] [CrossRef]
- Abida, W.; Armenia, J.; Gopalan, A. Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making. JCO Precis. Oncol. 2017, 1, 1–16. [Google Scholar] [CrossRef]
- Pritchard, C.C.; Mateo, J.; Walsh, M.F. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N. Engl. J. Med. 2015, 375, 443–453. [Google Scholar] [CrossRef]
- LeVee, A.; Lin, C.Y.; Posadas, E. Clinical Utility of Olaparib in the Treatment of Metastatic Castration-Resistant Prostate Cancer: A Review of Current Evidence and Patient Selection [published correction appears in Onco Targets Ther. Onco. Targets Ther. 2021, 14, 4819–4832. [Google Scholar]
- Hussain, M.H.A.; Mateo, J.; Kaur Sandhu, S. Next-generation sequencing (NGS) of tumor tissue from >4000 men with metastatic castration-resistant prostate cancer (mCRPC): The PROfound phase III study experience. JCO 2020, 38 (Suppl. 6), 195. [Google Scholar] [CrossRef]
- Andor, N.; Maley, C.C.; Ji, H.P. Genomic Instability in Cancer: Teetering on the Limit of Tolerance. Cancer Res. 2017, 77, 2179–2185. [Google Scholar] [CrossRef]
- O’Neil, N.J.; Bailey, M.L.; Hieter, P. Synthetic lethality and cancer. Nat. Rev. Genet. 2017, 18, 613–623. [Google Scholar] [CrossRef]
- Mateo, J.; Carreira, S.; Sandhu, S. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N. Engl. J. Med. 2015, 373, 1697–1708. [Google Scholar] [CrossRef]
- Mateo, J.; Porta, N.; Bianchini, D. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): A multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2021, 21, 162–174. [Google Scholar] [CrossRef]
- Hussain, M.; Mateo, J.; Fizazi, K. Survival with Olaparib in Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 383, 2345–2357. [Google Scholar] [CrossRef]
- Abida, W.; Patnaik, A.; Campbell, D. Rucaparib in Men With Metastatic Castration-Resistant Prostate Cancer Harboring a BRCA1 or BRCA2 Gene Alteration. J. Clin. Oncol. 2020, 38, 3763–3772. [Google Scholar] [CrossRef]
- de Bono, J.S.; Mehra, N.; Scagliotti, G.V. Talazoparib monotherapy in metastatic castration-resistant prostate cancer with DNA repair alterations (TALAPRO-1): An open-label, phase 2 trial. Lancet Oncol. 2021, 22, 1250–1264. [Google Scholar] [CrossRef]
- Smith, M.R.; Fizazi, K.; Sandhu, S.K. Niraparib in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) and biallelic DNA-repair gene defects (DRD): Correlative measures of tumor response in phase II GALAHAD study. J. Clin. Oncol. 2020, 38, 118. [Google Scholar] [CrossRef]
- Guedes, L.B.; Antonarakis, E.S.; Schweizer, M.T. MSH2 Loss in Primary Prostate Cancer. Clin. Cancer Res. 2017, 23, 6863–6874. [Google Scholar] [CrossRef]
- Pritchard, C.C.; Morrissey, C.; Kumar, A. Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nat. Commun. 2014, 5, 4988. [Google Scholar] [CrossRef]
- Lenis, A.T.; Ravichandran, V.; Truong, H. Response to immune checkpoint blockade in patients with microsatellite instable and high tumor mutational burden prostate cancer. In Proceedings of the 2021 American Urological Association Annual Meeting, Las Vegas, NV, USA, 10–13 September 2021. [Google Scholar]
- Barata, P.; Agarwal, N.; Nussenzveig, R. Clinical activity of pembrolizumab in metastatic prostate cancer with microsatellite instability high (MSI-H) detected by circulating tumor DNA. J. Immunother. Cancer 2020, 8, e001065. [Google Scholar] [CrossRef]
- Sharma, P.; Pachynski, R.K.; Narayan, V. Nivolumab Plus Ipilimumab for Metastatic Castration-Resistant Prostate Cancer: Preliminary Analysis of Patients in the CheckMate 650 Trial. Cancer Cell 2020, 38, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Fizazi, K.; Drake, C.G.; Beer, T.M. Final Analysis of the Ipilimumab Versus Placebo Following Radiotherapy Phase III Trial in Postdocetaxel Metastatic Castration-resistant Prostate Cancer Identifies an Excess of Long-term Survivors. Eur. Urol. 2020, 78, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Antonarakis, E.S.; Piulats, J.M.; Gross-Goupil, M. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: Multicohort, open-label Phase II KEYNOTE-199 study. J. Clin. Oncol. 2020, 38, 395–405. [Google Scholar] [CrossRef]
- Wu, Y.; Cieślik, M.; Lonigro, R.J. Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer. Cell 2018, 173, 1770–1782.e14. [Google Scholar] [CrossRef] [PubMed]
- Sarker, D.; Reid, A.H.; Yap, T.A. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin. Cancer Res. 2009, 15, 4799–4805. [Google Scholar] [CrossRef]
- Pearson, H.B.; Li, J.; Meniel, V.S. Identification of Pik3ca Mutation as a Genetic Driver of Prostate Cancer That Cooperates with Pten Loss to Accelerate Progression and Castration-Resistant Growth. Cancer Discov. 2018, 8, 764–779. [Google Scholar] [CrossRef]
- Yoshimoto, M.; Cutz, J.-C.; Paulo, A.S. Interphase FISH analysis of PTEN in histologic sections shows genomic deletions in 68% of primary prostate cancer and 23% of high-grade prostatic intra-epithelial neoplasias. Cancer Genet. Cytogenet. 2006, 169, 128–137. [Google Scholar] [CrossRef]
- Lotan, T.L.; Heumann, A.; Rico, S.D. PTEN loss detection in prostate cancer: Comparison of PTEN immunohistochemistry and PTEN FISH in a large retrospective prostatectomy cohort. Oncotarget 2017, 8, 65566–65576. [Google Scholar] [CrossRef]
- Turnham, D.J.; Bullock, N.; Dass, M.S. The PTEN Conundrum: How to Target PTEN-Deficient Prostate Cancer. Cells 2020, 9, 2342. [Google Scholar] [CrossRef]
- Hsieh, A.C.; Liu, Y.; Edlind, M.P. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012, 485, 55–61. [Google Scholar] [CrossRef]
- Wei, X.X.; Hsieh, A.C.; Kim, W. A phase I study of abiraterone acetate combined with BEZ235, a dual PI3K/mTOR inhibitor, in metastatic castration resistant prostate cancer. Oncologist 2017, 22, 503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotte, S.J.; Chi, K.N.; Joshua, A.M. A Phase II Study of PX-866 in Patients With Recurrent or Metastatic Castration-resistant Prostate Cancer: Canadian Cancer Trials Group Study IND205. Clin. Genitourin. Cancer 2019, 17, 201–208. [Google Scholar] [CrossRef]
- Feldman, M.E.; Shokat, K.M. New inhibitors of the PI3K-Akt-mTOR pathway: Insights into mTOR signaling from a new generation of Tor Kinase Domain Inhibitors (TORKinibs). Curr. Top. Microbiol. Immunol. 2010, 347, 241–262. [Google Scholar] [PubMed]
- Wallin, J.J.; Edgar, K.A.; Guan, J. GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Mol. Cancer Ther. 2011, 10, 2426–2436. [Google Scholar] [CrossRef] [PubMed]
- Saura, C.; Roda, D.; Roselló, S. A First-in-Human Phase I Study of the ATP-Competitive AKT Inhibitor Ipatasertib Demonstrates Robust and Safe Targeting of AKT in Patients with Solid Tumors. Cancer Discov. 2017, 7, 102–113. [Google Scholar] [CrossRef] [PubMed]
- De Bono, J.S.; De Giorgi, U.; Rodrigues, D.N. Randomized Phase II Study Evaluating Akt Blockade with Ipatasertib, in Combination with Abiraterone, in Patients with Metastatic Prostate Cancer with and without PTEN Loss. Clin. Cancer Res. 2019, 25, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, C.; Bracarda, S.; Sternberg, C.N. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): A multicentre, randomised, double-blind, phase 3 trial. Lancet 2021, 398, 131–142. [Google Scholar] [CrossRef]
- Bono, J.S.D.; Sweeney, C.; Bracarda, S. PI3K/AKT pathway biomarkers analysis from the phase III IPATential150 trial of ipatasertib plus abiraterone in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2021, 39, 13. [Google Scholar] [CrossRef]
- Nouri, M.; Ratther, E.; Stylianou, N. Androgen-targeted therapy-induced epithelial mesenchymal plasticity and neuroendocrine transdifferentiation in prostate cancer: An opportunity for intervention. Front. Oncol. 2014, 4, 370. [Google Scholar] [CrossRef]
- Loizzo, D.; Pandolfo, S.D.; Rogers, D. Novel Insights into Autophagy and Prostate Cancer: A Comprehensive Review. Int. J. Mol. Sci. 2022, 23, 3826. [Google Scholar] [CrossRef]
- Petrylak, D.P.; Vogelzang, N.J.; Chatta, K. PSMA ADC monotherapy in patients with progressive metastatic castration-resistant prostate cancer following abiraterone and/or enzalutamide: Efficacy and safety in open-label single-arm phase 2 study. Prostate 2020, 80, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Hofman, M.S.; Emmett, L.; Sandhu, S. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): A randomised, open-label, phase 2 trial. Lancet 2021, 397, 797–804. [Google Scholar] [CrossRef]
- Sartor, O.; de Bono, J.; Chi, K.N. Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
Molecular Alteration | Frequency in mCRPC | Therapy under Investigation |
---|---|---|
DDR pathways | 27% | PARP inhibitors |
MSI-H/dMMR pathway | 1–12% | Immune checkpoint inhibitors |
PI3K/AKT/mTOR pathway | 49% | AKT inhibitors |
Rate of Germline and/or Somatic Mutations | Gene | Somatic | Germline |
---|---|---|---|
27% | BRCA2 | 7.7% | 8.6% |
BRCA1 | 0.9% | 0.9% | |
ATM | 4.5% | 2.3% | |
CHECK2 | 0.9% | 4.1% |
Trial (Phase) | Enrolled Population | Selection for HRD | HRD Pts | Treatment Arms | Study Results |
---|---|---|---|---|---|
TOPARP-A (phase 2) | mCRPC; PD after docetaxel | No * | 16/50 7 BRCA2 5 ATM 2 CHEK2 1 BRCA1 1 PALB2 | Olaparib 400 mg TD | CR: 33% in all pts 88% in HRD pts |
TOPARP-B (phase 2) | mCRPC; PD after docetaxel | Yes * | 98 32 BRCA1/2 21 ATM 21 CDK12 7 PALB2 21 other | Olaparib 400 mg TD vs. Olaparib 300 mg TD | CR: 54.3% vs. 39.1% |
TRITON 2 (phase 2) | mCRPC; PD after 1–2 ARTA and docetaxel | Yes | Cohort 1 13 BRCA1 102 BRCA2 Cohort 2 78 other ** | Rucaparib 600 mg TD | Cohort 1 ORR: 43.5% Cohort 2 ORR: |
TALAPRO-1 (phase 2) | mCRPC; PD after ARTA and docetaxel | Yes | 75 | Talazoparib 1 mg OD | ORR: BRCA1/2 43.9% PALB2 33.3% ATM 11.8% |
GALAHAD (phase 2) | mCRPC; PD after ARTA and docetaxel | Yes | 81 | Niraparib 300 mg OD | ORR: BRCA1/2 41% Non-BRCA 9% |
PROFOUND (phase 3) | mCRPC; PD after ARTA +/− docetaxel | Yes | Cohort A BRCA1 BRCA2 ATM Cohort B Other *** | Olaparib 300 mg TD vs. Enza 160 mg OD or Abi 1000 mg OD | Cohort A mPFS: 7.4 vs. 3.6 mo HR 0.34 p < 0.001 |
Combination Strategy | Population | Trial Identification |
---|---|---|
Olaparib + Abiraterone Acetate | Untreated mCRPC patients (docetaxel and NHA—not Abiraterone Acetate—in mHSPC are allowed), unselected for HRD | NCT03732820 (PROpel) |
Niraparib + Abiraterone Acetate | Untreated mCRPC patients (docetaxel and NHA—not Abiraterone Acetate—in mHSPC are allowed), selected and unselected for HRD (2 cohorts) | NCT03748641 (MAGNITUDE) |
Talazoparib + Enzalutamide | Untreated mCRPC patients (docetaxel and NHA—not Enzalutamide—in mHSPC are allowed), unselected for HRD | NCT03395197 (TALAPRO-2) |
Rucaparib + Enzalutamide | Untreated mCRPC patients (docetaxel and NHA—not Enzalutamide—in mHSPC are allowed), unselected for HRD | NCT04455750 (CASPAR) |
Combination Strategy | Population | Trial Identification |
---|---|---|
Pembrolizumab + Docetaxel | mCRPC patients previously treated with an NHA | NCT03834506 |
Pembrolizumab + Enzalutamide | Chemotherapy naïve mCRPC cases | NCT03834493 |
Atezolizumab + Enzalutamide | mCRPC patients previously treated with an NHA and Docetaxel | NCT03016312 |
Pembrolizumab + Olaparib | mCRPC after prior docetaxel and one NHA | NCT03834519 |
Novel Pathway | Frequency | Strategy | Comments |
---|---|---|---|
WNT pathway | Wnt-activating mutations are observed in up to 20% of CRPC | -Inhibition of β-Catenin-Inhibition of Wnt Ligand Secretion | -Preclinical and phase I trials -Potential antitumor activity but significant toxicities -How and when assess alterations in Wnt signaling? |
FGF pathway | FGFR1 was amplified in 10% of mPC | -Dovitinib (pan-class inhibitor including FGFR1, FGFR3, VEGFR1-3, PDGFRβ, fms-related tyrosine kinase-3, and c-KIT) -Erdafitinib | -Phase II trials ongoing -Modest antitumor activity -Not perform IHC staining or gene sequencing analysis of cancer tissue -Dose-limiting “off-target” toxicities |
CDK4/6 | Amplification of CDKN2A/B, CDKN1B, and CDK4 are observed in 5% of mPC | Cyclin-dependent Kinase 4/6 Inhibitor | -Phase Ib/II trials -Palbociclib did not impact outcome in RB-intact mHSPC |
Ras–Raf–MEK–ERK Axis | Amplification of members within the MAPK pathway is as high as 32% in patients with mCRPC | EK1/2 inhibitors | Phase II trials ongoing |
TGF-β pathway | TGF-β receptor I (TRI) kinase inhibitors | -Phase II trials ongoing | |
VEGFR | -Cabozantinib (multikinase-inhibitor that targets c-MET, VEGFR, RET) | -No overall improvement in the cabozantinib monotherapy arm -Combination with the ICI Atezolizumab achieved encouraging activity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosillo, C.; Calandrella, M.L.; Caserta, C.; Macrini, S.; Guida, A.; Sirgiovanni, G.; Bracarda, S. Targeted Approaches in Metastatic Castration-Resistant Prostate Cancer: Which Data? Cancers 2022, 14, 4189. https://doi.org/10.3390/cancers14174189
Mosillo C, Calandrella ML, Caserta C, Macrini S, Guida A, Sirgiovanni G, Bracarda S. Targeted Approaches in Metastatic Castration-Resistant Prostate Cancer: Which Data? Cancers. 2022; 14(17):4189. https://doi.org/10.3390/cancers14174189
Chicago/Turabian StyleMosillo, Claudia, Maria Letizia Calandrella, Claudia Caserta, Serena Macrini, Annalisa Guida, Grazia Sirgiovanni, and Sergio Bracarda. 2022. "Targeted Approaches in Metastatic Castration-Resistant Prostate Cancer: Which Data?" Cancers 14, no. 17: 4189. https://doi.org/10.3390/cancers14174189
APA StyleMosillo, C., Calandrella, M. L., Caserta, C., Macrini, S., Guida, A., Sirgiovanni, G., & Bracarda, S. (2022). Targeted Approaches in Metastatic Castration-Resistant Prostate Cancer: Which Data? Cancers, 14(17), 4189. https://doi.org/10.3390/cancers14174189