Functional Drug Screening of Small Molecule Inhibitors of Epigenetic Modifiers in Refractory AML Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Patient-Derived AML Samples
2.2. Drug Screening
2.3. Drug Sensitivity Testing
3. Results
3.1. Patients
3.2. Drug Sensitivity Profiles Differ between AML Samples
3.3. HDAC Inhibitors Display Activity in All AML Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Mrózek, K.; Heerema, N.A.; Bloomfield, C.D. Cytogenetics in Acute Leukemia. Blood Rev. 2004, 18, 115–136. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. N. Engl. J. Med. 2013, 368, 2059–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, J.S.; Ley, T.J.; Link, D.C.; Miller, C.A.; Larson, D.E.; Koboldt, D.C.; Wartman, L.D.; Lamprecht, T.L.; Liu, F.; Xia, J.; et al. The Origin and Evolution of Mutations in Acute Myeloid Leukemia. Cell 2012, 150, 264–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, J.S.; Westervelt, P.; Ding, L.; Larson, D.E.; Klco, J.M.; Kulkarni, S.; Wallis, J.; Chen, K.; Payton, J.E.; Fulton, R.S.; et al. Use of Whole-Genome Sequencing to Diagnose a Cryptic Fusion Oncogene. JAMA 2011, 305, 1577–1584. [Google Scholar] [CrossRef] [Green Version]
- Döhner, H.; Gaidzik, V.I. Impact of Genetic Features on Treatment Decisions in AML. Hematol. Am. Soc. Hematol. Educ. Program 2011, 2011, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Goldman, S.L.; Hassan, C.; Khunte, M.; Soldatenko, A.; Jong, Y.; Afshinnekoo, E.; Mason, C.E. Epigenetic Modifications in Acute Myeloid Leukemia: Prognosis, Treatment, and Heterogeneity. Front. Genet. 2019, 10, 133. [Google Scholar] [CrossRef] [Green Version]
- Plass, C.; Oakes, C.; Blum, W.; Marcucci, G. Epigenetics in Acute Myeloid Leukemia. Semin. Oncol. 2008, 35, 378–387. [Google Scholar] [CrossRef] [Green Version]
- Spencer, D.H.; Russler-Germain, D.A.; Ketkar, S.; Helton, N.M.; Lamprecht, T.L.; Fulton, R.S.; Fronick, C.C.; O’Laughlin, M.; Heath, S.E.; Shinawi, M.; et al. CpG Island Hypermethylation Mediated by DNMT3A Is a Consequence of AML Progression. Cell 2017, 168, 801–816.e13. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wong, M.P.M.; Ng, R.K. Aberrant DNA Methylation in Acute Myeloid Leukemia and Its Clinical Implications. Int. J. Mol. Sci. 2019, 20, 4576. [Google Scholar] [CrossRef] [Green Version]
- Spreafico, M.; Gruszka, A.M.; Valli, D.; Mazzola, M.; Deflorian, G.; Quintè, A.; Totaro, M.G.; Battaglia, C.; Alcalay, M.; Marozzi, A.; et al. HDAC8: A Promising Therapeutic Target for Acute Myeloid Leukemia. Front. Cell Dev. Biol. 2020, 8, 844. [Google Scholar] [CrossRef]
- He, T.; Wildey, G.; McColl, K.; Savadelis, A.; Spainhower, K.; McColl, C.; Kresak, A.; Tan, A.C.; Yang, M.; Abbas, A.; et al. Identification of RUNX1T1 as a Potential Epigenetic Modifier in Small-Cell Lung Cancer. Mol. Oncol. 2021, 15, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, H.; Hu, P.; Qing, Y.; Wang, X.; Zhu, M.; Wang, H.; Wang, Z.; Xu, J.; Guo, Q.; et al. Natural HDAC-1/8 Inhibitor Baicalein Exerts Therapeutic Effect in CBF-AML. Clin. Transl. Med. 2020, 10, e154. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.-Y.; Yu, L. Epigenetic Therapies in Acute Myeloid Leukemia: The Role of Hypomethylating Agents, Histone Deacetylase Inhibitors and the Combination of Hypomethylating Agents with Histone Deacetylase Inhibitors. Chin. Med. J. 2020, 133, 699–715. [Google Scholar] [CrossRef] [PubMed]
- Arzenani, M.K.; Zade, A.E.; Ming, Y.; Vijverberg, S.J.H.; Zhang, Z.; Khan, Z.; Sadique, S.; Kallenbach, L.; Hu, L.; Vukojević, V.; et al. Genomic DNA Hypomethylation by Histone Deacetylase Inhibition Implicates DNMT1 Nuclear Dynamics. Mol. Cell. Biol. 2011, 31, 4119–4128. [Google Scholar] [CrossRef] [Green Version]
- Derissen, E.J.B.; Beijnen, J.H.; Schellens, J.H.M. Concise Drug Review: Azacitidine and Decitabine. Oncologist 2013, 18, 619–624. [Google Scholar] [CrossRef] [Green Version]
- Swords, R.T.; Azzam, D.; Al-Ali, H.; Lohse, I.; Volmar, C.-H.; Watts, J.M.; Perez, A.; Rodriguez, A.; Vargas, F.; Elias, R.; et al. Ex-Vivo Sensitivity Profiling to Guide Clinical Decision Making in Acute Myeloid Leukemia: A Pilot Study. Leuk. Res. 2018, 64, 34–41. [Google Scholar] [CrossRef]
- Pleyer, L.; Döhner, H.; Dombret, H.; Seymour, J.F.; Schuh, A.C.; Beach, C.L.; Swern, A.S.; Burgstaller, S.; Stauder, R.; Girschikofsky, M.; et al. Azacitidine for Front-Line Therapy of Patients with AML: Reproducible Efficacy Established by Direct Comparison of International Phase 3 Trial Data with Registry Data from the Austrian Azacitidine Registry of the AGMT Study Group. Int. J. Mol. Sci. 2017, 18, 415. [Google Scholar] [CrossRef] [Green Version]
- Newman, E.M.; Morgan, R.J.; Kummar, S.; Beumer, J.H.; Blanchard, M.S.; Ruel, C.; El-Khoueiry, A.B.; Carroll, M.I.; Hou, J.M.; Li, C.; et al. A Phase I, Pharmacokinetic, and Pharmacodynamic Evaluation of the DNA Methyltransferase Inhibitor 5-Fluoro-2′-Deoxycytidine, Administered with Tetrahydrouridine. Cancer Chemother. Pharmacol. 2015, 75, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Vey, N.; Prebet, T.; Thalamas, C.; Charbonnier, A.; Rey, J.; Kloos, I.; Liu, E.; Luan, Y.; Vezan, R.; Graef, T.; et al. Phase 1 Dose-Escalation Study of Oral Abexinostat for the Treatment of Patients with Relapsed/Refractory Higher-Risk Myelodysplastic Syndromes, Acute Myeloid Leukemia, or Acute Lymphoblastic Leukemia. Leuk. Lymphoma 2017, 58, 1880–1886. [Google Scholar] [CrossRef]
- Kirschbaum, M.H.; Foon, K.A.; Frankel, P.; Ruel, C.; Pulone, B.; Tuscano, J.M.; Newman, E.M. A Phase 2 Study of Belinostat (PXD101) in Patients with Relapsed or Refractory Acute Myloid Leukemia or Patients Over 60 with Newly-Diagnosed Acute Myloid Leukemia: A California Cancer Consortium Study. Leuk. Lymphoma 2014, 55, 2301–2304. [Google Scholar] [CrossRef]
- Müller-Tidow, C.; Bug, G.; Lübbert, M.; Krämer, A.; Krauter, J.; Valent, P.; Nachbaur, D.; Berdel, W.E.; Ottmann, O.G.; Fritsch, H.; et al. A Randomized, Open-Label, Phase I/II Trial to Investigate the Maximum Tolerated Dose of the Polo-like Kinase Inhibitor BI 2536 in Elderly Patients with Refractory/Relapsed Acute Myeloid Leukaemia. Br. J. Haematol. 2013, 163, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Fandy, T.E.; Herman, J.G.; Kerns, P.; Jiemjit, A.; Sugar, E.A.; Choi, S.-H.; Yang, A.S.; Aucott, T.; Dauses, T.; Odchimar-Reissig, R.; et al. Early Epigenetic Changes and DNA Damage Do Not Predict Clinical Response in an Overlapping Schedule of 5-Azacytidine and Entinostat in Patients with Myeloid Malignancies. Blood 2009, 114, 2764–2773. [Google Scholar] [CrossRef] [PubMed]
- Prebet, T.; Sun, Z.; Figueroa, M.E.; Ketterling, R.; Melnick, A.; Greenberg, P.L.; Herman, J.; Juckett, M.; Smith, M.R.; Malick, L.; et al. Prolonged Administration of Azacitidine With or Without Entinostat for Myelodysplastic Syndrome and Acute Myeloid Leukemia With Myelodysplasia-Related Changes: Results of the US Leukemia Intergroup Trial E1905. J. Clin. Oncol. 2014, 32, 1242–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Xu, C.; Ma, L.; Shamiyeh, E.; Yin, J.; von Moltke, L.L.; Smith, W.B. Effect of Food on the Bioavailability and Tolerability of the JAK2-Selective Inhibitor Fedratinib (SAR302503): Results from Two Phase I Studies in Healthy Volunteers. Clin. Pharmacol. Drug Dev. 2015, 4, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Abaza, Y.; Kadia, T.; Jabbour, E.; Konopleva, M.; Borthakur, G.; Ferrajoli, A.; Estrov, Z.; Wierda, W.; Alfonso, A.; Chong, T.H.; et al. Phase I Dose Escalation Multicenter Trial of Pracinostat Alone and in Combination with Azacitidine in Patients with Advanced Hematologic Malignancies. Cancer 2017, 123, 4851–4859. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Manero, G.; Montalban-Bravo, G.; Berdeja, J.G.; Abaza, Y.; Jabbour, E.; Essell, J.; Lyons, R.M.; Ravandi, F.; Maris, M.; Heller, B.; et al. Phase II Randomized Double-Blinded Study of Pracinostat in Combination with Azacitidine in Patients with Untreated Higher-Risk Myelodysplastic Syndromes. Cancer 2017, 123, 994–1002. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Manero, G.; Fong, C.Y.; Venditti, A.; Mappa, S.; Spezia, R.; Ades, L. A Phase 3, Randomized Study of Pracinostat (PRAN) in Combination with Azacitidine (AZA) versus Placebo in Patients ≥18 Years with Newly Diagnosed Acute Myeloid Leukemia (AML) Unfit for Standard Induction Chemotherapy (IC). J. Clin. Oncol. 2018, 36, TPS7078. [Google Scholar] [CrossRef]
- Kirschbaum, M.; Gojo, I.; Goldberg, S.L.; Bredeson, C.; Kujawski, L.A.; Yang, A.; Marks, P.; Frankel, P.; Sun, X.; Tosolini, A.; et al. A Phase 1 Clinical Trial of Vorinostat in Combination with Decitabine in Patients with Acute Myeloid Leukaemia or Myelodysplastic Syndrome. Br. J. Haematol. 2014, 167, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Holkova, B.; Supko, J.G.; Ames, M.M.; Reid, J.M.; Shapiro, G.I.; Tombes, M.B.; Honeycutt, C.; McGovern, R.M.; Kmieciak, M.; Shrader, E.; et al. A Phase I Trial of Vorinostat and Alvocidib in Patients with Relapsed, Refractory or Poor Prognosis Acute Leukemia, or Refractory Anemia with Excess Blasts-2. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013, 19, 1873–1883. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Manero, G.; Tambaro, F.P.; Bekele, N.B.; Yang, H.; Ravandi, F.; Jabbour, E.; Borthakur, G.; Kadia, T.M.; Konopleva, M.Y.; Faderl, S.; et al. Phase II Trial of Vorinostat With Idarubicin and Cytarabine for Patients With Newly Diagnosed Acute Myelogenous Leukemia or Myelodysplastic Syndrome. J. Clin. Oncol. 2012, 30, 2204–2210. [Google Scholar] [CrossRef]
- Walter, R.B.; Medeiros, B.C.; Powell, B.L.; Schiffer, C.A.; Appelbaum, F.R.; Estey, E.H. Phase II Trial of Vorinostat and Gemtuzumab Ozogamicin as Induction and Post-Remission Therapy in Older Adults with Previously Untreated Acute Myeloid Leukemia. Haematologica 2012, 97, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Sayar, H.; Cripe, L.D.; Saliba, A.N.; Abu Zaid, M.; Konig, H.; Boswell, H.S. Combination of Sorafenib, Vorinostat and Bortezomib for the Treatment of Poor-Risk AML: Report of Two Consecutive Clinical Trials. Leuk. Res. 2019, 77, 30–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, F.F.; Weїwer, M.; Lewis, M.C.; Holson, E.B. Small Molecule Inhibitors of Zinc-Dependent Histone Deacetylases. Neurotherapeutics 2013, 10, 589–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisberg, E.; Catley, L.; Kujawa, J.; Atadja, P.; Remiszewski, S.; Fuerst, P.; Cavazza, C.; Anderson, K.; Griffin, J.D. Histone Deacetylase Inhibitor NVP-LAQ824 Has Significant Activity against Myeloid Leukemia Cells in Vitro and in Vivo. Leukemia 2004, 18, 1951–1963. [Google Scholar] [CrossRef]
- Porter, N.J.; Christianson, D.W. Binding of the Microbial Cyclic Tetrapeptide Trapoxin A to the Class I Histone Deacetylase HDAC8. ACS Chem. Biol. 2017, 12, 2281–2286. [Google Scholar] [CrossRef]
- Marek, L.; Hamacher, A.; Hansen, F.K.; Kuna, K.; Gohlke, H.; Kassack, M.U.; Kurz, T. Histone Deacetylase (HDAC) Inhibitors with a Novel Connecting Unit Linker Region Reveal a Selectivity Profile for HDAC4 and HDAC5 with Improved Activity against Chemoresistant Cancer Cells. J. Med. Chem. 2013, 56, 427–436. [Google Scholar] [CrossRef]
- Qian, C.; Lai, C.-J.; Bao, R.; Wang, D.-G.; Wang, J.; Xu, G.-X.; Atoyan, R.; Qu, H.; Yin, L.; Samson, M.; et al. Cancer Network Disruption by a Single Molecule Inhibitor Targeting Both Histone Deacetylase Activity and Phosphatidylinositol 3-Kinase Signaling. Clin. Cancer Res. 2012, 18, 4104–4113. [Google Scholar] [CrossRef] [Green Version]
- Volmar, C.-H.; Salah-Uddin, H.; Janczura, K.J.; Halley, P.; Lambert, G.; Wodrich, A.; Manoah, S.; Patel, N.H.; Sartor, G.C.; Mehta, N.; et al. M344 Promotes Nonamyloidogenic Amyloid Precursor Protein Processing While Normalizing Alzheimer’s Disease Genes and Improving Memory. Proc. Natl. Acad. Sci. USA 2017, 114, E9135–E9144. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.B.; Lee, K.H.; Sugita, K.; Yoshida, M.; Horinouchi, S. Oxamflatin Is a Novel Antitumor Compound That Inhibits Mammalian Histone Deacetylase. Oncogene 1999, 18, 2461–2470. [Google Scholar] [CrossRef] [Green Version]
- Kulp, S.K.; Chen, C.-S.; Wang, D.-S.; Chen, C.-Y.; Chen, C.-S. Antitumor Effects of a Novel Phenylbutyrate-Based Histone Deacetylase Inhibitor, (S)-HDAC-42, in Prostate Cancer. Clin. Cancer Res. 2006, 12, 5199–5206. [Google Scholar] [CrossRef] [Green Version]
- Wiggers, C.R.M.; Govers, A.M.A.P.; Lelieveld, D.; Egan, D.A.; Zwaan, C.M.; Sonneveld, E.; Coffer, P.J.; Bartels, M. Epigenetic Drug Screen Identifies the Histone Deacetylase Inhibitor NSC3852 as a Potential Novel Drug for the Treatment of Pediatric Acute Myeloid Leukemia. Pediatr. Blood Cancer 2019, 66, e27785. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef] [PubMed]
- De Kouchkovsky, I.; Abdul-Hay, M. Acute Myeloid Leukemia: A Comprehensive Review and 2016 Update. Blood Cancer J. 2016, 6, e441. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Gebhard, C.; Glatz, D.; Schwarzfischer, L.; Wimmer, J.; Stasik, S.; Nuetzel, M.; Heudobler, D.; Andreesen, R.; Ehninger, G.; Thiede, C.; et al. Profiling of Aberrant DNA Methylation in Acute Myeloid Leukemia Reveals Subclasses of CG-Rich Regions with Epigenetic or Genetic Association. Leukemia 2019, 33, 26–36. [Google Scholar] [CrossRef]
- Fenaux, P.; Mufti, G.; Hellstrom-Lindberg, E.; Santini, V.; Finelli, C.; Giagounidis, A.; Schoch, R.; Gattermann, N.; Sanz, G.; List, A.; et al. Efficacy of Azacitidine Compared with That of Conventional Care Regimens in the Treatment of Higher-Risk Myelodysplastic Syndromes: A Randomised, Open-Label, Phase III Study. Lancet Oncol. 2009, 10, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Stahl, M.; DeVeaux, M.; Montesinos, P.; Itzykson, R.; Ritchie, E.K.; Sekeres, M.A.; Barnard, J.D.; Podoltsev, N.A.; Brunner, A.M.; Komrokji, R.S.; et al. Hypomethylating Agents in Relapsed and Refractory AML: Outcomes and Their Predictors in a Large International Patient Cohort. Blood Adv. 2018, 2, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Gelmetti, V.; Zhang, J.; Fanelli, M.; Minucci, S.; Pelicci, P.G.; Lazar, M.A. Aberrant Recruitment of the Nuclear Receptor Corepressor-Histone Deacetylase Complex by the Acute Myeloid Leukemia Fusion Partner ETO. Mol. Cell. Biol. 1998, 18, 7185. [Google Scholar] [CrossRef] [Green Version]
- San José-Enériz, E.; Gimenez-Camino, N.; Agirre, X.; Prosper, F. HDAC Inhibitors in Acute Myeloid Leukemia. Cancers 2019, 11, 1794. [Google Scholar] [CrossRef] [Green Version]
- Braun, T.; Gardin, C. Investigational BET Bromodomain Protein Inhibitors in Early Stage Clinical Trials for Acute Myelogenous Leukemia (AML). Expert Opin. Investig. Drugs 2017, 26, 803–811. [Google Scholar] [CrossRef]
- Yang, H.; Kurtenbach, S.; Guo, Y.; Lohse, I.; Durante, M.A.; Li, J.; Li, Z.; Al-Ali, H.; Li, L.; Chen, Z.; et al. Gain of Function of ASXL1 Truncating Protein in the Pathogenesis of Myeloid Malignancies. Blood 2018, 131, 328–341. [Google Scholar] [CrossRef] [PubMed]
Class | Compounds |
---|---|
HDAC inhibitors (n = 51) | (S)-HDAC-42, ACY-1215 (Rocilinostat), Apicidin, BATCP, BML-210, BML-281, CAY10398, CAY10603, CBHA, Chidamide, CI-994, CUDC-101, CUDC-907, Droxinostat, Entinostat (MS-275), Fluoro-SAHA, Givinostat (ITF2357), ITSA-1, JNJ-26481585, KD 5170, LAQ824, LMK 235, M-344, MC 1568, MC-1293, NCH-51, Nexturastat A, NSC-3852, Nullscript, Oxamflatin, PCI 34051, PCI-24781 (Abexinostat), Phenylbutyrate·Na, PXD101, Pyroxamide, RG2833 (RGFP109), RGFP966, SAHA, SB 939, SBHA, Scriptaid, Sodium 4-Phenylbutyrate, Suberoyl bis-hydroxamic acid, TC-H 106, TCS HDAC6 20b, TMP269, Trapoxin A, Trichostatin A, Tubastatin A, Valproic acid, Valproic acid hydroxamate |
Histone acetylase inhibitors (n = 6) | Butyrolactone 3, CPTH2, Delphinidin chloride, Garcinol, MB-3, NU 9056 |
BET inhibitors (n = 11) | (+)-JQ1, Bromosporine, CPI203, EP-313, EP-336, GSK2801, I-BET 151, I-BET762 (GSK525762), PFI 1, PFI-3, RVX-208 |
IDH inhibitor (n = 3) | (R)-2-HG, AGI-5198 (IDH-C35), AGI-6780, |
Methyltransferase inhibitors (n = 28) | (R)PFI-2, 2′-Deoxy-5-fluorocytidine, 5-Aza-2′-deoxycytidine, A-366, BIX-01294·3HCl, DZNep, Entacapone, EPZ005687, EPZ-5676, EPZ-6438, GSK126, GSK343, LLY-507, Lomeguatrib, MM-102, RG 108, SGC0946, SGI-1027, Sinefungin, UNC 0224, UNC 0638, UNC 0646, UNC 926, UNC0321, UNC0642, UNC1215, UNC1999, UNC669, Zebularine |
Demethylase inhibitors (n = 12) | 2,4-Pyridinedicarboxylic Acid, GSK-J1, GSK-J2, GSK-J4, GSK-J5, IOX 1, IOX 2, JIB 04, OG-L002, PBIT, RN-1, Tranylcypromine hemisulfate |
Sirt inhibitor (n = 11) | AGK2, AK-7, BML-266, CAY10591, EX-527, Nicotinamide, Salermide, Sirtinol, Splitomicin, SRT1720, Tenovin-1 |
PARP inhibitors (n = 3) | BYK 204165, OLAPAR 1B, PJ 34 |
P300/CBP inhibitors (n = 3) | C 646, I-CBP 112, SGC-CBP30 |
Miscellaneous activators and inhibitors (n = 35) | 5-Iodotubercidin, 6-Thioguanine, Aminoresveratrol sulfate, Anacardic acid, APHA, B2, BI-2536, BML-278, Cl-Amidine, CTPB, Curcumin, Daminozide, Disulfiram, Ebselen, Ellagic Acid, Hydralazine, Isonicotinamide, LSD1-C12, LSD1-C76, LY294002, MI-2, P22077, Piceatannol, Plumbagin, PTC-209, Resveratrol, SBI-7406, SBI-7673, SBI-8162, Suramin·6Na, TG101348 (SAR302503), Triacetylresveratrol, UPF 1069, WDR5-C47, β-Lapachone |
Samples | Hit Compounds |
---|---|
Sample 1 | (+)-JQ1, (S)-HDAC-42 (AR-42), 2′-Deoxy-5-fluorocytidine, 5-Iodotubercidin, ACY-1215 (Rocilinostat), Apicidin, BI-2536, BML-281, Bromosporine, CAY10603, CBHA, Chidamide, CPI203, CUDC-101, CUDC-907 (Fimepinostat), Disulfiram, Entinostat (MS-275), Fluoro-SAHA, Givinostat (ITF2357), I-BET 151, I-BET62 (GSK525762), JIB 04, JNJ-26481585, KD 5170, LAQ824 (Dacinostat), LMK 235, LSD1-C12, M-344, NSC-3852, Oxamflatin, PXD101 (Belinostat), Pyroxamide, SAHA, SB 939 (Pracinostat), Scriptaid, Suberoyl bis-hydroxamic acid, TG101348 (SAR302503), Trapoxin A, Trichostatin A, β-Lapachone |
Sample 2 | (+)-JQ1, (S)-HDAC-42 (AR-42), 5-Iodotubercidin, Apicidin, BI-2536, CBHA, CPI203, CUDC-907 (Fimepinostat), Entinostat (MS-275), Fluoro-SAHA, Givinostat (ITF2357), I-BET 151, I-BET62 (GSK525762), JNJ-26481585, LAQ824 (Dacinostat), LMK 235, M-344, Nexturastat A, NSC-3852, Oxamflatin, PCI-24781 (Abexinostat), PXD101 (Belinostat), SAHA, SB 939 (Pracinostat), Scriptaid, Trapoxin A, Trichostatin A, β-Lapachone |
Sample 3 | (S)-HDAC-42 (AR-42), CUDC-907 (Fimepinostat), Disulfiram, Entinostat (MS-275), Givinostat (ITF2357), JIB 04, JNJ-26481585, LAQ824 (Dacinostat), LMK 235, M-344, NSC-3852, Oxamflatin, PCI-24781 (Abexinostat), PXD101 (Belinostat), SAHA, SB 939 (Pracinostat), Trapoxin A, Trichostatin A |
Sample 4 | (+)-JQ1, (S)-HDAC-42 (AR-42), 5-Iodotubercidin, ACY-1215 (Rocilinostat), Apicidin, BI-2536, Bromosporine, CBHA, Chidamide, CI-994, CPI203, CUDC-101, CUDC-907 (Fimepinostat), Disulfiram, DZNep, Entinostat (MS-275), EP-336, Fluoro-SAHA, Givinostat (ITF2357), I-BET 151, I-BET62 (GSK525762), JIB 04, JNJ-26481585, LAQ824 (Dacinostat), LMK 235, M-344, Nexturastat A, NSC-3852, Oxamflatin, PCI-24781 (Abexinostat), PXD101 (Belinostat), SAHA, SB 939 (Pracinostat), Scriptaid, TG101348 (SAR302503), Trapoxin A, Trichostatin A, β-Lapachone |
Sample 5 | (+)-JQ1, (S)-HDAC-42 (AR-42), BI-2536, CPI203, CUDC-907 (Fimepinostat), Disulfiram, Entinostat (MS-275), Givinostat (ITF2357), I-BET62 (GSK525762), JNJ-26481585, LAQ824 (Dacinostat), LMK 235, NSC-3852, Oxamflatin, PXD101 (Belinostat), SB 939 (Pracinostat), Trapoxin A, Trichostatin A |
Sample 6 | (+)-JQ1, (S)-HDAC-42 (AR-42), 5-Iodotubercidin, Apicidin, BI-2536, CPI203, CUDC-907, Disulfiram, Entinostat (MS-275), EP670, Fluoro-SAHA, Givinostat (ITF2357), -BET 151, I-BET62 (GSK525762), JIB 04, JNJ-26481585, LAQ824 (Dacinostat), LMK 235, M-344, NSC-3852, Oxamflatin, PXD101 (Belinostat), SB 939 (Pracinostat), Scriptaid, Trapoxin A, Trichostatin A |
Sample 7 | (+)-JQ1, (S)-HDAC-42 (AR-42), Apicidin, BI-2536, CPI203, CUDC-907, Entinostat (MS-275), JNJ-26481585, LAQ824 (Dacinostat), LMK 235, M-344, NSC-3852, Oxamflatin, PXD101 (Belinostat), Trapoxin A, Trichostatin A |
Sample 8 | (+)-JQ1, (S)-HDAC-42 (AR-42), 5-Iodotubercidin, Apicidin, CBHA, CPI203, CUDC-907, Entinostat (MS-275), EP670, Givinostat (ITF2357), JNJ-26481585, LAQ824, LMK235, M-344, Nexturastat A, NSC-3852, OLAPAR 1B, Oxamflatin, PXD101 (Belinostat), SB 939 (Pracinostat), Scriptaid, Trapoxin A, Trichostatin A |
Sample 9 | (+)-JQ1, (S)-HDAC-42 (AR-42), 2′-Deoxy-5-fluorocytidine, 5-Iodotubercidin, AK-7, Apicidin, BI-2536, BML-266, CBHA, CI-994, CPI203, CTPB, CUDC-907, Disulfiram, DZNep, Entinostat (MS-275), EP670, EPZ-5676, Fluoro-SAHA, Givinostat (ITF2357), GSK126, GSK-J1, I-BET 151, I-BET762 (GSK525762), JIB 04, JNJ-26481585, LAQ824, LMK 235, LSD1-C12, LY294002, M-344, MM-102, Nexturastat A, Nicotinamide, NSC-3852, OG-L002, OLAPAR 1B, Oxamflatin, P22077, PBIT, PTC-209, Piceatannol, PXD101 (Belinostat), Pyroxamide, RG 108, RGFP966, RN-1, SAHA, SB 939 (Pracinostat), SBHA, SBI-7673, Scriptaid, SGI-1027, TC-H 106, TCS HDAC6 20b, TG101348 (SAR302503), Trapoxin A, Trichostatin A |
Compound | N | Mode of Action | Clinical Trial for AML |
---|---|---|---|
2′-Deoxy-5-fluorocytidine | 2 | DNMT inhibitor | Phase I [18] |
Abexinostat (PCI-24781) | 3 | HDAC inhibitor | Phase I [19] |
Belinostat (PXD101) | 9 | HDAC inhibitor | Phase I, Phase II [20] |
BI-2536 | 7 | PLK and BRD4 inhibitor | Phase I/II [21] |
Chidamide | 2 | HDAC inhibitor | Phase I and II |
Entinostat (MS-275) | 9 | HDAC inhibitor | Phase I [22], Phase II [23] |
Fedratinib (TG101348/SAR302503) | 3 | JAK2-selective inhibitor | Phase I [24], Phase II |
Pracinostat (SB 939) | 8 | HDAC inhibitor | Phase I [25], Phase II [26], Phase III [27] |
Pyroxamide | 2 | HDAC inhibitor | Phase I |
SAHA (Vorinostat) | 5 | HDAC inhibitor | Phase I [28,29]; Phase II [30,31,32]; Phase III |
Trichostatin A | 9 | HDAC inhibitor | Phase I |
Compounds | Class I | Class IIa | Class IIb | Class IV | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HDAC1 | HDAC2 | HDAC3 | HDAC8 | HDAC4 | HDAC5 | HDAC7 | HDAC9 | HDAC6 | HDAC10 | HDAC11 | |
(S)-HDAC-42 | UNKNOWN | ||||||||||
CUDC-907 (Fimepinostat) | X | X | X | X | X | X | X | X | X | X | X |
Entinostat (MS-275) | X | X | X | ||||||||
JNJ-26481585 (Quisinostat) | X | X | X | X | X | X | X | X | X | X | |
LAQ824 (Dacinostat) | X | ||||||||||
LMK 235 | X | X | X | X | X | X | X | ||||
NSC-3852 | UNKNOWN | ||||||||||
OXamflatin | UNKNOWN | ||||||||||
PXD101 (Belinostat) | X | X | X | X | |||||||
TrapoXin A | X | X | X | X | |||||||
Trichostatin A | X | X | X | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dennison, J.L.; Al-Ali, H.; Volmar, C.-H.; Brothers, S.; Watts, J.; Wahlestedt, C.; Lohse, I. Functional Drug Screening of Small Molecule Inhibitors of Epigenetic Modifiers in Refractory AML Patients. Cancers 2022, 14, 4094. https://doi.org/10.3390/cancers14174094
Dennison JL, Al-Ali H, Volmar C-H, Brothers S, Watts J, Wahlestedt C, Lohse I. Functional Drug Screening of Small Molecule Inhibitors of Epigenetic Modifiers in Refractory AML Patients. Cancers. 2022; 14(17):4094. https://doi.org/10.3390/cancers14174094
Chicago/Turabian StyleDennison, Jessica L., Hassan Al-Ali, Claude-Henry Volmar, Shaun Brothers, Justin Watts, Claes Wahlestedt, and Ines Lohse. 2022. "Functional Drug Screening of Small Molecule Inhibitors of Epigenetic Modifiers in Refractory AML Patients" Cancers 14, no. 17: 4094. https://doi.org/10.3390/cancers14174094
APA StyleDennison, J. L., Al-Ali, H., Volmar, C. -H., Brothers, S., Watts, J., Wahlestedt, C., & Lohse, I. (2022). Functional Drug Screening of Small Molecule Inhibitors of Epigenetic Modifiers in Refractory AML Patients. Cancers, 14(17), 4094. https://doi.org/10.3390/cancers14174094