Nanoscale Zeolitic Imidazolate Framework (ZIF)–8 in Cancer Theranostics: Current Challenges and Prospects
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Biomedical Imaging
3.1. CT
3.2. MRI
3.3. PAI
Nanocomposites | Applications | Properties | Ref. |
---|---|---|---|
LA–AuNR/ZIF–8 | CT | high X–ray absorption coefficient (Au) | [14] |
DOX–Pt–tipped Au@ZIF–8 | CT | high X–ray absorption coefficient (Pt, Au)/good photothermal conversion efficiency (Pt, Au) | [25] |
Mn–ZIF–8/5–Fu | MRI | enhanced relaxation (Mn) | [28] |
BSA–MnO2/Ce6@ZIF–8 | MRI | enhanced relaxation (Mn) | [33] |
Fe3O4–ZIF–8 | MRI | responsive T2–T1 switching MRI contrast agent (Fe3O4) | [26] |
Mn3O4@PAA@ZIF–8 | MRI | enhanced relaxation (Mn) | [20] |
ZIF–8/DMPP | MRI/PAI | enhanced relaxation (Mn)/strong NIR absorption (PDA) | [31] |
ZIF–8/DOX–PD–FA | MRI/FI | enhanced relaxation (Si–Gd NPs)/fluorescence optical imaging ability (Si–Gd NPs) | [15] |
Gd/Tm–PB@ZIF–8/PDA | MRI/FI | enhanced relaxation (Gd/Tm–PB)/fluorescence optical imaging ability (Gd/Tm–PB) | [27] |
Mn–Zn–ZIF–PEG | MRI/FI | enhanced relaxation (Mn)/fluorescence optical imaging ability (2–methylimidazolate) | [29] |
Fe3O4@PAA/AuNCs/ZIF–8 | MRI/FI/CT | enhanced relaxation (Fe3O4)/fluorescence optical imaging ability (Au)/high X–ray absorption coefficient (Au) | [23] |
Au@ZIF–8 | PAI | strong NIR absorption (Au) | [30] |
ZCNs | PAI | strong NIR absorption (carbon nanomaterials) | [21] |
PDAs–ZIF–8 | PAI/IR | excellent photothermal–converted acoustic wave signals (PDA)/good photothermal conversion efficiency (PDA) | [22] |
Au@MOF | PAI/IR | excellent photothermal–converted acoustic wave signals (Au)/good photothermal conversion efficiency (Au) | [32] |
4. Cancer Therapy
4.1. Individual Therapy
4.1.1. Immunotherapy
4.1.2. ST
4.1.3. Photo Therapy
4.1.4. Chemotherapy
4.1.5. GT
Applications | Nanocomposites | Animal Models/Cancer Cell Types | Functions |
---|---|---|---|
Immunotherapy | NV–ZIFMCF | BALB/c mice bearing 4T1 tumors/ MCF–7/HeLa cells | a higher efficacy to activate T cells/tumor–specific targeted delivery [41] |
KN046@19F–ZIF–8 | BALB/c mice bearing B16F10 tumors/B16F10 cells | improved the immune response rate of the antibody drug [42] | |
CpG/ZANPs | C57BL/6 mice bearing EG7–OVA tumors/none | induced strong antigen–specific humoral and cytotoxic T lymphocyte responses [34] | |
ST | ZIF–8@GOx/HRP | Kunming mice bearing U14 tumors/ HeLa cells | interrupted the glucose–dependent energy supply/produced high toxic ROS [47] |
CHC/Gox@ZIF–8 | BALB/c–Nude mice bearing SiHa tumors/MCF–7 cells | dual–blocked the main energy sources (glucose and lactate) [48] | |
PDT | ZIF–8@Ce6–HA | BALB/c mice bearing HepG2 tumors/HepG2 cells | increased the efficiency of PDT [63] |
ZnPc@ZIF–8 | None/HepG2 cells | excellent photodynamic activity [64] | |
Au@ZIF–8 | BALB/c mice bearing EMT–6 tumors/EMT–6 cells | alleviated tumor hypoxia/promoted the production of 1O2 [65] | |
PMs | BALB/c nude mice bearing patient–derived bladder tumors/patient–derived cancer cells | reduced intratumor oxygen consumption/increased the efficiency of PDT [66] | |
BSA–MnO2/Ce6@ZIF–8 | Kunming mice bearing U14 tumors/HeLa cells | alleviated tumor hypoxia/increased the efficiency of PDT [33] | |
PTT | GBZ | BALB/c nude mice bearing Huh–7 tumors/Huh–7/MCF–7 cells | achieved low temperature PTT [71] |
Cy5.5&ICG@ZIF–8–Dextran | BALB/c nude mice bearing A549 tumors/A549 cells | increased the efficiency of PTT/tumor–specific targeted delivery [53] | |
Chemotherapy | RAPA@ZIF–8 | NOD/SCID mice bearing MCF–7/ADR tumors/MCF–7 cells | adjunct chemotherapy with the switch of survival–to death–promoting autophagy [9] |
Camptothecin@ZIF–8@RGD | None/HeLa cells | targeted and enhanced cancer treatment [16] | |
HA/ZIF/DQ | BALB/c nude mice bearing HepG2/ADR tumors/HepG2 cells | remodeled the tumor microenvironment and facilitated the penetration of drug into deep tumor tissue [79] | |
GT | RNase A@ZIF–8 | None/A549 cells | exhibited an in vitro anti–proliferative effect [91] |
C3–ZIF(cell membrane type) | Mice bearing MCF–7 tumors/ MCF–7/HeLa cells | improved cell–type selectivity in genome editing [94] |
4.2. Dual Therapy
4.2.1. Immunotherapy/PTT
4.2.2. Immunotherapy/Gas Therapy
4.2.3. Immunotherapy/Chemotherapy
4.2.4. GT/Chemo–Dynamic Therapy (CDT)
4.2.5. GT/Chemotherapy
4.3. Triple Therapy
4.3.1. Immunotherapy/PTT/ST
4.3.2. ST/CDT/PDT
4.3.3. GT/PDT/Chemotherapy
4.4. Quadruple Therapy
ST/CDT/PTT/ Immunotherapy
Applications | Nanocomposites | Animal Models/Cancer Cell Types | Functions |
---|---|---|---|
Immunotherapy/PTT | ZIF–PQ–PDA–AUN | BALB/c mice bearing 4T1 tumors/ 4T1 cells | boosted both the innate and adaptive immune reactions [36] |
HA/ZIF–8@ICG@IMQ | BALB/c mice bearing CT26 tumors/ CT26 cells | built a long–term immune memory response to inhibit tumor rechallenge and recurrence [13] | |
HA/IR820@ZIF–8 MAN/(R837+1MT) @ZIF–8 | C57BL/6 mice bearing B16F10 tumors/B16F10 cells | prevented immune evasion [100] | |
Immunotherapy/Gas Therapy | CCAZF | BALB/c mice bearing 4T1 tumors/ 4T1 cells | regression of primary and distal tumors [103] |
Immunotherapy/Chemotherapy | (M+H) @ZIF/HA | BALB/c mice bearing 4T1 tumors/ 4T1 cells | suppressed immune escape/built a long–term immune memory response against metastasis [105] |
GT/CDT | miR–34a–m@ZIF–8 | Kunming mice bearing MDA–MB–231 tumors/MDA–MB–231 cells | enhanced cancer cell apoptosis and suppressed tumor growth [93] |
GT/Chemotherapy | DNAzyme@Cu/ZIF–8 | BALB/c nude mice bearing MCF–7 tumors/MCF–7 cells | intracellularly synthesized drug molecule/cleaved the oncogene substrate [89] |
Immunotherapy/PTT/ST | CuCo(O)/GOx@PCNs | Kunming mice bearing 4T1 tumors/ 4T1 cells | three–in–one functions of oxygen supply, glucose consumption, and photothermal conversion/regression of primary and distal tumors [98] |
ST/CDT/PDT | CGZPM | BALB/c mice bearing 4T1 tumors/ 4T1 cells | improved the treatment outcome via self–accelerated cascade reactions [106] |
GT/PDT/Chemotherapy | CDHNs | BALB/c nude mice bearing MDR/MCF–7 tumors/MCF–7 cells | damaged DNA immobilization/multidrug resistance elimination/and metastasis suppression [108] |
ST/CDT/PTT/Immunotherapy | Fe3O4@ZIF–8/GOx@MnO2 | Kunming mice bearing 4T1 tumors/ 4T1 cells | cascade amplification of the therapeutic effect/killed primary tumor and inhibited distant metastasis [110] |
5. Challenges
6. Prospects and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ZIF | zeolitic imidazolate framework |
MOF | metal–organic framework |
ST | starvation therapy |
GT | gene therapy |
MRI | magnetic resonance imaging |
CT | computed tomography |
PAI | photoacoustic imaging |
ROS | reactive oxygen species |
PEG | polyethylene glycol |
HA | hyaluronic acid |
LA | lactobionic acid |
FA | folic acid |
RGD | Arg–Gly–Asp |
PTA | photothermal agent |
DOX | doxorubicin |
FI | fluorescent imaging |
PDA | polydopamine |
PTT | photothermal therapy |
IR | infrared |
NV | nivolumab |
CpG | cytosine–phosphate–guanine |
ODN | oligodeoxynucleotide |
OVA | antigen ovalbumin |
GOx | glucose oxidase |
HRP | horseradish peroxidase |
CHC | α–cyano–4–hydroxycinnamate |
PDT | photodynamic therapy |
BSA | bovine serum albumin |
PAA | polyacrylic acid |
PB | Prussian blue |
PC | phycocyanin |
ICG | indocyanine green |
HSP | heat shock protein |
RAPA | rapamycin |
ICD | immunogenic cell death |
IMQ | imiquimod |
IR820 | new indocyanine green |
R837 | imiquimod |
TAA | tumor–associated antigen |
1MT | 1–Methyl–D–tryptophan |
CO | carbon monoxide |
MIT | mitoxantrone |
HYD | hydralazine |
CDT | chemo–dynamic therapy |
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA A Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Gotwals, P.; Cameron, S.; Cipolletta, D.; Cremasco, V.; Crystal, A.; Hewes, B.; Mueller, B.; Quaratino, S.; Sabatos-Peyton, C.; Petruzzelli, L.; et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat. Rev. Cancer 2017, 17, 286–301. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, X.Z.; Alcantara, C.C.J.; Sevim, S.; Hoop, M.; Terzopoulou, A.; de Marco, C.; Hu, C.; de Mello, A.J.; Falcaro, P.; et al. Mofbots: Metal-organic-framework-based biomedical microrobots. Adv. Mater. 2019, 31, e1901592. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Fan, S.; Yu, W.; Wu, Z.; Cullen, D.A.; Liang, C.; Shi, J.; Su, C. Fabrication of au(25) (sg)(18) -zif-8 nanocomposites: A facile strategy to position au(25) (sg)(18) nanoclusters inside and outside zif-8. Adv. Mater. 2018, 30, 1704576. [Google Scholar] [CrossRef] [PubMed]
- Soltani, B.; Nabipour, H.; Nasab, N.A. Efficient storage of gentamicin in nanoscale zeolitic imidazolate framework-8 nanocarrier for ph-responsive drug release. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1090–1097. [Google Scholar] [CrossRef]
- Gao, X.C.; Hai, X.; Baigude, H.; Guan, W.H.; Liu, Z.L. Fabrication of functional hollow microspheres constructed from mof shells: Promising drug delivery systems with high loading capacity and targeted transport. Sci. Rep. 2016, 6, 37705. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Ye, H.L.; Zhao, F.Q.; Zeng, B.Z. High-quality metal-organic framework zif-8 membrane supported on electrodeposited zno/2-methylimidazole nanocomposite: Efficient adsorbent for the enrichment of acidic drugs. Sci. Rep. 2017, 7, 39778. [Google Scholar] [CrossRef]
- Hu, G.F.; Yang, L.L.; Li, Y.N.; Wang, L.Y. Continuous and scalable fabrication of stable and biocompatible mof@sio2 nanoparticles for drug loading. J. Mater. Chem. B 2018, 6, 7936–7942. [Google Scholar] [CrossRef]
- Xu, M.; Hu, Y.; Ding, W.; Li, F.; Lin, J.; Wu, M.; Wu, J.; Wen, L.P.; Qiu, B.; Wei, P.F.; et al. Rationally designed rapamycin-encapsulated zif-8 nanosystem for overcoming chemotherapy resistance. Biomaterials 2020, 258, 120308. [Google Scholar] [CrossRef]
- Ding, H.; Song, Y.; Huang, X.; Wang, L.; Luo, S.; Zhang, H.; Pan, H.; Jiang, W.; Qian, J.; Yao, G.; et al. Mtorc1-dependent tfeb nucleus translocation and pro-survival autophagy induced by zeolitic imidazolate framework-8. Biomater. Sci. 2020, 8, 4358–4369. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Li, Z.H.; Zou, S.Y.; Lu, C.B.; Xiao, Y.; Bai, H.; Zhang, X.L.; Mu, H.B.; Zhang, X.Y.; Duan, J.Y. Hyaluronic acid-coated zif-8 for the treatment of pneumonia caused by methicillin-resistant staphylococcus aureus. Int. J. Biol. Macromol. 2020, 155, 103–109. [Google Scholar] [CrossRef]
- Chen, X.; Tong, R.; Liu, B.; Liu, H.; Feng, X.; Ding, S.; Lei, Q.; Tang, G.; Wu, J.; Fang, W. Duo of (-)-epigallocatechin-3-gallate and doxorubicin loaded by polydopamine coating zif-8 in the regulation of autophagy for chemo-photothermal synergistic therapy. Biomater. Sci. 2020, 8, 1380–1393. [Google Scholar] [CrossRef]
- Yu, W.; Sun, J.; Liu, F.; Yu, S.; Hu, J.; Zhao, Y.; Wang, X.; Liu, X. Treating immunologically cold tumors by precise cancer photoimmunotherapy with an extendable nanoplatform. ACS Appl. Mater. Interfaces 2020, 12, 40002–40012. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Q.; Liu, C.; Han, B. Preparation of a one-dimensional nanorod/metal organic framework janus nanoplatform via side-specific growth for synergistic cancer therapy. Biomater. Sci. 2019, 7, 1696–1704. [Google Scholar] [CrossRef]
- Qin, Y.T.; Peng, H.; He, X.W.; Li, W.Y.; Zhang, Y.K. Ph-responsive polymer-stabilized zif-8 nanocomposites for fluorescence and magnetic resonance dual-modal imaging-guided chemo-/photodynamic combinational cancer therapy. ACS Appl. Mater. Interfaces 2019, 11, 34268–34281. [Google Scholar] [CrossRef]
- Dong, K.; Zhang, Y.; Zhang, L.; Wang, Z.; Ren, J.; Qu, X. Facile preparation of metal-organic frameworks-based hydrophobic anticancer drug delivery nanoplatform for targeted and enhanced cancer treatment. Talanta 2019, 194, 703–708. [Google Scholar] [CrossRef]
- Shao, F.; Wu, Y.; Tian, Z.; Liu, S. Biomimetic nanoreactor for targeted cancer starvation therapy and cascade amplificated chemotherapy. Biomaterials 2021, 274, 120869. [Google Scholar] [CrossRef]
- Hang, L.; Zhang, T.; Wen, H.; Li, M.; Liang, L.; Tang, X.; Zhou, C.; Tian, J.; Ma, X.; Jiang, G. Rational design of non-toxic gox-based biocatalytic nanoreactor for multimodal synergistic therapy and tumor metastasis suppression. Theranostics 2021, 11, 10001–10011. [Google Scholar] [CrossRef]
- Qiao, C.Q.; Wang, X.F.; Liu, G.H.; Yang, Z.; Jia, Q.; Wang, L.X.; Zhang, R.L.; Xia, Y.Q.; Wang, Z.L.; Yang, Y. Erythrocyte membrane camouflaged metal-organic framework nanodrugs for remodeled tumor microenvironment and enhanced tumor chemotherapy. Adv. Funct. Mater. 2022, 32, 11. [Google Scholar] [CrossRef]
- Samiei Foroushani, M.; Zahmatkeshan, A.; Arkaban, H.; Karimi Shervedani, R.; Kefayat, A. A drug delivery system based on nanocomposites constructed from metal-organic frameworks and mn(3)o(4) nanoparticles: Preparation and physicochemical characterization for bt-474 and mcf-7 cancer cells. Colloids Surf. B Biointerfaces 2021, 202, 111712. [Google Scholar] [CrossRef]
- Yang, P.; Tian, Y.; Men, Y.; Guo, R.; Peng, H.; Jiang, Q.; Yang, W. Metal-organic frameworks-derived carbon nanoparticles for photoacoustic imaging-guided photothermal/photodynamic combined therapy. ACS Appl. Mater. Interfaces 2018, 10, 42039–42049. [Google Scholar] [CrossRef]
- Feng, J.; Yu, W.; Xu, Z.; Hu, J.; Liu, J.; Wang, F. Multifunctional sirna-laden hybrid nanoplatform for noninvasive pa/ir dual-modal imaging-guided enhanced photogenetherapy. ACS Appl. Mater. Interfaces 2020, 12, 22613–22623. [Google Scholar] [CrossRef]
- Bian, R.; Wang, T.; Zhang, L.; Li, L.; Wang, C. A combination of tri-modal cancer imaging and in vivo drug delivery by metal-organic framework based composite nanoparticles. Biomater. Sci. 2015, 3, 1270–1278. [Google Scholar] [CrossRef]
- Hu, H.; Yang, N.; Sun, J.; Zhou, F.; Gu, R.; Liu, Y.; Wang, L.; Song, X.; Yun, R.; Dong, X.; et al. Zn(ii)-coordination-driven self-assembled nanoagents for multimodal imaging-guided photothermal/gene synergistic therapy. Chem. Sci. 2022, 13, 7355–7364. [Google Scholar] [CrossRef]
- Chen, M.M.; Hao, H.L.; Zhao, W.; Zhao, X.; Chen, H.Y.; Xu, J.J. A plasmon-enhanced theranostic nanoplatform for synergistic chemo-phototherapy of hypoxic tumors in the nir-ii window. Chem. Sci. 2021, 12, 10848–10854. [Google Scholar] [CrossRef]
- Lin, J.; Xin, P.; An, L.; Xu, Y.; Tao, C.; Tian, Q.; Zhou, Z.; Hu, B.; Yang, S. Fe(3)o(4)-zif-8 assemblies as ph and glutathione responsive t(2)-t(1) switching magnetic resonance imaging contrast agent for sensitive tumor imaging in vivo. Chem. Commun. 2019, 55, 478–481. [Google Scholar] [CrossRef]
- Xu, M.; Chi, B.; Han, Z.; He, Y.; Tian, F.; Xu, Z.; Li, L.; Wang, J. Controllable synthesis of rare earth (gd(3+),tm(3+)) doped prussian blue for multimode imaging guided synergistic treatment. Dalton Trans. 2020, 49, 12327–12337. [Google Scholar] [CrossRef]
- Pan, Y.B.; Wang, S.; He, X.; Tang, W.; Wang, J.; Shao, A.; Zhang, J. A combination of glioma in vivo imaging and in vivo drug delivery by metal-organic framework based composite nanoparticles. J. Mater. Chem. B 2019, 7, 7683–7689. [Google Scholar] [CrossRef]
- Zhao, G.; Wu, H.; Feng, R.; Wang, D.; Xu, P.; Wang, H.; Guo, Z.; Chen, Q. Bimetallic zeolitic imidazolate framework as an intrinsic two-photon fluorescence and ph-responsive mr imaging agent. ACS Omega 2018, 3, 9790–9797. [Google Scholar] [CrossRef]
- An, L.; Cao, M.; Zhang, X.; Lin, J.; Tian, Q.; Yang, S. Ph and glutathione synergistically triggered release and self-assembly of au nanospheres for tumor theranostics. ACS Appl. Mater. Interfaces 2020, 12, 8050–8061. [Google Scholar] [CrossRef]
- Guo, H.; Xia, Y.; Feng, K.; Qu, X.; Zhang, C.; Wan, F. Surface engineering of metal-organic framework as ph-/nir-responsive nanocarrier for imaging-guided chemo-photothermal therapy. Int. J. Nanomed. 2020, 15, 3235–3250. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Liang, S.; Cai, X.; Huang, S.; Cheng, Z.; Shi, Y.; Pang, M.; Ma, P.; Lin, J. Yolk-shell structured au nanostar@metal-organic framework for synergistic chemo-photothermal therapy in the second near-infrared window. Nano Lett. 2019, 19, 6772–6780. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Bi, H.; Wang, Z.; Li, C.; Wang, C.; Xu, J.; Yang, D.; He, F.; Gai, S.; Yang, P. O(2)-generating metal-organic framework-based hydrophobic photosensitizer delivery system for enhanced photodynamic therapy. ACS Appl. Mater. Interfaces 2019, 11, 36347–36358. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Zhang, Y.; Tan, L.; Zheng, T.; Hou, Y.; Hong, X.; Du, G.; Chen, X.; Zhang, Y.; Sun, X. An aluminum adjuvant-integrated nano-mof as antigen delivery system to induce strong humoral and cellular immune responses. J. Control. Release 2019, 300, 81–92. [Google Scholar] [CrossRef]
- Zhou, J.; Geng, S.; Wang, Q.; Yin, Q.; Lou, R.; Wei, L.; Wu, Y.; Du, B.; Yao, H. Ovalbumin-modified nanoparticles increase the tumor accumulation by a tumor microenvironment-mediated “giant”. J. Mater. Chem. B 2020, 8, 7528–7538. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, X.; Li, W.; Li, R.; Chen, J.; Zhou, L.; Qiang, S.; Wu, W.; Shi, S.; Dong, C. M2-like tams function reversal contributes to breast cancer eradication by combination dual immune checkpoint blockade and photothermal therapy. Small 2021, 17, e2007051. [Google Scholar] [CrossRef]
- Ge, Y.X.; Zhang, T.W.; Zhou, L.; Ding, W.; Liang, H.F.; Hu, Z.C.; Chen, Q.; Dong, J.; Xue, F.F.; Yin, X.F.; et al. Enhancement of anti-pd-1/pd-l1 immunotherapy for osteosarcoma using an intelligent autophagy-controlling metal organic framework. Biomaterials 2022, 282, 16. [Google Scholar] [CrossRef]
- Fan, Q.X.; Zuo, J.; Tian, H.L.; Huang, C.H.; Nice, E.C.; Shi, Z.; Kong, Q.Q. Nanoengineering a metal-organic framework for osteosarcoma chemo-immunotherapy by modulating indoleamine-2,3-dioxygenase and myeloid-derived suppressor cells. J. Exp. Clin. Cancer Res. 2022, 41, 17. [Google Scholar] [CrossRef]
- Darvin, P.; Toor, S.M.; Sasidharan Nair, V.; Elkord, E. Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp. Mol. Med. 2018, 50, 1–11. [Google Scholar] [CrossRef]
- Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 2020, 11, 3801. [Google Scholar] [CrossRef]
- Alsaiari, S.K.; Qutub, S.S.; Sun, S.; Baslyman, W.; Aldehaiman, M.; Alyami, M.; Almalik, A.; Halwani, R.; Merzaban, J.; Mao, Z.; et al. Sustained and targeted delivery of checkpoint inhibitors by metal-organic frameworks for cancer immunotherapy. Sci. Adv. 2021, 7, eabe7174. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, L.; Xu, X.; Qi, M.; Zhang, J.; He, S.; Tian, Q.; Song, S. Engineering a smart agent for enhanced immunotherapy effect by simultaneously blocking pd-l1 and ctla-4. Adv. Sci. 2021, 8, e2102500. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, W.; Gong, K.; Chen, J. Nanoscale zeolitic imidazolate framework-8 as efficient vehicles for enhanced delivery of cpg oligodeoxynucleotides. ACS Appl. Mater. Interfaces 2017, 9, 31519–31525. [Google Scholar] [CrossRef]
- Fu, L.H.; Qi, C.; Lin, J.; Huang, P. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem. Soc. Rev. 2018, 47, 6454–6472. [Google Scholar] [CrossRef]
- Cheng, H.; Jiang, X.Y.; Zheng, R.R.; Zuo, S.J.; Zhao, L.P.; Fan, G.L.; Xie, B.R.; Yu, X.Y.; Li, S.Y.; Zhang, X.Z. A biomimetic cascade nanoreactor for tumor targeted starvation therapy-amplified chemotherapy. Biomaterials 2019, 195, 75–85. [Google Scholar] [CrossRef]
- Ranji-Burachaloo, H.; Reyhani, A.; Gurr, P.A.; Dunstan, D.E.; Qiao, G.G. Combined fenton and starvation therapies using hemoglobin and glucose oxidase. Nanoscale 2019, 11, 5705–5716. [Google Scholar] [CrossRef]
- Bai, J.; Peng, C.; Guo, L.; Zhou, M. Metal-organic framework-integrated enzymes as bioreactor for enhanced therapy against solid tumor via a cascade catalytic reaction. ACS Biomater. Sci. Eng. 2019, 5, 6207–6215. [Google Scholar] [CrossRef]
- Yu, J.; Wei, Z.; Li, Q.; Wan, F.; Chao, Z.; Zhang, X.; Lin, L.; Meng, H.; Tian, L. Advanced cancer starvation therapy by simultaneous deprivation of lactate and glucose using a mof nanoplatform. Adv. Sci. 2021, 8, e2101467. [Google Scholar] [CrossRef]
- Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108. [Google Scholar] [CrossRef]
- Ni, K.; Lan, G.; Lin, W. Nanoscale metal-organic frameworks generate reactive oxygen species for cancer therapy. ACS Cent. Sci. 2020, 6, 861–868. [Google Scholar] [CrossRef]
- Fang, C.; Cen, D.; Wang, Y.; Wu, Y.; Cai, X.; Li, X.; Han, G. Zns@zif-8 core-shell nanoparticles incorporated with icg and tpz to enable h(2)s-amplified synergistic therapy. Theranostics 2020, 10, 7671–7682. [Google Scholar] [CrossRef]
- Feng, J.; Yu, W.; Xu, Z.; Wang, F. An intelligent zif-8-gated polydopamine nanoplatform for in vivo cooperatively enhanced combination phototherapy. Chem. Sci. 2020, 11, 1649–1656. [Google Scholar] [CrossRef]
- Guo, H.; Liu, L.; Hu, Q.; Dou, H. Monodisperse zif-8@dextran nanoparticles co-loaded with hydrophilic and hydrophobic functional cargos for combined near-infrared fluorescence imaging and photothermal therapy. Acta Biomater. 2021, 137, 290–304. [Google Scholar] [CrossRef]
- Hu, C.; Yu, Y.; Chao, S.; Zhu, H.; Pei, Y.; Chen, L.; Pei, Z. A supramolecular photosensitizer system based on nano-cu/zif-8 capped with water-soluble pillar[6]arene and methylene blue host-guest complexations. Molecules 2021, 26, 3878. [Google Scholar] [CrossRef]
- Wu, B.; Fu, J.; Zhou, Y.; Luo, S.; Zhao, Y.; Quan, G.; Pan, X.; Wu, C. Tailored core-shell dual metal-organic frameworks as a versatile nanomotor for effective synergistic antitumor therapy. Acta Pharm. Sin. B 2020, 10, 2198–2211. [Google Scholar] [CrossRef]
- Xie, Z.; Liang, S.; Cai, X.; Ding, B.; Huang, S.; Hou, Z.; Ma, P.; Cheng, Z.; Lin, J. O(2)-cu/zif-8@ce6/zif-8@f127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy. ACS Appl. Mater. Interfaces 2019, 11, 31671–31680. [Google Scholar] [CrossRef]
- An, P.; Gu, D.; Gao, Z.; Fan, F.; Jiang, Y.; Sun, B. Hypoxia-augmented and photothermally-enhanced ferroptotic therapy with high specificity and efficiency. J. Mater. Chem. B 2020, 8, 78–87. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, S.; Qiao, D.; Hu, N.; Gu, Y.; Deng, Q.; Wang, S. Black phosphorus nanosheet encapsulated by zeolitic imidazole framework-8 for tumor multimodal treatments. ACS Appl. Mater. Interfaces 2021, 13, 43855–43867. [Google Scholar] [CrossRef]
- Gao, L.; Wu, Z.; Ibrahim, A.R.; Zhou, S.F.; Zhan, G. Fabrication of folic acid-decorated hollow zif-8/au/cus nanocomposites for enhanced and selective anticancer therapy. ACS Biomater. Sci. Eng. 2020, 6, 6095–6107. [Google Scholar] [CrossRef]
- Tan, C.; Wu, J.; Wen, Z. Doxorubicin-loaded mno(2)@zeolitic imidazolate framework-8 nanoparticles as a chemophotothermal system for lung cancer therapy. ACS Omega 2021, 6, 12977–12983. [Google Scholar] [CrossRef]
- An, P.; Fan, F.; Gu, D.; Gao, Z.; Hossain, A.M.S.; Sun, B. Photothermal-reinforced and glutathione-triggered in situ cascaded nanocatalytic therapy. J. Control. Release 2020, 321, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, L.; Ma, D.; Xu, S.; Wu, W.; Xu, L.; Panahandeh-Fard, M.; Zhu, X.; Wang, B.; Liu, B. Tumor-activated and metal-organic framework assisted self-assembly of organic photosensitizers. ACS Nano 2020, 14, 13056–13068. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Yang, Z.; Deng, T.; Chen, J.; Wen, Y.; Fu, X.; Zhou, L.; Zhu, Z.; Yu, C. A natural polysaccharide mediated mof-based ce6 delivery system with improved biological properties for photodynamic therapy. J. Mater. Chem. B 2020, 8, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; You, Y.; Zeng, F.; Wang, Y.; Liang, C.; Feng, H.; Ma, X. Disassembly of hydrophobic photosensitizer by biodegradable zeolitic imidazolate framework-8 for photodynamic cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 15517–15523. [Google Scholar] [CrossRef]
- Ma, Y.C.; Zhu, Y.H.; Tang, X.F.; Hang, L.F.; Jiang, W.; Li, M.; Khan, M.I.; You, Y.Z.; Wang, Y.C. Au nanoparticles with enzyme-mimicking activity-ornamented zif-8 for highly efficient photodynamic therapy. Biomater. Sci. 2019, 7, 2740–2748. [Google Scholar] [CrossRef]
- Chen, D.; Suo, M.; Guo, J.; Tang, W.; Jiang, W.; Liu, Y.; Duo, Y. Development of mof “armor-plated” phycocyanin and synergistic inhibition of cellular respiration for hypoxic photodynamic therapy in patient-derived xenograft models. Adv. Healthc. Mater. 2021, 10, e2001577. [Google Scholar] [CrossRef]
- Cai, H.J.; Shen, T.T.; Zhang, J.; Shan, C.F.; Jia, J.G.; Li, X.; Liu, W.S.; Tang, Y. A core-shell metal-organic-framework (mof)-based smart nanocomposite for efficient nir/h(2)o(2)-responsive photodynamic therapy against hypoxic tumor cells. J. Mater. Chem. B 2017, 5, 2390–2394. [Google Scholar] [CrossRef]
- Li, Y.; Xu, N.; Zhou, J.; Zhu, W.; Li, L.; Dong, M.; Yu, H.; Wang, L.; Liu, W.; Xie, Z. Facile synthesis of a metal-organic framework nanocarrier for nir imaging-guided photothermal therapy. Biomater. Sci. 2018, 6, 2918–2924. [Google Scholar] [CrossRef]
- Wang, T.; Li, S.; Zou, Z.; Hai, L.; Yang, X.; Jia, X.; Zhang, A.; He, D.; He, X.; Wang, K. A zeolitic imidazolate framework-8-based indocyanine green theranostic agent for infrared fluorescence imaging and photothermal therapy. J. Mater. Chem. B 2018, 6, 3914–3921. [Google Scholar] [CrossRef]
- Fisher, J.W.; Sarkar, S.; Buchanan, C.F.; Szot, C.S.; Whitney, J.; Hatcher, H.C.; Torti, S.V.; Rylander, C.G.; Rylander, M.N. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res. 2010, 70, 9855–9864. [Google Scholar] [CrossRef]
- Li, J.; Zhu, D.; Ma, W.; Yang, Y.; Wang, G.; Wu, X.; Wang, K.; Chen, Y.; Wang, F.; Liu, W.; et al. Rapid synthesis of a bi@zif-8 composite nanomaterial as a near-infrared-ii (nir-ii) photothermal agent for the low-temperature photothermal therapy of hepatocellular carcinoma. Nanoscale 2020, 12, 17064–17073. [Google Scholar] [CrossRef]
- Chen, X.; Shi, Z.; Tong, R.; Ding, S.; Wang, X.; Wu, J.; Lei, Q.; Fang, W. Derivative of epigallocatechin-3-gallatea encapsulated in zif-8 with polyethylene glycol-folic acid modification for target and ph-responsive drug release in anticancer research. ACS Biomater. Sci. Eng. 2018, 4, 4183–4192. [Google Scholar] [CrossRef]
- Cheng, C.; Li, C.; Zhu, X.; Han, W.; Li, J.; Lv, Y. Doxorubicin-loaded fe(3)o(4)-zif-8 nano-composites for hepatocellular carcinoma therapy. J. Biomater. Appl. 2019, 33, 1373–1381. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, Y.; Wei, Z.; Yuan, B.; Wang, Y.; Akakuru, O.U.; Li, Y.; Li, J.; Wu, A. Pressure-induced amorphous zeolitic imidazole frameworks with reduced toxicity and increased tumor accumulation improves therapeutic efficacy in vivo. Bioact. Mater. 2021, 6, 740–748. [Google Scholar] [CrossRef]
- Lin, Y.; Zhong, Y.; Chen, Y.; Li, L.; Chen, G.; Zhang, J.; Li, P.; Zhou, C.; Sun, Y.; Ma, Y.; et al. Ligand-modified erythrocyte membrane-cloaked metal-organic framework nanoparticles for targeted antitumor therapy. Mol. Pharm. 2020, 17, 3328–3341. [Google Scholar] [CrossRef]
- Xie, R.; Yang, P.; Peng, S.; Cao, Y.; Yao, X.; Guo, S.; Yang, W. A phosphorylcholine-based zwitterionic copolymer coated zif-8 nanodrug with a long circulation time and charged conversion for enhanced chemotherapy. J. Mater. Chem. B 2020, 8, 6128–6138. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, W.; Liu, R.; Zhang, J.; Zhang, D.; Li, Z.; Luan, Y. Rational design of metal organic framework nanocarrier-based codelivery system of doxorubicin hydrochloride/verapamil hydrochloride for overcoming multidrug resistance with efficient targeted cancer therapy. ACS Appl. Mater. Interfaces 2017, 9, 19687–19697. [Google Scholar] [CrossRef]
- Li, X.; Hou, S.; Chen, J.; He, C.E.; Gao, Y.E.; Lu, Y.; Jia, D.; Ma, X.; Xue, P.; Kang, Y.; et al. Engineering silk sericin decorated zeolitic imidazolate framework-8 nanoplatform to enhance chemotherapy. Colloids Surf. B Biointerfaces 2021, 200, 111594. [Google Scholar] [CrossRef]
- Li, M.; Yue, X.; Wang, Y.; Zhang, J.; Kan, L.; Jing, Z. Remodeling the tumor microenvironment to improve drug permeation and antitumor effects by co-delivering quercetin and doxorubicin. J. Mater. Chem. B 2019, 7, 7619–7626. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Zeng, W.; Wang, Z.; Liu, C.; Zeng, N.; Zhong, K.; Jiang, D.; Wu, Y. A novel h(2)o(2) generator for tumor chemotherapy-enhanced co gas therapy. Front. Oncol. 2021, 11, 738567. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, J.; Yu, Q.; Zhou, P.; Yang, S.; Xia, J.; Deng, T.; Yu, C. Zif-based carbon dots with lysosome-golgi transport property as visualization platform for deep tumour therapy via hierarchical size/charge dual-transform and transcytosis. Nanoscale 2022, 14, 8510–8524. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Lei, Z.; Tong, Z. High drug loading polymer micelle@zif-8 hybrid core-shell nanoparticles through donor-receptor coordination interaction for ph/h2o2-responsive drug release. Front. Mater. Sci. 2022, 16, 220600. [Google Scholar] [CrossRef]
- Dong, L.; Liu, Y.; Lu, Y.; Zhang, L.; Man, N.; Cao, L.; Ma, K.; An, D.; Lin, J.; Xu, Y.J.; et al. Tuning magnetic property and autophagic response for self-assembled ni-co alloy nanocrystals. Adv. Funct. Mater. 2013, 23, 5930–5940. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, H.R.; Dong, L.; Xu, M.R.; Zhang, L.; Ding, W.P.; Zhang, J.Q.; Lin, J.; Zhang, Y.J.; Qiu, B.S.; et al. Enhancing tumor chemotherapy and overcoming drug resistance through autophagy-mediated intracellular dissolution of zinc oxide nanoparticles. Nanoscale 2019, 11, 11789–11807. [Google Scholar] [CrossRef]
- Carraway, H.; Hidalgo, M. New targets for therapy in breast cancer: Mammalian target of rapamycin (mtor) antagonists. Breast Cancer Res. 2004, 6, 219–224. [Google Scholar] [CrossRef]
- Miller, T.W.; Forbes, J.T.; Shah, C.; Wyatt, S.K.; Manning, H.C.; Olivares, M.G.; Sanchez, V.; Dugger, T.C.; de Matos Granja, N.; Narasanna, A.; et al. Inhibition of mammalian target of rapamycin is required for optimal antitumor effect of her2 inhibitors against her2-overexpressing cancer cells. Clin. Cancer Res. 2009, 15, 7266–7276. [Google Scholar] [CrossRef]
- Dai, W.; Yang, F.; Ma, L.; Fan, Y.; He, B.; He, Q.; Wang, X.; Zhang, H.; Zhang, Q. Combined mtor inhibitor rapamycin and doxorubicin-loaded cyclic octapeptide modified liposomes for targeting integrin alpha3 in triple-negative breast cancer. Biomaterials 2014, 35, 5347–5358. [Google Scholar] [CrossRef]
- Iorio, A.L.; Da Ros, M.; Pisano, C.; de Martino, M.; Genitori, L.; Sardi, I. Combined treatment with doxorubicin and rapamycin is effective against in vitro and in vivo models of human glioblastoma. J. Clin. Med. 2019, 8, 331. [Google Scholar] [CrossRef]
- Wang, Z.; Niu, J.; Zhao, C.; Wang, X.; Ren, J.; Qu, X. A bimetallic metal-organic framework encapsulated with dnazyme for intracellular drug synthesis and self-sufficient gene therapy. Angew. Chem. Int. Ed. Engl. 2021, 60, 12431–12437. [Google Scholar] [CrossRef]
- Wu, S.X.; Zhang, K.X.; Liang, Y.; Wei, Y.B.; An, J.Y.; Wang, Y.F.; Yang, J.L.; Zhang, H.L.; Zhang, Z.Z.; Liu, J.J.; et al. Nano-enabled tumor systematic energy exhaustion via zinc (ii) interference mediated glycolysis inhibition and specific glut1 depletion. Adv. Sci. 2022, 9, 14. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, S.; Wen, K.; Li, Q. Nano-scaled zeolitic imidazole framework-8 as an efficient carrier for the intracellular delivery of rnase a in cancer treatment. Int. J. Nanomed. 2019, 14, 9971–9981. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Ma, M.; Shafiq, M.; Yu, H.; Lan, Z.; Chen, H. Microfluidics-assisted engineering of ph/enzyme dual-activatable zif@polymer nanosystem for co-delivery of proteins and chemotherapeutics with enhanced deep-tumor penetration. Angew. Chem. 2022, 61, e202113703. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, T.; Yao, C.; Gu, Z.; Liu, C.; Li, J.; Yang, D. Dual roles of metal-organic frameworks as nanocarriers for mirna delivery and adjuvants for chemodynamic therapy. ACS Appl. Mater. Interfaces 2021, 13, 6034–6042. [Google Scholar] [CrossRef]
- Alyami, M.Z.; Alsaiari, S.K.; Li, Y.; Qutub, S.S.; Aleisa, F.A.; Sougrat, R.; Merzaban, J.S.; Khashab, N.M. Cell-type-specific crispr/cas9 delivery by biomimetic metal organic frameworks. J. Am. Chem. Soc. 2020, 142, 1715–1720. [Google Scholar] [CrossRef]
- Ahmed, A.; Tait, S.W.G. Targeting immunogenic cell death in cancer. Mol. Oncol. 2020, 14, 2994–3006. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, M.; Zhang, J.; Yin, Y.; Fan, X.; Zhang, Y.; Qin, S.; Zhang, H.; Yu, F. Immunogenic cell death induction by ionizing radiation. Front. Immunol. 2021, 12, 705361. [Google Scholar] [CrossRef]
- Alzeibak, R.; Mishchenko, T.A.; Shilyagina, N.Y.; Balalaeva, I.V.; Vedunova, M.V.; Krysko, D.V. Targeting immunogenic cancer cell death by photodynamic therapy: Past, present and future. J. Immunother. Cancer 2021, 9, e001926. [Google Scholar] [CrossRef]
- Wang, Q.; Niu, D.; Shi, J.; Wang, L. A three-in-one zifs-derived cuco(o)/gox@pcns hybrid cascade nanozyme for immunotherapy/enhanced starvation/photothermal therapy. ACS Appl. Mater. Interfaces 2021, 13, 11683–11695. [Google Scholar] [CrossRef]
- Fucikova, J.; Kepp, O.; Kasikova, L.; Petroni, G.; Yamazaki, T.; Liu, P.; Zhao, L.; Spisek, R.; Kroemer, G.; Galluzzi, L. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020, 11, 1013. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Li, Q.; Song, A.; Tian, H.; Wang, J.; Li, Z.; Luan, Y. Site-specific mof-based immunotherapeutic nanoplatforms via synergistic tumor cells-targeted treatment and dendritic cells-targeted immunomodulation. Biomaterials 2020, 245, 119983. [Google Scholar] [CrossRef]
- Lu, K.; He, C.; Guo, N.; Chan, C.; Ni, K.; Weichselbaum, R.R.; Lin, W. Chlorin-based nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J. Am. Chem. Soc. 2016, 138, 12502–12510. [Google Scholar] [CrossRef]
- Araujo, E.F.; Loures, F.V.; Bazan, S.B.; Feriotti, C.; Pina, A.; Schanoski, A.S.; Costa, T.A.; Calich, V.L. Indoleamine 2,3-dioxygenase controls fungal loads and immunity in paracoccidioidomicosis but is more important to susceptible than resistant hosts. PLoS Negl. Trop. Dis. 2014, 8, e3330. [Google Scholar] [CrossRef]
- Xiao, X.; Liang, S.; Zhao, Y.; Pang, M.; Ma, P.; Cheng, Z.; Lin, J. Multifunctional carbon monoxide nanogenerator as immunogenic cell death drugs with enhanced antitumor immunity and antimetastatic effect. Biomaterials 2021, 277, 121120. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, W.; Shi, X.; Ding, J.; Liu, W.; He, H.; Wang, K.; Shao, F. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 2017, 547, 99–103. [Google Scholar] [CrossRef]
- Zhou, S.; Shang, Q.; Ji, J.; Luan, Y. A nanoplatform to amplify apoptosis-to-pyroptosis immunotherapy via immunomodulation of myeloid-derived suppressor cells. ACS Appl. Mater. Interfaces 2021, 13, 47407–47417. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; He, W.; Ren, J.; Wong, C.Y. One-pot synthesis of a self-reinforcing cascade bioreactor for combined photodynamic/chemodynamic/starvation therapy. J. Colloid Interface Sci. 2021, 599, 543–555. [Google Scholar] [CrossRef]
- Donato, C.; Kunz, L.; Castro-Giner, F.; Paasinen-Sohns, A.; Strittmatter, K.; Szczerba, B.M.; Scherrer, R.; Di Maggio, N.; Heusermann, W.; Biehlmaier, O.; et al. Hypoxia triggers the intravasation of clustered circulating tumor cells. Cell Rep. 2020, 32, 108105. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Shang, J.; Wang, H.; Pan, M.; Liu, X.; Zhou, X.; Wang, F. Multifunctional hypoxia-involved gene silencing nanoplatform for sensitizing photochemotherapy. ACS Appl. Mater. Interfaces 2020, 12, 34588–34598. [Google Scholar] [CrossRef]
- Yang, C.; Younis, M.R.; Zhang, J.; Qu, J.; Lin, J.; Huang, P. Programmable nir-ii photothermal-enhanced starvation-primed chemodynamic therapy using glucose oxidase-functionalized ancient pigment nanosheets. Small 2020, 16, e2001518. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Shi, J.; Wang, L. A multimodal strategy of fe(3)o(4)@zif-8/gox@mno(2) hybrid nanozyme via tme modulation for tumor therapy. Nanoscale 2021, 13, 16571–16588. [Google Scholar] [CrossRef]
- Hoop, M.; Walde, C.F.; Ricco, R.; Mushtaq, F.; Terzopoulou, A.; Chen, X.Z.; deMello, A.J.; Doonan, C.J.; Falcaro, P.; Nelson, B.J.; et al. Biocompatibility characteristics of the metal organic framework zif-8 for therapeutical applications. Appl. Mater. Today 2018, 11, 13–21. [Google Scholar] [CrossRef]
- Kamal, N.; Abdulmalek, E.; Fakurazi, S.; Cordova, K.E.; Abdul Rahman, M.B. Dissolution and biological assessment of cancer-targeting nano-zif-8 in zebrafish embryos. ACS Biomater. Sci. Eng. 2022, 8, 2445–2454. [Google Scholar] [CrossRef] [PubMed]
- Johari, S.A.; Sarkheil, M.; Veisi, S. Cytotoxicity, oxidative stress, and apoptosis in human embryonic kidney (hek293) and colon cancer (sw480) cell lines exposed to nanoscale zeolitic imidazolate framework 8 (zif-8). Environ. Sci. Pollut. Res. Int. 2021, 28, 56772–56781. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Liu, X.; Huang, Z.; Xu, L.; Bai, R.; He, F.; Wang, M.; Han, L.; Bao, Z.; Wu, Y.; et al. Nanoscale Zeolitic Imidazolate Framework (ZIF)–8 in Cancer Theranostics: Current Challenges and Prospects. Cancers 2022, 14, 3935. https://doi.org/10.3390/cancers14163935
Xie H, Liu X, Huang Z, Xu L, Bai R, He F, Wang M, Han L, Bao Z, Wu Y, et al. Nanoscale Zeolitic Imidazolate Framework (ZIF)–8 in Cancer Theranostics: Current Challenges and Prospects. Cancers. 2022; 14(16):3935. https://doi.org/10.3390/cancers14163935
Chicago/Turabian StyleXie, Hongxin, Xinyu Liu, Zhengrong Huang, Liexi Xu, Rui Bai, Fajian He, Mengqin Wang, Linzhi Han, Zhirong Bao, Yuzhou Wu, and et al. 2022. "Nanoscale Zeolitic Imidazolate Framework (ZIF)–8 in Cancer Theranostics: Current Challenges and Prospects" Cancers 14, no. 16: 3935. https://doi.org/10.3390/cancers14163935
APA StyleXie, H., Liu, X., Huang, Z., Xu, L., Bai, R., He, F., Wang, M., Han, L., Bao, Z., Wu, Y., Xie, C., & Gong, Y. (2022). Nanoscale Zeolitic Imidazolate Framework (ZIF)–8 in Cancer Theranostics: Current Challenges and Prospects. Cancers, 14(16), 3935. https://doi.org/10.3390/cancers14163935