HER2 Inhibition in Gastric Cancer—Novel Therapeutic Approaches for an Established Target
Abstract
:Simple Summary
Abstract
1. Introduction
2. Trastuzumab as First-Line Therapy for HER2-Positive Advanced Gastric Cancers
3. Molecular Heterogeneity in Gastric Cancer: The Achilles’ Heel of HER2-Targeting
4. Novel Therapies for HER2-Positive Gastric Cancers
4.1. Antibody-Drug Conjugates
4.1.1. Trastuzumab Deruxtecan
4.1.2. RC48
4.1.3. SYD985
4.2. HER2-Directed Immunotherapy
4.2.1. Immune Checkpoint Inhibitors
4.2.2. Margetuximab
4.2.3. Zanidatamab (ZW25)
4.2.4. KN026
4.2.5. SBT6050
4.2.6. ALX 148
4.2.7. Chimeric Antigen Receptor T (CAR-T) Cell Therapy
4.2.8. Vaccines
4.3. Tyrosine Kinase Inhibitors (TKI)
4.3.1. Tucatinib
4.3.2. Afatinib
4.3.3. Poziotinib
4.3.4. Pyrotinib
5. HER2 Targeting in the Curative Paradigm
6. Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schechter, A.L.; Hung, M.C.; Vaidyanathan, L.; Weinberg, R.A.; Yang-Feng, T.L.; Francke, U.; Ullrich, A.; Coussens, L. The neu gene: An erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science 1985, 229, 976–978. [Google Scholar] [CrossRef]
- Akiyama, T.; Sudo, C.; Ogawara, H.; Toyoshima, K.; Yamamoto, T. The product of the human c-erbB-2 gene: A 185-kilodalton glycoprotein with tyrosine kinase activity. Science 1986, 232, 1644–1646. [Google Scholar] [CrossRef]
- van der Geer, P.; Hunter, T.; Lindberg, R.A. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu. Rev. Cell Biol. 1994, 10, 251–337. [Google Scholar] [CrossRef]
- Oh, D.-Y.; Bang, Y.-J. HER2-targeted therapies—A role beyond breast cancer. Nat. Rev. Clin. Oncol. 2019, 17, 33–48. [Google Scholar] [CrossRef]
- Li, Y.; Feng, A.; Zheng, S.; Chen, C.; Lyu, J. Recent Estimates and Predictions of 5-Year Survival in Patients with Gastric Cancer: A Model-Based Period Analysis. Cancer Control 2022, 29. [Google Scholar] [CrossRef]
- van Cutsem, E.; Bang, Y.J.; Feng-Yi, F.; Xu, J.M.; Lee, K.W.; Jiao, S.C.; Chong, J.L.; López-Sanchez, R.I.; Price, T.; Gladkov, O.; et al. HER2 screening data from ToGA: Targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer 2015, 18, 476–484. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Tabernero, J.; Hoff, P.M.; Shen, L.; Ohtsu, A.; A Shah, M.; Cheng, K.; Song, C.; Wu, H.; Eng-Wong, J.; Kim, K.; et al. Pertuzumab plus trastuzumab and chemotherapy for HER2-positive metastatic gastric or gastro-oesophageal junction cancer (JACOB): Final analysis of a double-blind, randomised, placebo-controlled phase 3 study. Lancet Oncol. 2018, 19, 1372–1384. [Google Scholar] [CrossRef]
- Thuss-Patience, P.C.; A Shah, M.; Ohtsu, A.; Van Cutsem, E.; Ajani, J.A.; Castro, H.; Mansoor, W.; Chung, H.C.; Bodoky, G.; Shitara, K.; et al. Trastuzumab emtansine versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GATSBY): An international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol. 2017, 18, 640–653. [Google Scholar] [CrossRef]
- Hecht, J.R.; Bang, Y.J.; Qin, S.K.; Chung, H.C.; Xu, J.M.; Park, J.O.; Jeziorski, K.; Shparyk, Y.; Hoff, P.M.; Sobrero, A.; et al. Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma: TRIO-013/LOGiC—A randomized phase III trial. J. Clin. Oncol. 2016, 34, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Satoh, T.; Xu, R.H.; Chung, H.C.; Sun, G.P.; Doi, T.; Xu, J.M.; Tsuji, A.; Omuro, Y.; Li, J.; Wang, J.-W.; et al. Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment of HER2-amplified advanced gastric cancer in Asian populations: TyTAN—A randomized, phase III study. J. Clin. Oncol. 2014, 32, 2039–2049. [Google Scholar] [CrossRef]
- Fong, C.Y.; Chau, I. Harnessing biomarkers of response to improve therapy selection in esophago-gastric adenocarcinoma. Pharmacogenomics 2021, 22, 703–726. [Google Scholar] [CrossRef]
- Shah, M.A.; Xu, R.H.; Bang, Y.J.; Hoff, P.M.; Liu, T.; Herráez-Baranda, L.A. HELOISE: Phase IIIb randomized multicenter study comparing standard-of-care and higher-dose trastuzumab regimens combined with chemotherapy as first-line therapy in patients with human epidermal growth factor receptor 2–positive metastatic gastric or gast. J. Clin. Oncol. 2017, 35, 2558–2567. [Google Scholar] [CrossRef]
- Makiyama, A.; Sukawa, Y.; Kashiwada, T.; Kawada, J.; Hosokawa, A.; Horie, Y.; Tsuji, A.; Moriwaki, T.; Tanioka, H.; Shinozaki, K.; et al. Randomized, Phase II Study of Trastuzumab Beyond Progression in Patients with HER2-Positive Advanced Gastric or Gastroesophageal Junction Cancer: WJOG7112G (T-ACT Study). J. Clin. Oncol. 2020, 38, 1919–1927. [Google Scholar] [CrossRef]
- Nakamura, Y.; Kawazoe, A.; Lordick, F.; Janjigian, Y.Y.; Shitara, K. Biomarker-targeted therapies for advanced-stage gastric and gastro-oesophageal junction cancers: An emerging para-digm. Nat. Rev. Clin. Oncol. 2021, 18, 473–487. [Google Scholar] [CrossRef]
- Lee, H.E.; Park, K.U.; Yoo, S.B.; Nam, S.K.; Park, D.J.; Kim, H.H.; Lee, H.S. Clinical significance of intra-tumoral HER2 heterogeneity in gastric cancer. Eur. J. Cancer 2013, 49, 1448–1457. [Google Scholar] [CrossRef]
- Hofmann, M.; Stoss, O.; Shi, D.; Büttner, R.; van de Vijver, M.; Kim, W.; Ochiai, A.; Rüschoff, J.; Henkel, T. Assessment of a HER2 scoring system for gastric cancer: Results from a validation study. Histopathology 2008, 52, 797–805. [Google Scholar] [CrossRef]
- Bartley, A.N.; Washington, M.K.; Ventura, C.B.; Ismaila, N.; Colasacco, C.; Benson, A.B.; Carrato, A.; Gulley, M.L.; Jain, D.; Kakar, S.; et al. HER2 Testing and Clinical Decision Making in Gastroesophageal Adenocarcinoma: Guideline from the College of American Pathologists, American Society for Clinical Pathology, and American Society of Clinical Oncology. Arch. Pathol. Lab. Med. 2016, 140, 1345–1363. [Google Scholar] [CrossRef] [Green Version]
- Kaito, A.; Kuwata, T.; Tokunaga, M.; Shitara, K.; Sato, R.; Akimoto, T.; Kinoshita, T. HER2 heterogeneity is a poor prognosticator for HER2-positive gastric cancer. World J. Clin. Cases 2019, 7, 1964–1977. [Google Scholar] [CrossRef]
- Yagi, S.; Wakatsuki, T.; Yamamoto, N.; Chin, K.; Takahari, D.; Ogura, M.; Ichimura, T.; Nakayama, I.; Osumi, H.; Shinozaki, E.; et al. Clinical signifi-cance of intratumoral HER2 heterogeneity on trastuzumab efficacy using endoscopic biopsy specimens in patients with advanced HER2 positive gastric cancer. Gastric Cancer 2019, 22, 518–525. [Google Scholar] [CrossRef] [Green Version]
- Haffner, I.; Schierle, K.; Raimúndez, E.; Geier, B.; Maier, D.; Hasenauer, J.; Luber, B.; Walch, A.; Kolbe, K.; Knorrenschild, J.R.; et al. HER2 Expression, Test Deviations, and Their Impact on Survival in Metastatic Gastric Cancer: Results from the Prospective Multicenter VARIANZ Study. J. Clin. Oncol. 2021, 39, 1468–1478. [Google Scholar] [CrossRef]
- Park, S.R.; Park, Y.S.; Ryu, M.H.; Ryoo, B.Y.; Woo, C.G.; Jung, H.Y.; Lee, J.H.; Lee, G.H.; Kanga, Y.-K. Extra-gain of HER2-positive cases through HER2 reassessment in primary and metastatic sites in advanced gastric can-cer with initially HER2-negative primary tumours: Results of GASTric cancer HER2 reas-sessment study 1 (GASTHER1). Eur. J. Cancer 2016, 53, 42–50. [Google Scholar] [CrossRef]
- Pietrantonio, F.; Caporale, M.; Morano, F.; Scartozzi, M.; Gloghini, A.; De Vita, F.; Giommoni, E.; Fornaro, L.; Aprile, G.; Melisi, D.; et al. HER2 loss in HER2-positive gastric or gastroesophageal cancer after trastuzumab therapy: Implication for further clinical research. Int. J. Cancer 2016, 139, 2859–2864. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.; Ryu, M.-H.; Park, Y.S.; Ahn, J.Y.; Park, Y.; Park, S.R.; Ryoo, B.-Y.; Lee, G.H.; Jung, H.-Y.; Kang, Y.-K. Loss of HER2 positivity after anti-HER2 chemotherapy in HER2-positive gastric cancer patients: Results of the GASTric cancer HER2 reassessment study 3 (GASTHER3). Gastric Cancer 2018, 22, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, S.; Kim, P.; Liu, X.; Lee, T.; Kim, K.-M.; Do, I.-G.; Park, J.O.; Park, S.H.; Jang, J.; et al. A Novel Proteomics-Based Clinical Diagnostics Technology Identifies Heterogeneity in Activated Signaling Pathways in Gastric Cancers. PLoS ONE 2013, 8, e54644. [Google Scholar] [CrossRef]
- Piro, G.; Carbone, C.; Cataldo, I.; Di Nicolantonio, F.; Giacopuzzi, S.; Aprile, G.; Simionato, F.; Boschi, F.; Zanotto, M.; Mina, M.M.; et al. An FGFR3 Autocrine Loop Sustains Acquired Resistance to Trastuzumab in Gastric Cancer Patients. Clin. Cancer Res. 2016, 22, 6164–6175. [Google Scholar] [CrossRef] [Green Version]
- Sampera, A.; Sánchez-Martín, F.J.; Arpí, O.; Visa, L.; Iglesias, M.; Menéndez, S.; Gaye, É.; Dalmases, A.; Clavé, S.; Gelabert-Baldrich, M.; et al. HER-Family Ligands Promote Acquired Resistance to Trastuzumab in Gastric Cancer. Mol. Cancer Ther. 2019, 18, 2135–2145. [Google Scholar] [CrossRef] [Green Version]
- Mao, L.; Sun, A.J.; Wu, J.Z.; Tang, T.H. Involvement of microRNAs in HER2 signaling and trastuzumab treatment. Tumour Biol. 2016, 37, 15437–15446. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Chen, J.; Wang, H.; Yang, L.; Chen, F.; Fan, S.; Wang, J.; Shao, B.; Yin, D.; et al. A serum microRNA signature predicts trastuzumab benefit in HER2-positive metastatic breast cancer patients. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Nishida, N.; Mimori, K.; Fabbri, M.; Yokobori, T.; Sudo, T.; Tanaka, F.; Shibata, K.; Ishii, H.; Doki, Y.; Mori, M. MicroRNA-125a-5p Is an Independent Prognostic Factor in Gastric Cancer and Inhibits the Proliferation of Human Gastric Cancer Cells in Combination with Trastuzumab. Clin. Cancer Res. 2011, 17, 2725–2733. [Google Scholar] [CrossRef] [Green Version]
- Lote, H.; Lampis, A.; Vlachogiannis, G.; Hahne, J.; Moorcraft, S.Y.; Davidson, M.; Fong, C.; Begum, R.; Fassan, M.; Rao, S.; et al. Abstract 258: MicroRNAs as biomarkers of resistance to HER2 inhibition in combination with chem-otherapy in gastro-esophageal cancer. Cancer Res. 2020, 80 (Suppl. S16), 258. [Google Scholar] [CrossRef]
- Pectasides, E.; Stachler, M.D.; Derks, S.; Liu, Y.; Maron, S.; Islam, M.; Alpert, L.; Kwak, H.; Kindler, H.; Polite, B.; et al. Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma. Cancer Discov. 2018, 8, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, B.; Liu, Z.; Gong, J.; Shao, L.; Ren, J.; Niu, Y.; Bo, S.; Li, Z.; Lai, Y.; et al. HER2 copy number of circulating tumour DNA functions as a biomarker to predict and monitor trastuzumab efficacy in advanced gastric cancer. Eur. J. Cancer 2018, 88, 92–100. [Google Scholar] [CrossRef]
- Sanchez-Vega, F.; Hechtman, J.F.; Castel, P.; Ku, G.Y.; Tuvy, Y.; Won, H.; Fong, C.J.; Bouvier, N.; Nanjangud, G.J.; Soong, J.; et al. Egfr and MET am-plifications determine response to HER2 inhibition in ERBB2-amplified esophagogastric cancer. Cancer Discov. 2019, 9, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Ogitani, Y.; Aida, T.; Hagihara, K.; Yamaguchi, J.; Ishii, C.; Harada, N.; Soma, M.; Okamoto, H.; Oitate, M.; Arakawa, S.; et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promis-ing antitumor efficacy with differentiation from T-DM1. Clin. Cancer Res. 2016, 22, 5097–5108. [Google Scholar] [CrossRef] [Green Version]
- Ogitani, Y.; Hagihara, K.; Oitate, M.; Naito, H.; Agatsuma, T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody–drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016, 107, 1039–1046. [Google Scholar] [CrossRef]
- Shitara, K.; Iwata, H.; Takahashi, S.; Tamura, K.; Park, H.; Modi, S.; Tsurutani, J.; Kadowaki, S.; Yamaguchi, K.; Iwasa, S.; et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive gastric cancer: A dose-expansion, phase 1 study. Lancet Oncol. 2019, 20, 827–836. [Google Scholar] [CrossRef]
- Shitara, K.; Bang, Y.-J.; Iwasa, S.; Sugimoto, N.; Ryu, M.-H.; Sakai, D.; Chung, H.-C.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N. Engl. J. Med. 2020, 382, 2419–2430. [Google Scholar] [CrossRef]
- Van Cutsem, E.; di Bartolomeo, M.; Smyth, E.; Chau, I.; Park, H.; Siena, S.; Lonardi, S.; Wainberg, Z.A.; Ajani, J.A.; Chao, J.; et al. LBA55 Primary analysis of a phase II single-arm trial of trastuzumab deruxtecan (T-DXd) in western pa-tients (Pts) with HER2-positive (HER2+) unresectable or metastatic gastric or gastroesopha-geal junction (GEJ) cancer who progressed on or after a trastuzumab-containing regimen. Ann. Oncol. 2021, 32, S1332. [Google Scholar]
- Doi, T.; Shitara, K.; Naito, Y.; Shimomura, A.; Fujiwara, Y.; Yonemori, K.; Shimizu, C.; Shimoi, T.; Kuboki, Y.; Matsubara, N.; et al. Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: A phase 1 dose-escalation study. Lancet Oncol. 2017, 18, 1512–1522. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Bang, Y.-J.; Iwasa, S.; Sugimoto, N.; Ryu, M.-H.; Sakai, D.; Chung, H.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. 1422MO Trastuzumab deruxtecan (T-DXd; DS-8201) in patients with HER2-low, advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma: Results of the exploratory cohorts in the phase II, multicenter, open-label DESTINY-Gastric01 study. Ann. Oncol. 2020, 31, S899–S900. [Google Scholar] [CrossRef]
- Iwata, T.N.; Ishii, C.; Ishida, S.; Ogitani, Y.; Wada, T.; Agatsuma, T. A HER2-Targeting Antibody–Drug Conjugate, Trastuzumab Deruxtecan (DS-8201a), Enhances Antitumor Immunity in a Mouse Model. Mol. Cancer Ther. 2018, 17, 1494–1503. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Jiang, J.; Wang, X.; Huang, C.; Li, D.; Xie, K.; Xu, Q.; Li, H.; Li, Z.; Lou, L.; et al. A novel humanized anti-HER2 an-tibody conjugated with MMAE exerts potent anti-tumor activity. Breast Cancer Res. Treat. 2015, 153, 123–133. [Google Scholar] [CrossRef]
- Singh, A.P.; Sharma, S.; Shah, D.K. Quantitative characterization of in vitro bystander effect of antibody-drug conjugates. J. Pharmacokinet. Pharmacodyn. 2016, 43, 567–582. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wang, Y.; Gong, J.; Zhang, X.; Peng, Z.; Sheng, X.; Mao, C.; Fan, Q.; Bai, Y.; Ba, Y.; et al. Phase I study of the recombinant humanized anti-HER2 monoclonal antibody–MMAE conjugate RC48-ADC in patients with HER2-positive advanced solid tumors. Gastric Cancer 2021, 24, 913–925. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, T.; Wei, J.; Wang, A.; He, Y.; Yang, L.; Zhang, X.; Fan, N.; Luo, S.; Li, Z.; et al. Efficacy and safety of a novel anti-HER2 therapeutic antibody RC48 in patients with HER2-overexpressing, locally advanced or metastatic gastric or gastroesophageal junction cancer: A single-arm phase II study. Cancer Commun. 2021, 41, 1173–1182. [Google Scholar] [CrossRef]
- Elgersma, R.C.; Coumans, R.G.; Huijbregts, T.; Menge, W.M.; Joosten, J.A.; Spijker, H.J.; de Groot, F.M.; van der Lee, M.M.; Ubink, R.; van den Dobbelsteen, D.J.; et al. Design, synthesis, and evaluation of linker-duocarmycin payloads: Toward selection of HER2-targeting antibody-drug conjugate SYD985. Mol. Pharm. 2015, 12, 1813–1835. [Google Scholar] [CrossRef]
- van der Lee, M.M.; Groothuis, P.G.; Ubink, R.; van der Vleuten, M.A.; van Achterberg, T.A.; Loosveld, E.M.; Damming, D.; Jacobs, D.C.; Rouwette, M.; Egging, D.F.; et al. The preclinical profile of the duocarmycin-based HER2-targeting ADC SYD985 predicts for clinical benefit in low HER2-expressing breast cancers. Mol. Cancer Ther. 2015, 14, 692–703. [Google Scholar] [CrossRef] [Green Version]
- Black, J.; Menderes, G.; Bellone, S.; Schwab, C.L.; Bonazzoli, E.; Ferrari, F.; Predolini, F.; De Haydu, C.; Cocco, E.; Buza, N.; et al. Syd985, a novel duocarmycin-based her2-targeting antibody-drug conjugate, shows antitumor activity in uterine serous carcinoma with her2/neu expression. Mol. Cancer Ther. 2016, 15, 1900–1909. [Google Scholar] [CrossRef] [Green Version]
- Menderes, G.; Bonazzoli, E.; Bellone, S.; Black, J.; Predolini, F.; Pettinella, F.; Masserdotti, A.; Zammataro, L.; Altwerger, G.; Buza, N.; et al. SYD985, a Novel Duocarmycin-Based HER2-Targeting Antibody-Drug Conjugate, Shows Antitumor Activity in Uterine and Ovarian Carcinosarcoma with HER2/Neu Expression. Clin. Cancer Res. 2017, 23, 5836–5845. [Google Scholar] [CrossRef] [Green Version]
- Banerji, U.; van Herpen, C.M.L.; Saura, C.; Thistlethwaite, F.; Lord, S.; Moreno, V.; Macpherson, I.R.; Boni, V.; Rolfo, C.; de Vries, E.G.E.; et al. Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: A phase 1 dose-escalation and dose-expansion study. Lancet Oncol. 2019, 20, 1124–1135. [Google Scholar] [CrossRef] [Green Version]
- Takahari, D.; Kawazoe, A.; Machida, N.; Minashi, K.; Yamagata, Y.; Hara, H.; Wakabayashi, M.; Komura, Y.; Sato, A.; Kuwata, T.; et al. Phase 2 study of trastuzumab deruxtecan in the neoadjuvant treatment for patients with HER2-positive gastric and gastroesophageal junction adenocarcinoma (EPOC2003). J. Clin. Oncol. 2022, 40, TPS4161. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Yañez, P.; Li, N.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 2021, 600, 727–730. [Google Scholar] [CrossRef]
- Catenacci, D.V.; Rosales, M.; Chung, H.C.; Yoon, H.H.; Shen, L.; Moehler, M.; Kang, Y.-K. MAHOGANY: Margetuximab combination in HER2+ unresectable/metastatic gastric/gastroesophageal junction adenocarcinoma. Futur. Oncol. 2021, 17, 1155–1164. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Bragagnoli, A.C.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 3, 27–40. [Google Scholar] [CrossRef]
- Boku, N.; Ryu, M.H.; Oh, D.Y.; Oh, S.C.; Chung, H.C.; Lee, K.W. Nivolumab plus chemothera-py versus chemotherapy alone in patients with previously untreated advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer: ATTRACTION-4 (ONO-4538-37) study. Ann. Oncol. 2020, 31, S1192. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Boku, N.; Satoh, T.; Ryu, M.-H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.-S.; Muro, K.; Kang, W.K.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, H.; Pan, Y.; Gu, K.; Cang, S.; Han, L.; Shu, Y.; Li, J.; Zhao, J.; Pan, H.; et al. LBA53 Sintilimab plus chemotherapy (chemo) versus chemo as first-line treatment for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma (ORIENT-16): First results of a randomized, double-blind, phase III study. Ann. Oncol. 2021, 32, S1331. [Google Scholar] [CrossRef]
- Gall, V.A.; Philips, A.V.; Qiao, N.; Clise-Dwyer, K.; Perakis, A.A.; Zhang, M.; Clifton, G.T.; Sukhumalchandra, P.; Ma, Q.; Reddy, S.M.; et al. Trastuzumab Increases HER2 Uptake and Cross-Presentation by Dendritic Cells. Cancer Res. 2017, 77, 5374–5383. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Jiang, Z.; Mortenson, E.D.; Deng, L.; Radkevich-Brown, O.; Yang, X.; Sattar, H.; Wang, Y.; Brown, N.K.; Greene, M.; et al. The therapeu-tic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 2010, 18, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Meyer zum Büschenfelde, C.; Hermann, C.; Schmidt, B.; Peschel, C.; Bernhard, H. Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cy-tolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells. Cancer Res. 2002, 62, 2244–2247. [Google Scholar]
- Taylor, C.; Hershman, D.; Shah, N.; Suciu-Foca, N.; Petrylak, D.P.; Taub, R.; Vahdat, L.; Cheng, B.; Pegram, M.; Knutson, K.L.; et al. Augmented HER-2–Specific Immunity during Treatment with Trastuzumab and Chemotherapy. Clin. Cancer Res. 2007, 13, 5133–5143. [Google Scholar] [CrossRef] [Green Version]
- Chaganty, B.K.R.; Qiu, S.; Gest, A.; Lu, Y.; Ivan, C.; Calin, G.A.; Weinerc, L.M.; Fan, Z. Trastuzumab upregulates PD-L1 as a potential mechanism of trastuzumab resistance through engagement of immune ef-fector cells and stimulation of IFNγ secretion. Cancer Lett. 2018, 28, 47–56. [Google Scholar] [CrossRef]
- Triulzi, T.; Forte, L.; Regondi, V.; Di Modica, M.; Ghirelli, C.; Carcangiu, M.L.; Sfondrini, L.; Balsari, A.; Tagliabue, E. HER2 signaling regulates the tumor immune microenvironment and trastuzumab efficacy. OncoImmunology 2018, 8, e1512942. [Google Scholar] [CrossRef]
- Triulzi, T.; Regondi, V.; De Cecco, L.; Cappelletti, M.R.; Di Modica, M.; Paolini, B.; Lollini, P.L.; Di Cosimo, S.; Sfondrini, L.; Generali, D.; et al. Early im-mune modulation by single-agent trastuzumab as a marker of trastuzumab benefit. Br. J. Cancer 2018, 119, 1487–1494. [Google Scholar] [CrossRef] [Green Version]
- Stagg, J.; Loi, S.; Divisekera, U.; Ngiow, S.F.; Duret, H.; Yagita, H.; Teng, M.W.; Smyth, M.J. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb thera-py. Proc. Natl. Acad. Sci. USA 2011, 108, 7142–7147. [Google Scholar] [CrossRef] [Green Version]
- Janjigian, Y.Y.; Maron, S.B.; Chatila, W.K.; Millang, B.; Chavan, S.S.; Alterman, C.; Chou, J.F.; Segal, M.F.; Simmons, M.Z.; Momtaz, P.; et al. First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: An open-label, single-arm, phase 2 trial. Lancet Oncol. 2020, 21, 821–831. [Google Scholar] [CrossRef]
- Stein, A.; Paschold, L.; Tintelnot, J.; Goekkurt, E.; Henkes, S.S.; Simnica, D.; Schultheiss, C.; Willscher, E.; Bauer, M.; Wicken-hauser, C.; et al. Efficacy of Ipili-mumab vs FOLFOX in Combination with Nivolumab and Trastuzumab in Patients with Previously Untreated ERBB2-Positive Esophagogastric Adenocarcinoma: The AIO INTEGA Randomized Clinical Trial. JAMA Oncol. 2022, e222228. [Google Scholar]
- Shitara, K.; Ajani, J.A.; Moehler, M.; Garrido, M.; Gallardo, C.; Shen, L.; Yamaguchi, K.; Wyrwicz, L.; Skoczylas, T.; Bragagnoli, A.C.; et al. Nivolumab plus chemotherapy or ipilimumab in gastro-oesophageal cancer. Nature 2022, 603, 942–948. [Google Scholar] [CrossRef]
- Bang, Y.J.; Giaccone, G.; Im, S.A.; Oh, D.Y.; Bauer, T.M.; Nordstrom, J.L.; Li, H.; Chichili, G.R.; Moore, P.A.; Hong, S.; et al. First-in-human phase 1 study of margetuximab (MGAH22), an Fc-modified chimeric monoclonal antibody, in patients with HER2-positive advanced solid tumors. Ann. Oncol. 2017, 28, 855–861. [Google Scholar] [CrossRef]
- Catenacci, D.V.T.; Kang, Y.-K.; Park, H.; Uronis, H.E.; Lee, K.-W.; Ng, M.C.H.; Enzinger, P.C.; Park, S.H.; Gold, P.J.; Lacy, J.; et al. Margetuximab plus pembrolizumab in patients with previously treated, HER2-positive gastro-oesophageal adenocarcinoma (CP-MGAH22–05): A single-arm, phase 1b–2 trial. Lancet Oncol. 2020, 21, 1066–1076. [Google Scholar] [CrossRef]
- Catenacci, D.; Park, H.; Shim, B.; Kim, S.; Oh, D.-Y.; Spira, A.; Ulahannan, S.; Avery, E.; Boland, P.; Chao, J.; et al. 1379P Margetuximab (M) with retifanlimab (R) in HER2+, PD-L1+ 1st-line unresectable/metastatic gastroesophageal adenocarcinoma (GEA): MAHOGANY cohort A. Ann. Oncol. 2021, 32, S1043–S1044. [Google Scholar] [CrossRef]
- Brief, N.I.N. ZW25 Effective in HER2-Positive Cancers. Cancer Discov. 2019, 9, 8. [Google Scholar]
- Meric-Bernstam, F.; Beeram, M.; Mayordomo, J.I.; Hanna, D.L.; Ajani, J.A.; Murphy, M.A.B.; Murthy, R.K.; Piha-Paul, S.A.; Bauer, T.M.; Bendell, J.C.; et al. Single agent activity of ZW25, a HER2-targeted bispecific antibody, in heavily pretreated HER2-expressing cancers. J. Clin. Oncol. 2018, 36, 2500. [Google Scholar] [CrossRef]
- Ku, G.; Elimova, E.; Denlinger, C.S.; Mehta, R.; Lee, K.W.; Iqbal, S.; Kang, Y.; Oh, D.; Rha, S.Y.; Kim, Y.H.; et al. 1380P Phase (Ph) II study of zanidatamab + chemotherapy (chemo) in first-line (1L) HER2 expressing gastroesopha-geal adenocarcinoma (GEA). Ann. Oncol. 2021, 32, S1044–S1045. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Wu, J.; Xu, N.; Ying, J.; Xiang, X.; Zhang, Y.; Wang, J.; Zhao, R.; Ye, F.; et al. The preliminary efficacy of KN026 (Anti-HER2 BsAb) in advanced gastric and gastroesophageal junction cancer patients with HER2 expression. J. Clin. Oncol. 2021, 39, e16005. [Google Scholar] [CrossRef]
- Gong, J.; Shen, L.; Luo, S.; Dong, Z.; Liu, D.; An, S.; Xu, J.; Yang, J.; Qi, Y.; Men, J.; et al. 1377P Preliminary efficacy and safety re-sults of KN026 (a HER2-targeted bispecific antibody) in combination with KN046 (an anti-PD-L1/CTLA-4 bispecific antibody) in patients (pts) with HER2-positive gastrointestinal tumors. Ann. Oncol. 2021, 32, S1042. [Google Scholar] [CrossRef]
- Klempner, S.J.; Beeram, M.; Sabanathan, D.; Chan, A.; Hamilton, E.; Loi, S.; Oh, D.; Emens, L.A.; Patnaik, A.; Kim, J.E.; et al. 209P Interim re-sults of a phase I/Ib study of SBT6050 monotherapy and pembrolizumab combination in pa-tients with advanced HER2-expressing or amplified solid tumors. Ann. Oncol. 2021, 32, S450. [Google Scholar] [CrossRef]
- Klempner, S.; Strickler, J.; Gourley, L.; Jacquemont, C.; Bhatia, V.; Hunder, N.; Odegard, V.; Piha-Paul, S. 393 A phase 1/2 study of SBT6050 combined with trastuzumab deruxtecan (T-DXd) or trastuzumab and tucatinib with or without capecitabine in patients with HER2-expressing or HER2-amplified cancers. J. Immunother. Cancer 2021, 9 (Suppl. S2), A426. [Google Scholar] [CrossRef]
- Weiskopf, K. Cancer immunotherapy targeting the CD47/SIRPα axis. Eur. J. Cancer 2017, 76, 100–109. [Google Scholar] [CrossRef]
- Murata, Y.; Saito, Y.; Kotani, T.; Matozaki, T. CD 47-signal regulatory protein α signaling system and its application to cancer immunotherapy. Cancer Sci. 2018, 109, 2349–2357. [Google Scholar] [CrossRef]
- Feng, R.; Zhao, H.; Xu, J.; Shen, C. CD47: The next checkpoint target for cancer immunothera-py. Crit. Rev. Oncol. Hematol. 2020, 1, 152. [Google Scholar] [CrossRef]
- Chung, H.; Lee, K.; Kim, W.; Gainor, J.; Lakhani, N.; Chow, L.; Messersmith, W.; Fanning, P.; Squifflet, P.; Jin, F.; et al. SO-31 ASPEN-01: A phase 1 study of ALX148, a CD47 blocker, in combination with trastuzumab, ramucirumab and paclitaxel in patients with second-line HER2-positive advanced gastric or gastroesophageal junction cancer. Ann. Oncol. 2021, 32, S215–S216. [Google Scholar] [CrossRef]
- Song, Y.; Tong, C.; Wang, Y.; Gao, Y.; Dai, H.; Guo, Y.; Zhao, X.; Wang, Y.; Wang, Z.; Han, W.; et al. Effective and persistent antitumor ac-tivity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplant-ed tumors in vivo. Protein Cell 2018, 9, 867. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.B.; Kwon, W.S.; Kim, H.S.; Jung, M.; Kim, S.; Park, M.; Kim, W.; Choi, K.-Y.; Oh, T.; Kang, C.-Y.; et al. First-in-human phase I study of BVAC-B cell therapy in HER2-positive advanced gastric cancer. J. Clin. Oncol. 2020, 38, 4534. [Google Scholar] [CrossRef]
- Bekaii-Saab, T.; Wesolowski, R.; Ahn, D.H.; Wu, C.; Mortazavi, A.; Lustberg, M.; Ramaswamy, B.; Fowler, J.; Wei, L.; Over-holser, J.; et al. Phase I Im-munotherapy Trial with Two Chimeric HER-2 B-Cell Peptide Vaccines Emulsified in Mon-tanide ISA 720VG and Nor-MDP Adjuvant in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2019, 25, 3495–3507. [Google Scholar] [CrossRef] [Green Version]
- Pheneger, T.; Bouhana, K.; Anderson, D.; Garrus, J.; Ahrendt, K.; Allen, S.; von Carlowitz, I.; Greschuk, J.; Gross, S.; Hoffman, K.; et al. Abstract #1795: In vitro and in vivo activity of ARRY-380: A potent, small molecule inhibitor of ErbB2. Cancer Res. 2009, 69 (Suppl. S9), 1795. [Google Scholar]
- Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 2020, 382, 597–609. [Google Scholar] [CrossRef]
- Strickler, J.H.; Nakamura, Y.; Yoshino, T.; Catenacci, D.V.T.; Janjigian, Y.Y.; Barzi, A. MOUN-TAINEER-02: Phase II/III study of tucatinib, trastuzumab, ramucirumab, and paclitaxel in previously treated HER2+ gastric or gastroesophageal junction adenocarcinoma—Trial in Progress. J. Clin. Oncol. 2021, 39. [Google Scholar] [CrossRef]
- Martin, N.; Isambert, N.; Gomez-Roca, C.; Goeldner, R.-G.; Zanetta, S.; Sadrolhefazi, B.; de Mont-Serrat, H.; Campone, M.; Delord, J.-P. Phase I trial of afatinib and 3-weekly trastuzumab with optimal anti-diarrheal management in patients with HER2-positive metastatic cancer. Cancer Chemother. Pharmacol. 2018, 82, 979–986. [Google Scholar] [CrossRef] [Green Version]
- Zarkavelis, G.; Samantas, E.; Koliou, G.-A.; Papadopoulou, K.; Mauri, D.; Aravantinos, G.; Batistatou, A.; Pazarli, E.; Tryfonopoulos, D.; Tsipoura, A.; et al. AGAPP: Efficacy of first-line cisplatin, 5-fluorouracil with afatinib in inoperable gastric and gastroesophageal junction carcinomas. A Hellenic Cooperative Oncology Group study. Acta Oncol. 2021, 60, 785–793. [Google Scholar] [CrossRef]
- Li, B.T.; Li, T.; Johnson, M.L.; Waqar, S.N.; Zhu, V.W.; Ou, S.H.I. Safety and Efficacy of Pyrotinib in Patients with NSCLC and Other Advanced Solid Tumors with Activating HER2 Alterations: A Phase I Basket Trial. J. Clin. Oncol. 2020, 38 (Suppl. S15), 3510. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, Y.; Gong, J.; Kou, F.; Zhang, M.; Tian, T.; Zhang, X.; Zhang, C.; Li, J.; Li, Z.; et al. Pyrotinib combined with CDK4/6 in-hibitor in HER2-positive metastatic gastric cancer: A promising strategy from AVATAR mouse to patients. Clin. Transl. Med. 2020, 10, e148. [Google Scholar] [CrossRef]
- Rivera, F.; Izquierdo-Manuel, M.; García-Alfonso, P.; de Castro, E.M.; Gallego, J.; Limón, M.L.; Alsina, M.; López, L.; Galán, M.; Falcó, E.; et al. Perioperative trastuzumab, capecitabine and oxaliplatin in patients with HER2-positive resectable gastric or gastro-oesophageal junction adenocarcinoma: NEOHX phase II trial. Eur. J. Cancer 2021, 145, 158–167. [Google Scholar] [CrossRef]
- Hofheinz, R.D.; Hegewisch-Becker, S.; Kunzmann, V.; Thuss-Patience, P.; Fuchs, M.; Homann, N. Trastuzumab in combination with 5-fluorouracil, leucovorin, oxaliplatin and docet-axel as perioperative treatment for patients with human epidermal growth factor receptor 2-positive locally advanced esophagogastric adenocarcinoma: A phase II trial of the Ar-beitsgemeinschaft Internistische Onkologie Gastric Cancer Study Group. Int. J. Cancer 2021, 149, 1322–1331. [Google Scholar]
- Hofheinz, R.D.; Merx, K.; Haag, G.M.; Springfeld, C.; Ettrich, T.; Borchert, K.; Kretzschmar, A.; Teschendorf, C.; Siegler, G.; Ebert, M.P.; et al. FLOT Versus FLOT/Trastuzumab/Pertuzumab Perioperative Therapy of Human Epidermal Growth Fac-tor Receptor 2-Positive Resectable Esophagogastric Adenocarcinoma: A Randomized Phase II Trial of the AIO EGA Study Group. J. Clin. Oncol. 2022, JCO2200380. [Google Scholar] [CrossRef]
- Wagner, A.D.; Grabsch, H.I.; Mauer, M.; Marreaud, S.; Caballero, C.; Thuss-Patience, P.; Mueller, L.; Elme, A.; Moehler, M.H.; Martens, U.; et al. EORTC-1203-GITCG—The “INNOVATION”-trial: Effect of chemotherapy alone versus chemotherapy plus trastuzumab, versus chemotherapy plus trastuzumab plus pertuzumab, in the perioperative treatment of HER2 positive, gastric and gastroesophageal junction ad-enocarcinoma on pathologic response rate: A randomized phase II-intergroup trial of the EORTC-Gastrointestinal Tract Cancer Group, Korean Cancer Study Group and Dutch Up-per GI-Cancer group. BMC Cancer 2019, 24, 19. [Google Scholar]
- Yang, J.; Gong, Y.; Lam, V.K.; Shi, Y.; Guan, Y.; Zhang, Y.; Ji, L.; Chen, Y.; Zhao, Y.; Qian, F.; et al. Deep sequencing of circulating tumor DNA detects molecular residual disease and predicts recurrence in gastric cancer. Cell Death Dis. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Openshaw, M.R.; Mohamed, A.A.; Ottolini, B.; Fernandez-Garcia, D.; Richards, C.J.; Page, K.; Guttery, D.S.; Thomas, A.L.; Shaw, J.A. Longitudinal monitoring of circulating tumour DNA improves prognostication and relapse detection in gastroesophageal adenocarcinoma. Br. J. Cancer 2020, 123, 1271–1279. [Google Scholar] [CrossRef]
- Maron, S.B.; Chase, L.M.; Lomnicki, S.; Kochanny, S.; Moore, K.L.; Joshi, S.S.; Landron, S.; Johnson, J.; Kiedrowski, L.A.; Nagy, R.J.; et al. Circulating Tu-mor DNA Sequencing Analysis of Gastroesophageal Adenocarcinoma. Clin. Cancer Res.
- Kim, Y.-W.; Song, Y.; Kim, H.-S.; Sim, H.W.; Poojan, S.; Eom, B.W.; Kook, M.-C.; Joo, J.; Hong, K.-M.; Kim, Y.-H. Monitoring circulating tumor DNA by analyzing personalized cancer-specific rearrangements to detect recurrence in gastric cancer. Exp. Mol. Med. 2019, 51, 1–10. [Google Scholar] [CrossRef]
- Leal, A.; Van Grieken, N.C.T.; Palsgrove, D.N.; Phallen, J.; Medina, J.E.; Hruban, C.; Broeckaert, M.A.M.; Anagnostou, V.; Adleff, V.; Bruhm, D.C.; et al. White blood cell and cell-free DNA analyses for detection of residual disease in gastric cancer. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Catenacci, D.V.; Lim, K.H.; Uronis, H.E.; Kang, Y.-K.; Ng, M.C.; Gold, P.J.; Enzinger, P.C.; Lee, K.W.; Lacy, J.; Park, S.H.; et al. Antitumor activity of margetuximab (M) plus pembrolizumab (P) in patients (pts) with advanced HER2+ (IHC3+) gastric carcinoma (GC). J. Clin. Oncol. 2019, 37, 65. [Google Scholar] [CrossRef]
- Marofi, F.; Motavalli, R.; Safonov, V.A.; Thangavelu, L.; Yumashev, A.V.; Alexander, M.; Shomali, N.; Chartrand, M.S.; Pathak, Y.; Jarahian, M.; et al. CAR T cells in solid tumors: Challenges and opportunities. Stem Cell Res. Ther. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Koganemaru, S.; Shitara, K. Antibody–drug conjugates to treat gastric cancer. Expert Opin. Biol. Ther. 2020, 21, 923–930. [Google Scholar] [CrossRef]
Trial | Phase | HER2 Definition | Treatment Arms | N | Primary Endpoint | Results |
---|---|---|---|---|---|---|
First-line therapy | ||||||
ToGA [7] | III | IHC 3+ and/or ISH-positive | Capecitabine or 5-FU, cisplatin +/− trastuzumab | 594 | OS | mOS: 13.8 vs. 11.1 months (HR 0.74, 95% CI 0.60–0.91, p = 0.0046) |
TRIO-013/LOGiC [10] | III | IHC3+ and/or ISH-positive | Capecitabine, oxaliplatin +/− lapatinib | 545 | OS | mOS: 12.2 vs. 10.5 months (HR 0.91, 95% CI 0.73–1.12, p = 0.32) |
JACOB [8] | III | IHC 3+ or IHC 2+ ISH-positive | Capecitabine or 5-FU, cisplatin, trastuzumab +/− pertuzumab | 780 | OS | mOS: 17.5 vs. 14.2 months (HR 0.84, 95% CI 0.71–1.00, p = 0.057) |
HELOISE [13] | IIIb | IHC 3+ or IHC 2+ ISH-positive | Cisplatin, capecitabine, trastuzumab 8 mg/kg loading dose + 6 mg/kg or 10 mg/kg maintenance dose | 248 | OS | mOS: 12.5 vs. 10.6 months (HR 1.24, 95% CI 0.86–1.78, p = 0.2401] |
Second-line therapy | ||||||
TyTan [11] | III | ISH-positive | Paclitaxel +/− lapatinib | 261 | OS | mOS: 11.0 vs. 8.9 months (HR 0.84, 95% CI 0.64–1.11, p = 0.10) |
GATSBY [9] | II/III | IHC 3+ or IHC 2+ ISH-positive | Trastuzumab emtansine vs. taxane | 302 | OS | mOS: 7.9 vs. 8.6 months (HR 1.15, 95% CI 0.87–1.51, p = 0.86) |
T-ACT [14] | II | IHC 3+ or IHC 2+ ISH-positive | Paclitaxel +/− trastuzumab | 91 | PFS | mPFS: 3.2 vs. 3.7 months (HR 0.91, 80% CI 0.67–1.22, p = 0.33) |
Third-line therapy | ||||||
DESTINY-Gastric01 | II | IHC 3+ or IHC 2+ ISH-positive | Trastuzumab deruxtecan vs. physician’s choice chemotherapy (irinotecan or paclitaxel) | 187 | ORR | ORR: 42.8% (95% CI 33.8–52.3) vs. 12.3% (95% CI 5.2–24.1) |
Investigational Medicinal Product | Clinical Trial | Phase | Intervention | Treatment Setting | Status | Primary Endpoint |
---|---|---|---|---|---|---|
Antibody-drug conjugates | ||||||
T-DXd | DESTINY-Gastric03 NCT04379596 | I/II | Trastuzumab + platinum + chemotherapy vs. TDXd vs. TDXd + chemotherapy vs. T-DXd + chemotherapy + pembrolizumab vs. T-DXd + pembrolizumab | First-line | Recruiting | ORR |
DESTINY-Gastric04 NCT04704934 | III | T-DXd vs. paclitaxel + ramucirumab | Second-line | Recruiting | OS | |
EPOC2003 [52] NCT05034887 | II | T-DXd | Neoadjuvant | Recruiting | Major pathological response | |
RC48 | NCT04714190 | III | RC48 vs. physician’s choice therapy (paclitaxel, irinotecan or apatinib) | Chemo-refractory | Recruiting | OS |
NCT05113459 | II | RC48 + sintilimab + capecitabine | Neoadjuvant | Not yet recruiting | Pathologic complete response | |
SYD985 | NCT04235101 | I | SYD985 + niraparib | Chemo-refractory | Recruiting | Dose-limiting toxicity |
Immune checkpoint inhibitors | ||||||
Pembrolizumab | NCT04510285 | II | Trastuzumab + pembrolizumab in patients with minimal residual disease post-surgery | Adjuvant | Recruiting | Rate of ctDNA clearance at 6 months |
KEYNOTE-811 [53] NCT03615326 | III | CAPOX/FOLFOX + trastuzumab + pembrolizumab/placebo | First-line | Recruitment completed | OS and PFS | |
Margetuximab | ||||||
Margetuximab | MAHOGANY [54] NCT04082364 | II/III | Phase II: Margetuximab + retifanlimab Phase III: Trastuzumab vs. retifanlimab + margetuximab vs. tebotelimab + margetuximab + chemotherapy vs. megetuximab + chemotherapy | First-line | Recruiting | Phase II: ORR Phase III: OS |
Bispecific antibodies | ||||||
Zanidatamab (ZW25) | HERIZON-GEA-01 NCT04276493 | III | CAPOX/CF + trastuzumab vs. zanidatamab + CAPOX/CF vs. zanidatamab + tislelizumab + CAPOX/CF | First-line | Recruiting | OS and PFS |
SBT6050 | NCT04460456 | I/Ib | SBT6050 monotherapy and SBT6050 + pembrolizumab | Chemo-refractory | Recruiting | Dose-limiting toxicity Adverse events ORR |
NCT05091528 | I/II | SBT6050 + trastuzumab deruxtecan; or SBT6050 + trastuzumab + tucatinib + capecitabine; or SBT6040 + trastuzumab + tucatinib | Chemo-refractory | Recruiting | Dose-limiting toxicities Adverse events ORR | |
CD47 inhibitors | ||||||
ALX148 | NCT05002127 | II/III | Phase II: Trastuzumab + ramucirumab + paclitaxel +/− ALX148 Phase III: Trastuzumab + ramucirumab + paclitaxel + ALX148 vs. ramucirumab + paclitaxel + placebo + placebo | ≥Second-line | Recruiting | Phase II: ORR Phase III: OS |
CAR-T cell therapy | ||||||
BPX-603 | NCT04650451 | I | HER2-targeted dual-switch CAR-T cells | Chemo-refractory | Recruiting | Dose-limiting toxicities Maximum tolerated dose |
CCT303-406 | NCT04511871 | I | CCT303-406 | Chemo-refractory | Recruiting | Maximum tolerated dose |
TACO1-HER2 | NCT04727151 | I/II | TACO1-HER2 | Chemo-refractory | Recruiting | Adverse events |
CAdVEC HER-specific CAR-T cells | NCT03740256 | I | CAdVEC HER-specific CAR-T cells | Chemo-refractory | Recruiting | Dose-limiting toxicities |
Vaccines | ||||||
TAEK-VAC-HerBy | NCT04246671 | I/II | TAEK-VAC-HerBy | ≥ Second-line | Recruiting | Dose-limiting toxicities |
NHS-IL12 | NCT01417546 | I | Chimeric HER2 B-cell peptide vaccines | ≥ Second-line | Recruitment completed | Dose-limiting toxicities Maximum tolerated dose |
Tyrosine kinase inhibitors | ||||||
Tucatinib | MOUNTAINEER-02 NCT04430738 | II/III | Tucatinib + trastuzumab + paclitaxel + ramucirumab vs. paclitaxel + ramucirumab | Second-line | Recruiting | Dose-limiting toxicities and adverse events (phase II) OS and PFS (phase III) |
NCT04499924 | Ib/II | Tucatinib + trastuzumab + oxaliplatin-based chemotherapy | First-line | Recruiting | Dose-limiting toxicities Adverse events | |
Afatinib | NCT02501603 | II | Afatinib + paclitaxel | Second-line | Active, not recruiting | PFS |
NCT01522768 | II | Afatinib + paclitaxel | Second-line | Active, not recruiting | ORR | |
Poziotinib | NCT01746771 | I/II | Poziotinib + paclitaxel + trastuzumab | Second-line | Recruitment completed | Dose-limiting toxicities Maximum tolerated dose |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fong, C.; Chau, I. HER2 Inhibition in Gastric Cancer—Novel Therapeutic Approaches for an Established Target. Cancers 2022, 14, 3824. https://doi.org/10.3390/cancers14153824
Fong C, Chau I. HER2 Inhibition in Gastric Cancer—Novel Therapeutic Approaches for an Established Target. Cancers. 2022; 14(15):3824. https://doi.org/10.3390/cancers14153824
Chicago/Turabian StyleFong, Caroline, and Ian Chau. 2022. "HER2 Inhibition in Gastric Cancer—Novel Therapeutic Approaches for an Established Target" Cancers 14, no. 15: 3824. https://doi.org/10.3390/cancers14153824
APA StyleFong, C., & Chau, I. (2022). HER2 Inhibition in Gastric Cancer—Novel Therapeutic Approaches for an Established Target. Cancers, 14(15), 3824. https://doi.org/10.3390/cancers14153824