Dynamic Contrast-Enhanced MRI of Prostate Lesions of Simultaneous [68Ga]Ga-PSMA-11 PET/MRI: Comparison between Intraprostatic Lesions and Correlation between Perfusion Parameters
Abstract
Simple Summary
Abstract
1. Introduction
2. Results
2.1. Comparison of Parameters between Benign and Malignant Lesions
2.2. Effect of SUVmax on DCE-MRI Parameters
2.3. Pearson Correlation between Perfusion Parameters of Intraprostatic Lesions
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. [68Ga]Ga-PSMA-11 PET/MRI Imaging Protocol
4.3. Image Analysis
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AT | Arrival time; |
BPH | Benign prostatic hyperplasia; |
CT | Computed tomography; |
DCE-MRI | Dynamic contrast-enhanced magnetic resonance imaging; |
DWI | Diffusion-weighted imaging; |
FOV | Field of view; |
Ga | Gallium; |
GS | Gleason score; |
iAUC | initial area under curve; |
MRI | Magnetic resonance imaging; |
mpMRI | Multiparametric magnetic resonance imaging; |
PCa | Prostate cancer; |
PEI | Peak enhancement intensity; |
PET/CT | Positron emission tomography / computed tomography; |
PET/MR | Positron emission tomography /magnetic resonance; |
PI-RADS | Prostate Imaging Reporting and Data System; |
PSA | Prostate-specific antigen; |
PSMA | Prostate-specific membrane antigen; |
ROI | Region of interest; |
SUV | Standardized uptake value; |
TE | Echo time; |
TR | Repetition time; |
TTP | Time to peak; |
T2WI | T2-weighted imaging; |
W-in | Wash-in slope; |
W-out | Wash-out slope. |
References
- Miller, K.D.; Siegel, R.L.; Khan, R.; Jemal, A. Cancer Statistics. Cancer Rehabil. 2018, 70, 7–30. [Google Scholar] [CrossRef]
- Delongchamps, N.B.; Rouanne, M.; Flam, T.; Beuvon, F.; Liberatore, M.; Zerbib, M.; Cornud, F. Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: Combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int. 2010, 107, 1411–1418. [Google Scholar] [CrossRef]
- O’Connor, J.P.B.; Jackson, A.; Parker, G.J.M.; Roberts, C.; Jayson, G.C. Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat. Rev. Clin. Oncol. 2012, 9, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Lissbrant, I.F.; Stattin, P.; Damber, J.-E.; Bergh, A. Vascular density is a predictor of cancer-specific survival in prostatic carcinoma. Prostate 1997, 33, 38–45. [Google Scholar] [CrossRef]
- de la Taille, A.; Katz, A.E.; Bagiella, E.; Buttyan, R.; Sharir, S.; Olsson, C.A.; Burchardt, T.; Ennis, R.D.; Rubin, M.A. Microvessel density as a predictor of PSA recurrence after radical prostatectomy. A comparison of CD34 and CD31. Am. J. Clin. Pathol. 2000, 113, 555–562. [Google Scholar] [CrossRef]
- Tan, C.H.; Hobbs, B.P.; Wei, W.; Kundra, V. Dynamic contrast-enhanced MRI for the detection of prostate cancer: Meta-analysis. Am. J. Roentgenol. 2015, 204, W439–W448. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.C.; Pien, H.H.; Sahani, D.; Sorensen, A.G.; Thrall, J.H. Imaging Angiogenesis: Applications and Potential for Drug Development. J. Natl. Cancer Inst. 2005, 97, 172–187. [Google Scholar] [CrossRef]
- Khalifa, F.; Soliman, A.; El-Baz, A.; El-Ghar, M.A.; El-Diasty, T.; Gimel’Farb, G.; Ouseph, R.; Dwyer, A.C. Models and methods for analyzing DCE-MRI: A review. Med. Phys. 2014, 41, 124301. [Google Scholar] [CrossRef]
- Winkel, D.J.; Heye, T.J.; Benz, M.R.; Glessgen, C.G.; Wetterauer, C.; Bubendorf, L.; Block, T.K.; Boll, D.T. Compressed Sensing Radial Sampling MRI of Prostate Perfusion: Utility for Detection of Prostate Cancer. Radiology 2019, 290, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.S.; Kwon, H.-J.; Park, B.-W.; Cho, G.; Lee, C.K.; Cho, K.-S.; Kim, J.K. Prostate Cancer Detection on Dynamic Contrast-Enhanced MRI: Computer-Aided Diagnosis Versus Single Perfusion Parameter Maps. Am. J. Roentgenol. 2011, 197, 1122–1129. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kader, A.; Brangsch, J.; Kaufmann, J.O.; Zhao, J.; Mangarova, D.B.; Moeckel, J.; Adams, L.C.; Sack, I.; Taupitz, M.; Hamm, B.; et al. Molecular MR Imaging of Prostate Cancer. Biomedicines 2020, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, K.; Weckesser, M.; Huss, S.; Semjonow, A.; Breyholz, H.-J.; Schrader, A.J.; Schäfers, M.; Bögemann, M. Correlation of Intraprostatic Tumor Extent with 68Ga-PSMA Distribution in Patients with Prostate Cancer. J. Nucl. Med. 2016, 57, 563–567. [Google Scholar] [CrossRef]
- Fendler, W.P.; Eiber, M.; Beheshti, M.; Bomanji, J.; Ceci, F.; Cho, S.; Giesel, F.; Haberkorn, U.; Hope, T.A.; Kopka, K.; et al. 68Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1014–1024. [Google Scholar] [CrossRef] [PubMed]
- Souvatzoglou, M.; Eiber, M.; Martínez-Moeller, A.; Fürst, S.; Holzapfel, K.; Maurer, T.; Ziegler, S.; Nekolla, S.; Schwaiger, M.; Beer, A.J. PET/MR in prostate cancer: Technical aspects and potential diagnostic value. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 79–88. [Google Scholar] [CrossRef]
- Zhao, J.; Hamm, B.; Brenner, W.; Makowski, M.R. Lesion-to-background ratio threshold value of SUVmax of simultaneous [68Ga]Ga-PSMA-11 PET/MRI imaging in patients with prostate cancer. Insights Imaging 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Souvatzoglou, M.; Eiber, M.; Takei, T.; Fürst, S.; Maurer, T.; Gaertner, F.; Geinitz, H.; Drzezga, A.; Ziegler, S.; Nekolla, S.G.; et al. Comparison of integrated whole-body [11C]choline PET/MR with PET/CT in patients with prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 1486–1499. [Google Scholar] [CrossRef]
- Guberina, N.; Hetkamp, P.; Ruebben, H.; Fendler, W.; Grueneisen, J.; Suntharalingam, S.; Kirchner, J.; Puellen, L.; Harke, N.; Radtke, J.P.; et al. Whole-Body Integrated [68Ga]PSMA-11-PET/MR Imaging in Patients with Recurrent Prostate Cancer: Comparison with Whole-Body PET/CT as the Standard of Reference. Mol. Imaging Biol. 2019, 22, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Mansbridge, M.; Chung, E.; Rhee, H. The Use of MRI and PET Imaging Studies for Prostate Cancer Management: Brief Update, Clinical Recommendations, and Technological Limitations. Med. Sci. 2019, 7, 85. [Google Scholar] [CrossRef]
- Kranzbühler, B.; Müller, J.; Becker, A.S.; Schüler, H.I.G.; Muehlematter, U.J.; Fankhauser, C.D.; Kedzia, S.; Guckenberger, M.; Kaufmann, P.A.; Eberli, D.; et al. Detection Rate and Localization of Prostate Cancer Recurrence Using 68Ga-PSMA-11 PET/MRI in Patients with Low PSA Values ≤ 0.5 ng/mL. J. Nucl. Med. 2019, 61, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Afshar-Oromieh, A.; Haberkorn, U.; Schlemmer, H.P.; Fenchel, M.; Eder, M.; Eisenhut, M.; Hadaschik, B.A.; Kopp-Schneider, A.; Röthke, M. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: Initial experience. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 887–897. [Google Scholar] [CrossRef]
- Zhao, J.; Mangarova, D.B.; Brangsch, J.; Kader, A.; Hamm, B.; Brenner, W.; Makowski, M.R. Correlation between Intraprostatic PSMA Uptake and MRI PI-RADS of [68Ga]Ga-PSMA-11 PET/MRI in Patients with Prostate Cancer: Comparison of PI-RADS Version 2.0 and PI-RADS Version 2.1. Cancers 2020, 12, 3523. [Google Scholar] [CrossRef] [PubMed]
- Lecouvet, F.E.; El Mouedden, J.; Collette, L.; Coche, E.; Danse, E.; Jamar, F.; Machiels, J.P.; Berg, B.V.; Omoumi, P.; Tombal, B. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur. Urol. 2012, 62, 68–75. [Google Scholar] [CrossRef]
- Hara, N.; Okuizumi, M.; Koike, H.; Kawaguchi, M.; Bilim, V. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a useful modality for the precise detection and staging of early prostate cancer. Prostate 2004, 62, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Hamm, B.; Asbach, P. Magnetic Resonance Imaging of the Prostate in the PI-RADS Era. Dis. Abdomen Pelvis 2018, 2018–2021, 99–115. [Google Scholar]
- Maurer, T.; Eiber, M.; Schwaiger, M.E.M.; Gschwend, T.M.J.E. Current use of PSMA–PET in prostate cancer management. Nat. Rev. Urol. 2016, 13, 226–235. [Google Scholar] [CrossRef]
- Berman, R.M.; Brown, A.M.; Chang, S.D.; Sankineni, S.; Kadakia, M.; Wood, B.J.; Pinto, P.A.; Choyke, P.L.; Turkbey, B. DCE MRI of prostate cancer. Abdom. Radiol. 2016, 41, 844–853. [Google Scholar] [CrossRef]
- Vos, E.K.; Litjens, G.J.; Kobus, T.; Hambrock, T.; de Kaa, C.A.H.-V.; Barentsz, J.O.; Huisman, H.J.; Scheenen, T.W. Assessment of Prostate Cancer Aggressiveness Using Dynamic Contrast-enhanced Magnetic Resonance Imaging at 3 T. Eur. Urol. 2013, 64, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-J.; Chu, W.-C.; Pu, Y.-S.; Chueh, S.-C.; Shun, C.-T.; Tseng, W.-Y.I. Washout gradient in dynamic contrast-enhanced MRI is associated with tumor aggressiveness of prostate cancer. J. Magn. Reson. Imaging 2012, 36, 912–919. [Google Scholar] [CrossRef]
- van Niekerk, C.G.; van der Laak, J.A.; Hambrock, T.; Huisman, H.J.; Witjes, J.A.; Barentsz, J.O.; de Kaa, C.A.H. Correlation between dynamic contrast-enhanced MRI and quantitative histopathologic microvascular parameters in organ-confined prostate cancer. Eur. Radiol. 2014, 24, 2597–2605. [Google Scholar] [CrossRef]
- Ren, J.; Huan, Y.; Wang, H.; Chang, Y.-J.; Zhao, H.-T.; Ge, Y.-L.; Liu, Y.; Yang, Y. Dynamic contrast-enhanced MRI of benign prostatic hyperplasia and prostatic carcinoma: Correlation with angiogenesis. Clin. Radiol. 2008, 63, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Yi, B.; Kang, D.K.; Yoon, D.; Jung, Y.S.; Kim, K.S.; Yim, H.; Kim, T.H. Is there any correlation between model-based perfusion parameters and model-free parameters of time-signal intensity curve on dynamic contrast enhanced MRI in breast cancer patients? Eur. Radiol. 2014, 24, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Jayson, G.C.; Kerbel, R.; Ellis, L.M.; Harris, A.L. Antiangiogenic therapy in oncology: Current status and future directions. Lancet 2016, 388, 518–529. [Google Scholar] [CrossRef]
- Folkman, J. The role of angiogenesis in tumor growth. Semin. Cancer Biol. 1992, 3, 45–71. [Google Scholar]
- Borre, M.; Offersen, B.V.; Nerstrøm, B.; Overgaard, J. Microvessel density predicts survival in prostate cancer patients subjected to watchful waiting. Br. J. Cancer 1998, 78, 940–944. [Google Scholar] [CrossRef]
- Conway, R.E.; Petrovic, N.; Li, Z.; Heston, W.; Wu, D.; Shapiro, L.H. Prostate-Specific Membrane Antigen Regulates Angiogenesis by Modulating Integrin Signal Transduction. Mol. Cell. Biol. 2006, 26, 5310–5324. [Google Scholar] [CrossRef]
- Chang, S.S.; Reuter, V.E.; Heston, W.D.; Bander, N.H.; Grauer, L.S.; Gaudin, P.B. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 1999, 59, 3192–3198. [Google Scholar] [PubMed]
- Singanamalli, A.; Rusu, M.; Sparks, R.E.; Shih, N.N.; Ziober, A.; Wang, L.-P.; Tomaszewski, J.; Rosen, M.; Feldman, M.; Madabhushi, A. Identifying in vivo DCE MRI markers associated with microvessel architecture and gleason grades of prostate cancer. J. Magn. Reson. Imaging 2015, 43, 149–158. [Google Scholar] [CrossRef] [PubMed]
- van den Ouden, D.; Kranse, R.; Hop, W.C.; van der Kwast, T.H.; Schroder, F.H. Microvascular invasion in prostate cancer: Prognostic significance in patients treated by radical prostatectomy for clinically localized carcinoma. Urol. Int. 1998, 60, 17–24. [Google Scholar] [CrossRef]
- Antunes, A.A.; Srougi, M.; Dall’Oglio, M.F.; Crippa, A.; Paranhos, M.; Cury, J.; Nesrallah, L.J.; Leite, K.R. Microvascular invasion is an independent prognostic factor in patients with prostate cancer treated with radical prostatectomy. Int. Braz. J. Urol. 2006, 32, 668–677. [Google Scholar] [CrossRef]
- Salomao, D.R.; Graham, S.D.; Bostwick, D.G. Microvascular invasion in prostate cancer correlates with pathologic stage. Arch. Pathol. Lab. Med. 1995, 119, 1050–1054. [Google Scholar]
- Shabsigh, A.; Chang, D.T.; Heitjan, D.F.; Kiss, A.; Olsson, C.A.; Puchner, P.J.; Buttyan, R. Rapid reduction in blood flow to the rat ventral prostate gland after castration: Preliminary evidence that androgens influence prostate size by regulating blood flow to the prostate gland and prostatic endothelial cell survival. Prostate 1998, 36, 201–206. [Google Scholar] [CrossRef]
- Shabsigh, A.; Lee, B.; Buttyan, R. Unique morphological aspects of the rat ventral prostate gland revealed by vascular corrosion casting. Prostate 1999, 39, 240–245. [Google Scholar] [CrossRef]
- Røe, K.; Mikalsen, L.T.; Van Der Kogel, A.J.; Bussink, J.; Lyng, H.; Ree, A.H.; Marignol, L.; Olsen, D.R. Vascular responses to radiotherapy and androgen-deprivation therapy in experimental prostate cancer. Radiat. Oncol. 2012, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, L.E.; Logue, J.P.; Hutchinson, C.E.; Clarke, N.W.; Buckley, D.L. Late tissue effects following radiotherapy and neoadjuvant hormone therapy of the prostate measured with quantitative magnetic resonance imaging. Radiother. Oncol. 2008, 88, 127–134. [Google Scholar] [CrossRef]
- Hodge, K.K.; McNeal, J.E.; Terris, M.K.; Stamey, T.A. Random Systematic Versus Directed Ultrasound Guided Transrectal Core Biopsies of the Prostate. J. Urol. 1989, 142, 71–74. [Google Scholar] [CrossRef]
- Elabbady, A.A.; Khedr, M.M. Extended 12-Core Prostate Biopsy Increases Both the Detection of Prostate Cancer and the Accuracy of Gleason Score. Eur. Urol. 2006, 49, 49–53. [Google Scholar] [CrossRef]
- Uno, H.; Nakano, M.; Ehara, H.; Deguchi, T. Indications for Extended 14-Core Transrectal Ultrasound-Guided Prostate Biopsy. Urology 2008, 71, 23–27. [Google Scholar] [CrossRef]
- Turkbey, B.; Rosenkrantz, A.B.; Haider, M.A.; Padhani, A.R.; Villeirs, G.; Macura, K.J.; Tempany, C.M.; Choyke, P.L.; Cornud, F.; Margolis, D.J.; et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur. Urol. 2019, 76, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Giesel, F.L.; Fiedler, H.; Stefanova, M.; Sterzing, F.; Rius, M.; Kopka, K.; Moltz, J.H.; Afshar-Oromieh, A.; Choyke, P.L.; Haberkorn, U.; et al. PSMA PET/CT with Glu-urea-Lys-(Ahx)-[68Ga(HBED-CC)] versus 3D CT volumetric lymph node assessment in recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1794–1800. [Google Scholar] [CrossRef]
- Woythal, N.; Arsenic, R.; Kempkensteffen, C.; Miller, K.; Janssen, J.-C.; Huang, K.; Makowski, M.R.; Brenner, W.; Prasad, V. Immunohistochemical Validation of PSMA Expression Measured by 68Ga-PSMA PET/CT in Primary Prostate Cancer. J. Nucl. Med. 2018, 59, 238–243. [Google Scholar] [CrossRef] [PubMed]
Parameter | Benign Lesions | Malignant Lesions | |||||
---|---|---|---|---|---|---|---|
Median | Q1 | Q3 | Median | Q1 | Q3 | p Value | |
SUVmax | 2.3 | 1.5 | 3.7 | 7.0 | 4.2 | 11.5 | p < 0.05 * |
AT(min) | 0.47 | 0.40 | 0.57 | 0.47 | 0.39 | 0.56 | p > 0.05 |
TTP(min) | 1.09 | 0.84 | 1.32 | 0.95 | 0.75 | 1.22 | p < 0.05 * |
W-in | 0.13 | 0.07 | 0.18 | 0.12 | 0.08 | 0.22 | p >0.05 |
W-out | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | p >0.05 |
PEI | 0.21 | 0.15 | 0.28 | 0.20 | 0.15 | 0.26 | p > 0.05 |
iAUC | 0.08 | 0.05 | 0.11 | 0.08 | 0.05 | 0.12 | p > 0.05 |
Parameter | SUVmax ≤ 3.0 | SUVmax > 3.0 | |||||
---|---|---|---|---|---|---|---|
Median | Q1 | Q3 | Median | Q1 | Q3 | p Value | |
SUVmax | 1.6 | 1.2 | 2.3 | 4.7 | 3.6 | 6.2 | p < 0.05 * |
AT(min) | 0.47 | 0.39 | 0.58 | 0.47 | 0.44 | 0.56 | p > 0.05 |
TTP(min) | 1.13 | 0.92 | 1.35 | 0.92 | 0.78 | 1.24 | p > 0.05 |
W-in | 0.13 | 0.07 | 0.18 | 0.13 | 0.08 | 0.21 | p > 0.05 |
W-out | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | p >0.05 |
PEI | 0.21 | 0.16 | 0.28 | 0.21 | 0.12 | 0.27 | p > 0.05 |
iAUC | 0.09 | 0.05 | 0.11 | 0.07 | 0.05 | 0.12 | p > 0.05 |
Parameter | SUVmax ≤ 3.0 | SUVmax > 3.0 | |||||
---|---|---|---|---|---|---|---|
Median | Q1 | Q3 | Median | Q1 | Q3 | p Value | |
SUVmax | 2.0 | 1.0 | 2.2 | 8.2 | 5.5 | 12.2 | p < 0.05 * |
AT(min) | 0.49 | 0.47 | 0.98 | 0.47 | 0.39 | 0.55 | p > 0.05 |
TTP(min) | 0.95 | 0.66 | 1.12 | 0.96 | 0.77 | 1.22 | p > 0.05 |
W-in | 0.16 | 0.08 | 0.28 | 0.12 | 0.08 | 0.22 | p > 0.05 |
W-out | 0.01 | −0.003 | 0.02 | 0.01 | 0.01 | 0.02 | p > 0.05 |
PEI | 0.20 | 0.14 | 0.32 | 0.21 | 0.15 | 0.25 | p > 0.05 |
iAUC | 0.08 | 0.05 | 0.19 | 0.08 | 0.05 | 0.12 | p > 0.05 |
AT | TTP | W-in | W-out | PEI | iAUC | |
---|---|---|---|---|---|---|
AT | 1 | −0.17 * | 0.18 * | −0.05 | −0.004 | 0.18 * |
TTP | - | 1 | −0.45 ** | 0.71 ** | 0.17 * | −0.31 ** |
W-in | - | - | 1 | −0.30 ** | 0.57 ** | 0.95 ** |
W-out | - | - | - | 1 | 0.41 ** | −0.18 * |
PEI | - | - | - | - | 1 | 0.70 ** |
iAUC | - | - | - | - | - | 1 |
Characteristics | N = 39 |
---|---|
Age at scan (years) | 69 ± 9 |
PSA (ng/ml) at scan time | 8.70(5.18, 18.83) |
Biopsy Gleason score (n) | |
3 + 3 | 8 |
3 + 4 | 8 |
4 + 3 | 8 |
4 + 4 | 7 |
4 + 5 | 2 |
5 + 4 | 3 |
5 + 5 | 3 |
Treatment | |
ADT prior to scan (n) | 2 |
ADT ongoing at the time of scan (n) | 3 |
Radiotherapy prior to scan (n) | 3 |
Sequence | TR/TE (msec) | FOV (mm) | Flip Angle (Degrees) | Section Thickness (mm) | Voxel Size (mm) |
---|---|---|---|---|---|
T2WI HASTEAxial | 1400.0/95.0 | 400 | 160 | 5.0 | 1.3 × 1.3 × 5.0 |
T1WI FS VIBE | 1600.0/96.0 | 350 | 160 | 4.0 | 1.1 × 1.1 × 4.0 |
T2WI Axial | 5500.0/103.0 | 180 | 150 | 3.0 | 0.5 × 0.5 × 3.0 |
T2WI Sagittal | 1600.0/96.0 | 350 | 160 | 4.0 | 1.1 × 1.1 × 4.0 |
T2WI Coronal | 4500.0/102.0 | 200 | 173 | 3.0 | 0.4 × 0.4 × 3.0 |
DWI | 11,600.0/70.0 | 280 | 3.0 | 2.5 × 2.5 × 3.0 | |
T1WI FS TWIST dynamic | 7.41/3.30 | 260 | 12 | 3.5 | 1.4 × 1.4 × 3.5 |
T1WI STARVIBE | 3.71/1.77 | 360 | 9 | 1.2 | 1.1 × 1.1 × 1.2 |
Parameter | Definition |
---|---|
AT | arrival time: point in time when contrast enhancement starts |
TTP | time to peak: time from arrival time to end of wash-in |
W-in | wash-in: slope of the fitted line between AT and end of wash-in |
W-out | wash-out: slope of the fitted line between start of wash-out and end of measurement |
PEI | peak enhancement intensity: value of concentration when the contrast enhancement reaches the highest concentration |
iAUC | initial area under curve in 60 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Kader, A.; Mangarova, D.B.; Brangsch, J.; Brenner, W.; Hamm, B.; Makowski, M.R. Dynamic Contrast-Enhanced MRI of Prostate Lesions of Simultaneous [68Ga]Ga-PSMA-11 PET/MRI: Comparison between Intraprostatic Lesions and Correlation between Perfusion Parameters. Cancers 2021, 13, 1404. https://doi.org/10.3390/cancers13061404
Zhao J, Kader A, Mangarova DB, Brangsch J, Brenner W, Hamm B, Makowski MR. Dynamic Contrast-Enhanced MRI of Prostate Lesions of Simultaneous [68Ga]Ga-PSMA-11 PET/MRI: Comparison between Intraprostatic Lesions and Correlation between Perfusion Parameters. Cancers. 2021; 13(6):1404. https://doi.org/10.3390/cancers13061404
Chicago/Turabian StyleZhao, Jing, Avan Kader, Dilyana B. Mangarova, Julia Brangsch, Winfried Brenner, Bernd Hamm, and Marcus R. Makowski. 2021. "Dynamic Contrast-Enhanced MRI of Prostate Lesions of Simultaneous [68Ga]Ga-PSMA-11 PET/MRI: Comparison between Intraprostatic Lesions and Correlation between Perfusion Parameters" Cancers 13, no. 6: 1404. https://doi.org/10.3390/cancers13061404
APA StyleZhao, J., Kader, A., Mangarova, D. B., Brangsch, J., Brenner, W., Hamm, B., & Makowski, M. R. (2021). Dynamic Contrast-Enhanced MRI of Prostate Lesions of Simultaneous [68Ga]Ga-PSMA-11 PET/MRI: Comparison between Intraprostatic Lesions and Correlation between Perfusion Parameters. Cancers, 13(6), 1404. https://doi.org/10.3390/cancers13061404