N-3 Long-Chain Polyunsaturated Fatty Acids, Eicosapentaenoic and Docosahexaenoic Acid, and the Role of Supplementation during Cancer Treatment: A Scoping Review of Current Clinical Evidence
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Inclusion and Exclusion Criteria
2.2. Data Sources, Search Strategy and Study Selection
2.3. Data Extraction and Synthesis
3. Results
3.1. Study Selection
3.2. Overview of Studies
3.3. N-3 Type, Amount Prescribed and Intervention Length
3.4. Outcomes
3.4.1. Weight
3.4.2. Serious Adverse Events
3.4.3. Immunological Outcomes
3.4.4. Quality of Life
3.4.5. Survival
3.4.6. Additional Parameters
4. Discussion
4.1. N-3 Supplement Component and Dose Prescribed
4.2. Reported Outcomes
4.2.1. Clinically Relevant Outcomes
4.2.2. Modulation of Immune Function
4.2.3. Mechanistically Relevant Outcomes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021. [Google Scholar] [CrossRef] [PubMed]
- Turk, H.F.; Barhoumi, R.; Chapkin, R.S. Alteration of EGFR Spatiotemporal Dynamics Suppresses Signal Transduction. PLoS ONE 2012, 7, e39682. [Google Scholar] [CrossRef] [Green Version]
- Statistics Canada. Leading Causes of Death, Total Population. 2019. Available online: www150.statcan.gc.ca (accessed on 4 February 2021).
- D’Eliseo, D.; Velotti, F. Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for Multi-Targeted Cancer Therapy. J. Clin. Med. 2016, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ma, D.W.L. The Role of n-3 Polyunsaturated Fatty Acids in the Prevention and Treatment of Breast Cancer. Nutrients 2014, 6, 5184–5223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newell, M.; Baker, K.; Postovit, L.M.; Field, C.J. A Critical Review on the Effect of Docosahexaenoic Acid (DHA) on Cancer Cell Cycle Progression. Int. J. Mol. Sci. 2017, 18, 1784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bougnoux, P.; Hajjaji, N.; Ferrasson, M.N.; Giraudeau, B.; Couet, C.; Le Floch, O. Improving outcome of chemotherapy of metastatic breast cancer by docosahexaenoic acid: A phase II trial. Br. J. Cancer 2009, 101, 1978–1985. [Google Scholar] [CrossRef] [Green Version]
- Darwito, D.; Dharmana, E.; Riwanto, I.; Budijitno, S.; Suwardjo, S.; Purnomo, J.; Widodo, I.; Ghozali, A.; Aryandono, T.; Anwar, S.L. Effects of Omega-3 Supplementation on Ki-67 and VEGF Expression Levels and Clinical Outcomes of Locally Advanced Breast Cancer Patients Treated with Neoadjuvant CAF Chemotherapy: A Randomized Controlled Trial Report. Asian Pac. J. Cancer Prev. 2019, 20, 911–916. [Google Scholar] [CrossRef]
- Ghoreishi, Z.; Esfahani, A.; Djazayeri, A.; Djalali, M.; Golestan, B.; Ayromlou, H.; Hashemzade, S.; Jafarabadi, M.A.; Montazeri, V.; Keshavarz, S.A.; et al. Omega-3 fatty acids are protective against paclitaxel-induced peripheral neuropathy: A randomized double-blind placebo controlled trial. BMC Cancer 2012, 12, 355. [Google Scholar] [CrossRef] [Green Version]
- Hershman, D.L.; Unger, J.M.; Crew, K.D.; Awad, D.; Dakhil, S.R.; Gralow, J.; Greenlee, H.; Lew, D.L.; Minasian, L.M.; Till, C.; et al. Randomized Multicenter Placebo-Controlled Trial of Omega-3 Fatty Acids for the Control of Aromatase Inhibitor–Induced Musculoskeletal Pain: SWOG S0927. J. Clin. Oncol. 2015, 33, 1910–1917. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Unger, J.M.; Crew, K.D.; Till, C.; Greenlee, H.; Gralow, J.; Dakhil, S.R.; Minasian, L.M.; Wade, J.L., 3rd; Fisch, M.J.; et al. Omega-3 fatty acid use for obese breast cancer patients with aromatase inhibitor-related arthralgia (swog s0927). Breast Cancer Res. Treat. 2018, 172, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Paixão, E.M.; de M. Oliveira, A.C.; Pizato, N.; Muniz-Junqueira, M.I.; Magalhães, K.G.; Yoshio Nakano, E.; Ito, M.K. The effects of epa and DHA enriched fish oil on nutritional and immunological markers of treatment naïve breast cancer patients: A randomized double-blind controlled trial. Nutr. J. 2017, 16, 71. [Google Scholar]
- Martínez, N.; Herrera, M.; Frías, L.; Provencio, M.; Pérez-Carrión, R.; Díaz, V.; Morse, M.; Crespo, M.C. A combination of hydroxytyrosol, omega-3 fatty acids and curcumin improves pain and inflammation among early stage breast cancer patients receiving adjuvant hormonal therapy: Results of a pilot study. Clin. Transl. Oncol. 2019, 21, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Gogos, C.A.; Ginopoulos, P.; Salsa, B.; Apostolidou, E.; Zoumbos, N.C.; Kalfarentzos, F. Dietary omega-3 polyunsaturated fatty acids plus vitamin e restore immunodeficiency and prolong survival for severely ill patients with generalized malignancy: A randomized control trial. Cancer 1998, 82, 395–402. [Google Scholar] [CrossRef]
- Faber, J.; Berkhout, M.; Fiedler, U.; Avlar, M.; Witteman, B.; Vos, A.; Henke, M.; Garssen, J.; Van Helvoort, A.; Otten, M.; et al. Rapid EPA and DHA incorporation and reduced PGE2 levels after one week intervention with a medical food in cancer patients receiving radiotherapy, a randomized trial. Clin. Nutr. 2013, 32, 338–345. [Google Scholar] [CrossRef]
- Mansara, P.; Ketkar, M.; Deshpande, R.; Chaudhary, A.; Shinde, K.; Kaul-Ghanekar, R. Improved antioxidant status by omega-3 fatty acid supplementation in breast cancer patients undergoing chemotherapy: A case series. J. Med. Case Rep. 2015, 9, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanai, N.; Terada, H.; Hirakawa, H.; Suzuki, H.; Nishikawa, D.; Beppu, S.; Hasegawa, Y. Prospective randomized investigation implementing immunonutritional therapy using a nutritional supplement with a high blend ratio of ω-3 fatty acids during the perioperative period for head and neck carcinomas. Jpn. J. Clin. Oncol. 2018, 48, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Solís-Martínez, O.; Plasa-Carvalho, V.; Phillips-Sixtos, G.; Trujillo-Cabrera, Y.; Hernández-Cuellar, A.; Queipo-García, G.E.; Meaney-Mendiolea, E.; Ceballos-Reyes, G.M.; Fuchs-Tarlovsky, V. Effect of Eicosapentaenoic Acid on Body Composition and Inflammation Markers in Patients with Head and Neck Squamous Cell Cancer from a Public Hospital in Mexico. Nutr. Cancer 2018, 70, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Talvas, J.; Garrait, G.; Goncalves-Mendez, N.; Rouanet, J.; Vergnaud-Gauduchon, J.; Kwiatkowski, F.; Bachmann, P.; Bouteloup, C.; Bienvenu, J.; Vasson, M.-P. Immunonutrition stimulates immune functions and antioxidant defense capacities of leukocytes in radiochemotherapy-treated head & neck and esophageal cancer patients: A double-blind randomized clinical trial. Clin. Nutr. 2015, 34, 810–817. [Google Scholar] [CrossRef]
- Bonatto, S.J.R.; Oliveira, H.H.P.; Nunes, E.A.; Pequito, D.; Iagher, F.; Coelho, I.; Naliwaiko, K.; Kryczyk, M.; Brito, G.A.P.; Repka, J.; et al. Fish Oil Supplementation Improves Neutrophil Function during Cancer Chemotherapy. Lipids 2012, 47, 383–389. [Google Scholar] [CrossRef]
- Gómez-Candela, C.; Sanz, M.V.; Horrisberger, A.; Kohen, V.L.; Bermejo, L.M.; Auñón, P.Z. Efficacy evaluation of an oral powder supplement enriched with eicosapentaenoic acid in cancer patients. Nutr. Hosp. 2011, 26, 1385–1393. [Google Scholar]
- Swails, W.S.; Kenler, A.S.; Driscoll, D.F.; DeMichele, S.J.; Babineau, T.J.; Utsunamiya, T.; Chavali, S.; Forse, R.A.; Bistrian, B.R. Effect of a Fish Oil Structured Lipid-Based Diet on Prostaglandin Release from Mononuclear Cells in Cancer Patients after Surgery. J. Parenter. Enter. Nutr. 1997, 21, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Gianotti, L.; Braga, M.; Fortis, C.; Soldini, L.; Vignali, A.; Colombo, S.; Radaelli, G.; Di Carlo, V. A Prospective, Randomized Clinical Trial on Perioperative Feeding with an Arginine-, Omega-3 Fatty Acid-, and RNA-Enriched Enteral Diet: Effect on Host Response and Nutritional Status. J. Parenter. Enter. Nutr. 1999, 23, 314–320. [Google Scholar] [CrossRef]
- Wu, G.H.; Zhang, Y.-W.; Wu, Z.-H. Modulation of postoperative immune and inflammatory response by immune-enhancing enteral diet in gastrointestinal cancer patients. World J. Gastroenterol. 2001, 7, 357–362. [Google Scholar] [CrossRef]
- Jiang, Z.M.; Wilmore, D.W.; Wang, X.R.; Wei, J.M.; Zhang, Z.T.; Gu, Z.Y.; Wang, S.; Han, S.M.; Jiang, H.; Yu, K. Randomized clinical trial of intravenous soybean oil alone versus soybean oil plus fish oil emulsion after gastrointestinal cancer surgery. BJS 2010, 97, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Camargo, C.D.Q.; Mocellin, M.C.; Brunetta, H.S.; Chagas, T.R.; Fabre, M.E.S.; Trindade, E.; Da Silva, E.L.; Nunes, E.A. Fish oil decreases the severity of treatment-related adverse events in gastrointestinal cancer patients undergoing chemotherapy: A randomized, placebo-controlled, triple-blind clinical trial. Clin. Nutr. ESPEN 2019, 31, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Haidari, F.; Abiri, B.; Iravani, M.; Ahmadi-Angali, K.; Vafa, M. Randomized Study of the Effect of Vitamin D and Omega-3 Fatty Acids Cosupplementation as Adjuvant Chemotherapy on Inflammation and Nutritional Status in Colorectal Cancer Patients. J. Diet. Suppl. 2020, 17, 384–400. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.W.; Fei, Z.W.; Zhang, Y.C.; Ou, J.M.; Xu, J. Role of Enteral Immunonutrition in Patients with Gastric Carcinoma Undergoing Major Surgery. Asian J. Surg. 2005, 28, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Wang, W.; Chen, J.; Yang, D.; Yan, R.; Cai, Q. A prospective, randomized, controlled study of [omega]-3 fish oil fat emulsion-based parenteral nutrition for patients following surgical resection of gastric tumors. Nutr. J. 2014, 13, 25. [Google Scholar] [CrossRef] [Green Version]
- Khojastehfard, M.; Dolatkhah, H.; Somi, M.-H.; Ahmad, S.N.S.; Estakhri, R.; Sharifi, R.; NaghiZadeh, M.; Rahmati-Yamchi, M. The Effect of Oral Administration of PUFAs on the Matrix Metalloproteinase Expression in Gastric Adenocarcinoma Patients Undergoing Chemotherapy. Nutr. Cancer 2019, 71, 444–451. [Google Scholar] [CrossRef]
- Feijó, P.M.; Rodrigues, V.D.; Viana, M.S.; Dos Santos, M.P.; Abdelhay, E.; Viola, J.P.; De Pinho, N.B.; Martucci, R.B. Effects of ω-3 supplementation on the nutritional status, immune, and inflammatory profiles of gastric cancer patients: A randomized controlled trial. Nutrition 2019, 61, 125–131. [Google Scholar] [CrossRef]
- Mocellin, M.C.; Silva, J.D.A.P.E.; Camargo, C.D.Q.; Fabre, M.E.; Gevaerd, S.; Naliwaiko, K.; Moreno, Y.M.F.; Nunes, E.A.; Trindade, E.B. Fish Oil Decreases C-Reactive Protein/Albumin Ratio Improving Nutritional Prognosis and Plasma Fatty Acid Profile in Colorectal Cancer Patients. Lipids 2013, 48, 879–888. [Google Scholar] [CrossRef]
- Pastore-Silva, J.; Trindade, E.; Fabre, M.; Menegotto, V.M.; Gevaerd, S.; Buss, Z.; Frode, T.S. Fish oil supplement alters markers of inflammatory and nutritional status in colorectal cancer patients. Nutr. Cancer 2012, 64, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Camargo, C.D.Q.; Mocellin, M.C.; Silva, J.D.A.P.; Fabre, M.E.; Nunes, E.A.; Trindade, E.B. Fish oil supplementation during chemotherapy increases posterior time to tumor progression in colorectal cancer. Nutr. Cancer 2016, 68, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Purasiri, P.; Murray, A.; Richardson, S.; Heys, S.D.; Horrobin, D.; Eremin, O. Modulation of Cytokine Production In Vivo by Dietary Essential Fatty Acids in Patients with Colorectal Cancer. Clin. Sci. 1994, 87, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Cockbain, A.J.; Volpato, M.; Race, A.D.; Munarini, A.; Fazio, C.; Belluzzi, A.; Loadman, P.M.; Toogood, G.J.; Hull, M.A. Anticolorectal cancer activity of the omega-3 polyunsaturated fatty acid eicosapentaenoic acid. Gut 2014, 63, 1760–1768. [Google Scholar] [CrossRef] [Green Version]
- Trabal, J.; Leyes, P.; Forga, M.; Maurel, J. Potential usefulness of an EPA-enriched nutritional supplement on chemotherapy tolerability in cancer patients without overt malnutrition. Nutr. Hosp. 2010, 25, 736–ss740. [Google Scholar]
- Kemen, M.; Senkal, M.; Homann, H.-H.; Mumme, A.; Dauphin, A.-K.; Baier, J.; Windeler, J.; Neumann, H.; Zumtobel, V. Early postoperative enteral nutrition with arginine-omega-3 fatty acids and ribonucleic acid-supplemented diet versus placebo in cancer patients: An immunologic evaluation of impact. Crit. Care Med. 1995, 23, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Persson, C.; Glimelius, B.; Rönnelid, J.; Nygren, P. Impact of fish oil and melatonin on cachexia in patients with advanced gastrointestinal cancer: A randomized pilot study. Nutrition 2005, 21, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Pastore, C.A.; Orlandi, S.P.; Gonzalez, M.C. Introduction of an Omega-3 Enriched Oral Supplementation for Cancer Patients Close to the First Chemotherapy: May It Be a Factor for Poor Compliance? Nutr. Cancer 2014, 66, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Read, J.A.; Beale, P.J.; Volker, D.H.; Smith, N.; Childs, A.; Clarke, S.J. Nutrition intervention using an eicosapentaenoic acid (EPA)-containing supplement in patients with advanced colorectal cancer. Effects on nutritional and inflammatory status: A phase II trial. Support. Care Cancer 2007, 15, 301–307. [Google Scholar] [CrossRef]
- Braga, M.; Gianotti, L.; Vignali, A.; Di Carlo, V. Preoperative oral arginine and n-3 fatty acid supplementation improves the immunometabolic host response and outcome after colorectal resection for cancer. Surgery 2002, 132, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Wang, S.; Ye, Y.-J.; Yang, X.-D.; Wang, Y.-L.; Qu, J.; Xie, Q.-W.; Yin, M.-J. Impact of postoperative omega-3 fatty acid-supplemented parenteral nutrition on clinical outcomes and immunomodulations in colorectal cancer patients. World J. Gastroenterol. 2008, 14, 2434–2439. [Google Scholar] [CrossRef]
- Zhu, M.-W.; Tang, D.-N.; Hou, J.; Wei, J.-M.; Hua, B.; Sun, J.-H.; Cui, H.-Y. Impact of fish oil enriched total parenteral nutrition on elderly patients after colorectal cancer surgery. Chin. Med J. 2012, 125, 178–181. [Google Scholar] [PubMed]
- Golkhalkhali, B.; Rajandram, R.; Paliany, A.S.; Ho, G.F.; Ishak, W.Z.W.; Johari, C.S.; Chin, K.F. Strain-specific probiotic (microbial cell preparation) and omega-3 fatty acid in modulating quality of life and inflammatory markers in colorectal cancer patients: A randomized controlled trial. Asia-Pac. J. Clin. Oncol. 2018, 14, 179–191. [Google Scholar] [CrossRef]
- Ryan, A.M.; Reynolds, J.V.; Healy, L.; Byrne, M.; Moore, J.; Brannelly, N.; McHugh, A.; McCormack, D.; Flood, P. Enteral Nutrition Enriched with Eicosapentaenoic Acid (EPA) Preserves Lean Body Mass Following Esophageal Cancer Surgery: Results of a Double-Blinded Randomized Controlled Trial. Ann. Surg. 2009, 249, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Eltweri, A.M.; Thomas, A.L.; Chung, W.Y.; Morgan, B.; Thompson, J.; Dennison, A.R.; Bowrey, D.J. The Effect of Supplementary Omegaven® on the Clinical Outcome of Patients with Advanced Esophagogastric Adenocarcinoma Receiving Palliative Epirubicin, Oxaliplatin, and Capecitabine Chemotherapy: A Phase II clinical trial. Anticancer. Res. 2019, 39, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Chagas, T.R.; Borges, D.S.; De Oliveira, P.F.; Mocellin, M.C.; Barbosa, A.M.; Camargo, C.Q.; Del Moral, J.Â.G.; Poli, A.; Calder, P.C.; Trindade, E.B.S.M.; et al. Oral fish oil positively influences nutritional-inflammatory risk in patients with haematological malignancies during chemotherapy with an impact on long-term survival: A randomised clinical trial. J. Hum. Nutr. Diet. 2017, 30, 681–692. [Google Scholar] [CrossRef]
- Murphy, R.A.; Mourtzakis, M.; Chu, Q.S.C.; Baracos, V.E.; Reiman, T.; Mazurak, V.C. Supplementation with fish oil increases first-line chemotherapy efficacy in patients with advanced nonsmall cell lung cancer. Cancer 2011, 117, 3774–3780. [Google Scholar] [CrossRef]
- Finocchiaro, C.; Segre, O.; Fadda, M.; Monge, T.; Scigliano, M.; Schena, M.; Tinivella, M.; Tiozzo, E.; Catalano, M.G.; Pugliese, M.; et al. Effect of n-3 fatty acids on patients with advanced lung cancer: A double-blind, placebo-controlled study. Br. J. Nutr. 2012, 108, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Ren-gang, C.; San-zou, W.; Han-guo, H.; Fei, S.; Chun-hui, Y.; Lu, Y.; Chen, R.-G.; Wei, S.-Z.; Hu, H.-G.; et al. Effect of omega 3 fatty acids on c-reactive protein and interleukin-6 in patients with advanced nonsmall cell lung cancer. Medicine 2018, 97, 1–4. [Google Scholar]
- Cerchietti, L.C.; Navigante, A.H.; Castro, M.A. Effects of Eicosapentaenoic and Docosahexaenoic n-3 Fatty Acids from Fish Oil and Preferential Cox-2 Inhibition on Systemic Syndromes in Patients with Advanced Lung Cancer. Nutr. Cancer 2007, 59, 14–20. [Google Scholar] [CrossRef]
- Van Der Meij, B.S.; Langius, J.A.E.; Spreeuwenberg, M.D.; Slootmaker, S.M.; A Paul, M.; Smit, E.F.; Van Leeuwen, P.A.M. Oral nutritional supplements containing n-3 polyunsaturated fatty acids affect quality of life and functional status in lung cancer patients during multimodality treatment: An RCT. Eur. J. Clin. Nutr. 2012, 66, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Lara, K.; Turcott, J.G.; Juárez-Hernández, E.; Nuñez-Valencia, C.; Villanueva, G.; Guevara, P.; De la Torre-Vallejo, M.; Mohar, A.; Arrieta, O. Effects of an oral nutritional supplement containing eicosapentaenoic acid on nutritional and clinical outcomes in patients with advanced non-small cell lung cancer: Randomised trial. Clin. Nutr. 2014, 33, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.D.; Capra, S. Nutrition intervention improves outcomes in patients with cancer cachexia receiving chemotherapy? A pilot study. Support. Care Cancer 2005, 13, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Maschio, M.; Zarabla, A.; Maialetti, A.; Marchesi, F.; Giannarelli, D.; Gumenyuk, S.; Pisani, F.; Renzi, D.; Galiè, E.; Mengarelli, A. Prevention of Bortezomib-Related Peripheral Neuropathy with Docosahexaenoic Acid and α-Lipoic Acid in Patients with Multiple Myeloma: Preliminary Data. Integr. Cancer Ther. 2018, 17, 1115–1124. [Google Scholar] [CrossRef] [Green Version]
- Wigmore, S.J.; Barber, M.D.; Ross, J.A.; Tisdale, M.J.; Fearon, K.C.H. Effect of Oral Eicosapentaenoic Acid on Weight Loss in Patients with Pancreatic Cancer. Nutr. Cancer 2000, 36, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Werner, K.; De Gaudry, D.K.; Taylor, L.A.; Keck, T.; Unger, C.; Hopt, U.T.; Massing, U. Dietary supplementation with n-3-fatty acids in patients with pancreatic cancer and cachexia: Marine phospholipids versus fish oil—A randomized controlled double-blind trial. Lipids Heal. Dis. 2017, 16, 104. [Google Scholar] [CrossRef] [Green Version]
- Barber, M.D.; Ross, J.A.; Preston, T.; Shenkin, A.; Fearon, K.C.H. Fish oil-enriched nutritional supplement attenuates progression of the acute-phase response in weight-losing patients with advanced pancreatic cancer. J. Nutr. 1999, 129, 1120–1125. [Google Scholar] [CrossRef] [Green Version]
- Barber, M.D.; Ross, J.A.; Voss, A.C.; Tisdale, M.J.; Fearon, K.C.H. The effect of an oral nutritional supplement enriched with fish oil on weight-loss in patients with pancreatic cancer. Br. J. Cancer 1999, 81, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Barber, M.D.; Fearon, K.C.H.; Tisdale, M.J.; McMillan, D.C.; Ross, J.A. Effect of a Fish Oil-Enriched Nutritional Supplement on Metabolic Mediators in Patients with Pancreatic Cancer Cachexia. Nutr. Cancer 2001, 40, 118–124. [Google Scholar] [CrossRef]
- Arshad, A.; Chung, W.; Isherwood, J.; Mann, C.; Al-Leswas, D.; Steward, W.; Metcalfe, M.; Dennison, A. Cellular and plasma uptake of parenteral omega-3 rich lipid emulsion fatty acids in patients with advanced pancreatic cancer. Clin. Nutr. 2014, 33, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Uwagawa, T.; Haruki, K.; Takano, Y.; Onda, S.; Sakamoto, T.; Gocho, T.; Yanaga, K. Effects of ω-3 Fatty Acid Supplementation in Patients with Bile Duct or Pancreatic Cancer Undergoing Chemotherapy. Anticancer. Res. 2018, 38, 2369–2375. [Google Scholar] [CrossRef] [PubMed]
- Shirai, Y.; Okugawa, Y.; Hishida, A.; Ogawa, A.; Okamoto, K.; Shintani, M.; Morimoto, Y.; Nishikawa, R.; Yokoe, T.; Tanaka, K.; et al. Fish oil-enriched nutrition combined with systemic chemotherapy for gastrointestinal cancer patients with cancer cachexia. Sci. Rep. 2017, 7, 4826. [Google Scholar] [CrossRef]
- Aiko, S.; Yoshizumi, Y.; Tsuwano, S.; Shimanouchi, M.; Sugiura, Y.; Maehara, T. The Effects of Immediate Enteral Feeding with a Formula Containing High Levels of ω-3 Fatty Acids in Patients after Surgery for Esophageal Cancer. J. Parenter. Enter. Nutr. 2005, 29, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.Y.; Mackey, J.R. Presentation and management of docetaxel-related adverse effects in patients with breast cancer. Cancer Manag. Res. 2014, 6, 253–259. [Google Scholar] [CrossRef]
- Van Der Most, R.G.; Currie, A.J.; Robinson, B.W.S.; A Lake, R. Decoding dangerous death: How cytotoxic chemotherapy invokes inflammation, immunity or nothing at all. Cell Death Differ. 2008, 15, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, T.; Zhan, J.; Hong, S.; Hu, Z.; Fang, W.; Qin, T.; Ma, Y.; Yang, Y.; He, X.; Zhao, Y.; et al. Ratio of C-Reactive Protein/Albumin Is An Inflammatory Prognostic Score for Predicting Overall Survival of Patients with Small-Cell Lung Cancer. Sci. Rep. 2015, 5, 10481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaronson, N.K.; De Haes, J.C.J.M.; Kaasa, S.; Klee, M.; Osoba, D.; Razavi, D.; Rofe, P.B.; Schraub, S.; Sneeuw, K.; Sullivan, M.; et al. The European Organization for Research and Treatment of Cancer QLQ-C30: A Quality-of-Life Instrument for Use in International Clinical Trials in Oncology. J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef]
- Henry, N.L.; Jacobson, J.A.; Banerjee, M.; Hayden, J.; Smerage, J.B.; Van Poznak, C.; Storniolo, A.M.; Stearns, V.; Hayes, D.F. A prospective study of aromatase inhibitor-associated musculoskeletal symptoms and abnormalities on serial high-resolution wrist ultrasonography. Cancer 2010, 116, 4360–4367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowsett, M.; Nielsen, T.O.; A’Hern, R.; Bartlett, J.; Coombes, R.C.; Cuzick, J.; Ellis, M.; Henry, N.L.; Hugh, J.C.; Lively, T.; et al. Assessment of Ki67 in Breast Cancer: Recommendations from the International Ki67 in Breast Cancer Working Group. J. Natl. Cancer Inst. 2011, 103, 1656–1664. [Google Scholar] [CrossRef] [Green Version]
- Gerdes, J.; Lemke, H.; Baisch, H.; Wacker, H.H.; Schwab, U.; Stein, H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 1984, 133, 1710–1715. [Google Scholar]
- Thomas, S.; Johannes, G. The ki-67 protein: From the known and the unknown. J. Cell. Physiol. 2000, 182, 311–322. [Google Scholar]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef] [PubMed]
- Gorjão, R.; Azevedo-Martins, A.K.; Rodrigues, H.G.; Abdulkader, F.; Arcisio-Miranda, M.; Procopio, J.; Curi, R. Comparative effects of DHA and EPA on cell function. Pharmacol. Ther. 2009, 122, 56–64. [Google Scholar] [CrossRef]
- Serini, S.; Fasano, E.; Piccioni, E.; Cittadini, A.; Calviello, G. Differential Anti-Cancer Effects of Purified EPA and DHA and Possible Mechanisms Involved. Curr. Med. Chem. 2011, 18, 4065–4075. [Google Scholar] [CrossRef] [PubMed]
- VanderSluis, L.; Mazurak, V.C.; Damaraju, S.; Field, C.J. Determination of the Relative Efficacy of Eicosapentaenoic Acid and Docosahexaenoic Acid for Anti-Cancer Effects in Human Breast Cancer Models. Int. J. Mol. Sci. 2017, 18, 2607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyall, S.C. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Asztalos, I.B.; Gleason, J.A.; Sever, S.; Gedik, R.; Asztalos, B.F.; Horvath, K.V.; Dansinger, M.L.; Lamon-Fava, S.; Schaefer, E.J. Effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular disease risk factors: A randomized clinical trial. Metabolism 2016, 65, 1636–1645. [Google Scholar] [CrossRef]
- Berstad, P.; Thiis-Evensen, E.; Vatn, M.H.; Almendingen, K. Fatty Acids in Habitual Diet, Plasma Phospholipids, and Tumour and Normal Colonic Biopsies in Young Colorectal Cancer Patients. J. Oncol. 2012, 2012, 254801. [Google Scholar] [CrossRef] [PubMed]
- Stillman, M.; Cata, J.P. Management of chemotherapy-induced peripheral neuropathy. Curr. Pain Headache Rep. 2006, 10, 279–287. [Google Scholar] [CrossRef]
- Urruticoechea, A.; Smith, I.E.; Dowsett, M. Proliferation Marker Ki-67 in Early Breast Cancer. J. Clin. Oncol. 2005, 23, 7212–7220. [Google Scholar] [CrossRef]
- Beuschlein, F.; Weigel, J.; Saeger, W.; Kroiss, M.; Wild, V.; Daffara, F.; Libé, R.; Ardito, A.; Al Ghuzlan, A.; Quinkler, M.; et al. Major Prognostic Role of Ki67 in Localized Adrenocortical Carcinoma after Complete Resection. J. Clin. Endocrinol. Metab. 2015, 100, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.R.; Huttenlocher, A. Neutrophils in the Tumor Microenvironment. Trends Immunol. 2016, 37, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, N. Cancer cachexia and targeting chronic inflammation: A unified approach to cancer treatment and palliative/supportive care. J. Support. Oncol. 2007, 5, 157–162. [Google Scholar] [PubMed]
Cancer Type (Stage) | N (Int/CNT) Female/Male | Age, Body Weight and BMI (Int/CNT) | Chemotherapy | N-3 (g Total/Day = EPA/DHA) CNT | Treatment Duration | Experimental Findings | Ref |
---|---|---|---|---|---|---|---|
Breast (metastatic) | 25 F | Age = 58 (32–71) | Cyclophosphamide, Fluorouracil, Epirubicin | 1.8 g DHA CNT = N/A | 18 weeks | Stratified by amount of DHA incorporated into plasma ↑ DHA group associated with longer time to progression (8.7 months vs. 3.5 months); ↑ OS (34 vs. 18 months; ↓ neutropenia, anaemia and thrombopenia | 2009 [7] |
Breast | 57 F (30/27) | Age = 46.2 ± 9.8/45.7 ± 12.0 BMI = 46.0 ± 9.0/44.1 ± 8.9 | Paclitaxel | 1.2 g = 0.19 g EPA/1.0 g DHA CNT = sunflower oil | 4 cycles + 1 month post | N-3: 70% ↓ risk of peripheral neuropathy incidence | 2012 [9] |
Breast (I–III) | 209 F (102/107) | Age = 59.5/59.1 Body weight = 79.0 (77.3–79.8) | Anastrozole, Exemestane or Letrozole | 3.3 g = 2.24 g EPA/1.12 g DHA CNT = soybean and corn oil | 24 weeks | Both groups: ↓ in pain symptoms in but no proof of n-3 efficacy; when stratified by BMI, n-3 significantly ↓ pain in obese patients | 2015 [10,11] |
Breast (IIIB) | 48 F (24/24) | Age = 46.5 ± 8.1/48.5 ± 8.8 | Cyclophosphamide, Doxorubicin, Fluorouracil | 1.0 g N-3 CNT = unknown source | 51 days | N-3: ↓ Ki67 (39.2 ± 5.3 vs. 42.4 ± 4.8, P = 0.03), ↓ VEGF (29.5 ± 5.4 vs. 32.7 ± 5.2, P = 0.04). ↑ OS (30.9 ± 3.7 vs. 25.9 ± 3.6 weeks, P = 0.05; HR = 0.41, 95% CI: 0.20–0.84 and ↑ DFS (28.5 ± 3.3 vs. 23.7 ± 3.6, P = 0.03; HR = 0.44, 95% CI: 0.22–0.87 | 2019 [8] |
Breast (I–II) | 5 F | Age = 50 (34–60) | Cyclophosphamide + Fluorouracil + Doxorubicin/Adriamycin or Paclitaxel | 1.2 −1.8 g = 0.72 g–1.1 g EPA/0.48–0.72 g DHA | 130–188 days | N-3: ↑ SOD, glutathione reductase and plasma antioxidant status; ↑ QOL | 2015 [16] |
Gastric (I–IV) | 34 (17/17) 15 F/19 M | Age = 71.2 ± 9.8/67.5 ± 11.2 | Cisplatin | 1.25 g = 0.92 g EPA/0.32 g DHA CNT = Placebo | 9 weeks | N-3: ↓ gene expression of MMP-1 and MMP-9 compared to control | 2019 [30] |
Gastrointestinal | 38 (19/19) 16 F/22 M | Age = 53.8 ± 2.4/54.9 ± 3.2 Body weight = 65.8 ± 3.6/69.5 ± 3.6 | Fluorouracil and Leucovorin | 0.70 g = 0.30 g EPA/0.40 g DHA CNT = N/A | 8 weeks | N-3: ↑ in EPA and DHA in PBMCs, ↑ in phagocytosis, superoxide anion production and H2O2 productions, ↑ weight, improved neutrophil function during chemotherapy Control: ↓ weight | 2011 [20] |
Gastrointestinal | 51 (26/25) 24 F/27 M | Age = 58 (46–63)/51 (41–60) BMI = 26.5 ± 4.6/25.6 ± 4.2 weight loss = 7.2–11.3% in 6 months prior to study entry | Capecitabine + Oxaliplatin; Fluorouracil + Oxaliplatin; Fluorouracil + Leucovorin; other | 1.55 g = 1.0 g EPA/0.55 g DHA CNT = olive oil 2 g | 9 weeks | N-3: ↓ in severe diarrhea compared to control and better performance status score | 2019 [26] |
Gastrointestinal (II/III) | 81 35 F/46 M | Age = 56.8 ± 10.6/59.9 ± 8.8 Body weight = 68.4 ± 9.8/68.8 ± 12.0 BMI = 24.3 ± 2.9/25.4 ± 3.6 | Not stated | 0.61 g = 0.11 g EPA/0.50 g DHA | 8 weeks | N-3: Maintained weight compared to control; ↓ CRP compared to baseline; NS decrease in TNFα and IL-6 compared to baseline; in combination with vitamin D ↓ CRP, TNFα and IL-6 compared to baseline | 2019 [27] |
Colorectal | 140 | Body weight = 54.2 ± 11.7/57.4 ± 10.9 BMI = 21.8 ± 4.1/23.0 ± 4.3 | Capecitabine + Oxaliplatin | 1.40 g EPA + DHA | 8 weeks | N-3: ↑ global health status, ↓ fatigue, nausea, pain, ↓ IL-6 compared to baseline and control; NC TNFα or CRP | 2018 [45] |
Colorectal (III and IV) | 11(6/5) 5 F/6 M | Age = 53.6 ± 12.9/55.2 ± 7.7 Body weight = 72.3 ± 12.3/68.1 ± 12.1 BMI = 28.6 ± 6.3/26.4 ± 3.7 | Xeloda, Oxaliplatin, Fluorouracil and/or Leucovorin | 0.60 g = 0.36 g EPA/0.24 g DHA CNT = N/A | 9 weeks | N-3: Improved CRP, CRP/albumin and potentially prevented weight loss | 2013 [32] |
Colorectal and Rectal | 23(11/12) 6 F/17 M | Age = 50.1 ± 8.2/54.3 ± 9.3 Body weight = 73 ± 16.8/66.8 ± 11.6 BMI = 27.3 ± 6.1/25.0 ± 3.4 | Type not specified | 0.60 g = 0.36 g EPA/0.24 g DHA CNT = N/A | 9 weeks | N-3: ↓ CRP/albumin ratio | 2012 [33] |
Colorectal (II–IV) | 30 (17/13) 10 F/20 M | Age = 52.1 ± 7.6/53.1 ± 10.2 | Chemotherapy type not stated | 0.60 g = 0.36 g EPA/0.24 g DHA CNT = N/A | 9 weeks | N-3: ↑ time to progression (20 vs. 11 months); ↓ carcinoembryonic antigen | 2016 [34] |
Leukemia Lymphoma | 22 (9/13) 10 F/12 M | Age = 43.8/53.8 Body weight = 68.1 ± 10.3/72.4 ± 11.6 BMI = 24.6 ± 4.1/25.7 ± 4.0 | Type not specified | 0.61 g = 0.37 g EPA/0.24 g DHA CNT = N/A | 9 weeks | N-3: ↓ CRP/albumin ratio from high to low; ↑ overall long-term survival (at 465 days) compared to control Control: ↓CRP/albumin ratio from high to medium | 2017 [48] |
NSCLC (III or IV) | 46 (31/15) 22 F/24 M | Age = 64 ± 1.7/63 ± 2.1 | Carboplatin and Vinorelbine or Carboplatin and Gemcitabine | 2.4–2.7 g = 2.2 g EPA + 0.24–0.50 g DHA CNT = SOC | 6 weeks | N-3: ↑ chemotherapy response rate, ↑ clinical benefit; ↑ 1-year survival (trend) | 2011 [49] |
Lung (Advanced) | 27 (13/14) 8 F/19 M | Age = 55.6 ± 7.4/60.6 ± 7.4 Body weight = 75.1 ± 16.1/68.0 ± 12.8 BMI = 26.2 ± 7.0/25.2 ± 3.9 | Gemcitabine, Cisplatin | 3.4 g = 2.0 g EPA/1.4 g DHA CNT = olive oil | 66 days | N-3: ↑ in EPA + DHA in plasma, ↑ in EPA in RBC; ↓ IL-6, PGE2 and ↑ Body weight; ↓ inflammatory indexes and oxidative status; Control: ↑ CRP, IL-6, TNF and ROS | 2012 [50] |
NSCLC (Advanced) | 137 (77/60) 61 F/76 M | Age = 63.8 ± 6.4/62.9 ± 7.1 Body weight = 67.2 ± 11.5/70.1 ± 12.3 BMI = 23.5 ± 2.1/23.9 ± 2.4 | Cisplatin, ±TXT, ± Bevacizumab | 0.71 g = 0.5 g EPA/0.20 g DHA CNT = N/A | 6 weeks | N-3 group ↓ CRP, IL-6 and PGE2; NC in QOL or nutritional status | 2018 [51] |
Multiple Myeloma | 18 8 F/11 M | Age = 69 (57–76) | Bortezomib + Thalidomide + Dexamethasone (84 days) or Bortezomib + Melphalan + Prednisone | 2 g = 1.2 g ALA + 0.80 g DHA CNT = N/A | 6 months | N-3: ↓ in onset or worsening of neuropathic pain, ↓ in chemotherapy interruptions | 2018 [56] |
Cancer Type (Stage) | N (Int/CNT) Female/Male | Age, Body Weight and BMI (Int/CNT) | Chemotherapy | N-3 (g EPA + DHA/Day) CNT | Treatment Duration | Experimental Findings | Ref |
---|---|---|---|---|---|---|---|
Breast (I–III) | 37 F (18/19) | Age = 48.6 + 9.0/53.4 + 7.5 BMI = 43% overweight, 30% obese | No chemotherapy-N-3 supplementation prior to treatment | 0.94 g EPA + 0.78 g DHA CNT = 2 g mineral oil | 30 days | N-3: NC CD4+, CD8+, PGE2, IL-6 Control: ↓ CD4+, NC PGE2, IL-6, ↑ hsCRP | 2017 [12] |
Breast (I–III) | 45 | Age = 57.3 (40–81) BMI = 28.9 (19.3–38.3) | Previous chemotherapy (69.9%), previous radiotherapy (87%); currently on aromatase inhibitors 67.3% or Tamoxifen 32.6% | 1.38 g N-3 CNT = N/A | 30 days | N-3: ↓ from baseline at day 30 and day 60 of CRP; 21.5% decrease in pain scale; ↓ in IFNγ at day 30 | 2019 [13] |
Breast, gastrointestinal, lung, liver, pancreas (all metastasized) | 64 (60 completed) 24 F/36 M | Age = 60 ± 5 (F), 57 ± 4 (M)/58 ± 4 (F), 56 ± 3 (M) | Previous surgery n = 38, Previous chemotherapy n = 26, previous radiotherapy n = 6, none = 10 | 3.1 g EPA + 2.1 g DHA CNT = sugar tablets | until death | Both groups: ↑ in survival in well-nourished vs. malnourished N-3: ↑ in survival, ↑ CD4/CD8 | 1998 [14] |
Colorectal (local and advanced) | 30 | Age = 63 ± 2.3 | Surgery | Group 1 (localized): 1.2 g GLA + 1.1 g EPA + 0.16 g DHA Group 2 (advanced): T0–15 1.2 g GLA + 1.1 g EPA + 0.16 g DHA, T16–30: 1.8 g GLA + 1.6 g EPA + 0.24 g DHA; Months 2–6: 2.3 g GLA + 2.1 g EPA + 0.32 g DHA Group 3: CNT (6 months) | Group 1: until surgery Group 2 and 3: 6 months | Group 1: NC in immune parameters; Group 2 = ↓ IL1β 3, 4, 5 and 6 months; ↓ IL-4 at 2, 3, 4, 5 and 6; ↓ IL-6 at 6 months; ↓ TNFα at 2, 4, 5 and 6; ↓ IFNγ by month 4 Group 3: NC | 1994 [35] |
Colorectal (Dukes A–D) All with liver metastases | 88 43 (17 F/26 M)/45 (10 F/35 M) | Age = 71 (35–87)/68 (44–82) | Previous chemotherapy | 2 g EPA CNT = 2 g MCT | 12–65 days | N-3: ↑ EPA in tumor tissue, NC in Ki67, ↑ OS at 18 months (trend) | 2014 [36] |
Advanced lung (III–IV) | 22 (10/12) 5 F/17 M | Age = 64 (44–90)/61 (44–83) Body weight = 60.1 ± 8.2/62.8 ± 9.7 BMI = 24 ± 6.2/25.8 ± 4.4 | N/A | 0.36 g EPA + 0.24 g DHA + celecoxib CNT = 0.36 g EPA + 0.24 g DHA | 6 weeks | N-3 + celecoxib: ↓ CRP; ↑ body weight and hand grip scores improved N-3 alone: ↓ CRP | 2007 [52] |
Pancreatic (II–IV) | 26 14 F/12 M | Age = 56 (39–75) Body weight = 66.8 (56.0–75.1) BMI = 23.2 (21.1–27.4) | N/A | EPA only week 1: 1 g week 2: 2 g week 3: 4 g week 4–12: 6 g CNT = N/A | 12 weeks until death | Body weight stabilized and began to increase by week 4; CRP stabilized or was slightly reduced in patients who had ↑ CRP at beginning; median survival = 6.8 months | 2000 [57] |
Pancreatic | 33 (18/15) 17 F/16 M | Age = 70.3 ± 8.2/71.3 ± 7.5 Body weight = 62.9 ± 6.5/71.4 ± 15.3 BMI = 21.3 ± 1.7/23.7 ± 4.1 | 24 patients received chemotherapy, 2 received radiotherapy (not all curative, most palliative) | Group 1: 0.10 g EPA + 0.20 g DHA; Group 2: 0.13 g EPA + 0.18 g DHA CNT = N/A | 6 weeks | ↑ in HDL in Group 1 | 2017 [58] |
Cancer Type (Stage) | N (Int/CNT) Female/Male | Age Body Weight and BMI (Int/CNT) | Chemotherapy | N-3 (g EPA + DHA/Day) CNT | Treatment Duration | Experimental Findings | Ref |
---|---|---|---|---|---|---|---|
Lung, Head and Neck, Gynecologic, Breast, Prostate, Urinary Tract, Esophagus (I–IV) | 38 20/18 14 F/24 M | Age = 62.7 ± 11.0 Body weight = 70.8 ± 12.6 BMI = 24.8 ± 3.5 | Radiotherapy | 2 × 326 kcal: 2.4 g EPA + 1.2 g DHA + 40 g protein CNT = N/A | 7 days | N-3: ↓ serum PGE2 Control: ↑ serum PGE2 No differences in cytokine production | 2013 [15] |
Stomach, Colon, Lung, Pancreas, Other | 40 | Age = 61.3 ± 12.1/63.6 ± 11.4 BMI = 20.9 ± 3.7/22.2 ± 3.8 | Chemotherapy ± radiation or no treatment | 600 kcal: 1.5 g EPA + 19.5% protein CNT = isocaloric supplement | 1 month | Both groups: ↑ SF36 N-3: ↓ in IFNγ Control: ↑ in IFNγ | 2011 [21] |
Head and Neck (I–IV) | 27 (13/14) 11 F/16 M | Age = 61.5(45–77)/66.1 (47–76) BMI = NS but cachexic | Surgery | 600 kcal: 2.1 g EPA + 32 g protein CNT = N/A | 4 weeks | No differences between groups or from baseline | 2018 [17] |
Head and Neck (I–IV) | 64 29 F/35 M | Age = 60 ± 14/58 ± 14 Body weight = 58.8 ± 1.4/61.1 ± 11.5 BMI = 22.6 ± 4.6/24 ± 4.2 weight loss = ~9 kg in 3 months before entry | Surgery, radiotherapy, chemotherapy, or combination | 600 kcal: 2 g EPA + 40 g protein CNT = isocaloric supplement | 6 weeks | N-3: weight maintenance, ↓CRP, TNFα and IFNγ Control: weight loss (2.0 ± 3.7 lbs), ↓ CRP, ↑ TNFα and IFNγ | 2018 [18] |
Colorectal (IV) | 23 8 F/13 M | Age = 61 ± 11.6 Body weight = 75.9 ± 17.0 BMI = 28 ± 6.4 | Chemotherapy 17 with previous chemotherapy | 600 kcal: 2.2 g EPA + 0.92 g DHA + 32 g protein CNT = N/A | 9 weeks | N-3: ↓ in GM-CSF, ↑ RANTES, CRP (week 3) ↑ in GM-CSF and NC CRP (compared to baseline; week 9), Correlations between baseline IL-10 and survival, IL-6 and survival, IL-6 and CRP | 2007 [41] |
Colorectal (IV) | 13 (5/6) 4 F/9 M | Age = 61.5 ± 15.8/68.2 ± 15.6 Body weight = 69.9 ± 15.9/72.2 ± 11.7 BMI = 25.8 ± 4.3/26 ± 3.3 | Fluorouracil + oxaliplatin + folinic acid or capecitabine | 600 kcal: 2 g EPA + 0.9 g DHA + 32 g protein CNT = N/A | 12 weeks | N-3: ↑ weight, NS improvement in QOL and appetite, NS ↓ in fatigue and pain | 2010 [37] |
Gastric (I–IV) | 68 24 F/44 M | Age = 58 Body weight= 63.5 (58.1–69.8)/66.1 (71.7–75.4) BMI = 24.2 (20.4–26.3)/22.8 (20.1–28.3) | Not stated | 600 kcal: 2 g EPA + 1.2 g DHA + 24 g protein CNT = isocaloric supplement | 30 days | N-3: ↑ weight and ↓ IL-6 compared to control | 2018 [31] |
Gastrointestinal | 42 15 F/27 M | Age = 68.1/66.7 Body weight = 69.1/67.8 | Surgery | 10.5% n-3 of 25% fat + 5.6 g protein in 100 mL (patients received 25 kcal/kg body weight) | 16 days postoperative | N-3: NC in albumin, transferrin, prealbumin, PHA; ↑ stimulated IFN, CD3+, CD3 + HLA-DR, CD4+ and B lymphocytesBoth groups: ↓ T lymphocytes (preoperative to postoperative) | 1995 [38] |
Gastrointestinal (Advanced) | 24 10 F/14 M | Age = 66 ± 9/69 ± 10 Body weight = 56.6(35–101)/61.8(33–80) BMI = 21.6 ± 4.1/21.1 ± 4.8 All had >10% weight loss in past 6 months | Palliative (at least 2 rounds of chemotherapy before study entry) | 4.9 g EPA and 3.2 g DHA± melatonin CNT = isocaloric supplement | 4 weeks | N-3: 38% had weight maintenance, No statistically significant changes in cytokines | 2005 [39] |
Gastrointestinal (II–IV) | 128 38 F/90 M | Age = 72.3 ± 8.4/68.9 ± 10.3 Body weight = NS but 5% weight loss before entry | 44 adjuvant chemotherapy/84 palliative chemotherapy | 600 kcal supplement: 2.2 g EPA + 0.92 g DHA + 32 g protein CNT = N/A | 6 months | N-3: stable CRP Control: ↑ CRP | 2017 [64] |
Lung, Gastrointestinal (I–IV) | 69 28 F/21 M | Age = 63.5 ± 11.8 BMI = not stated but 87% moderate or severe malnutrition | Chemotherapy | 600 kcal: 2.2 g EPA 33 g protein CNT = isocaloric supplement | 4 weeks | N-3: ↓ CRP (NS due to dropouts/death only 18 in N-3 vs. 25 in control for final analysis) | 2014 [40] |
NSCLC (III) | 40 19 F/21 M | Age = 58.4 ± 12.0/57.2 ± 8.1 Body weight = 77.1 ± 14.6/64.7 ± 7.4 BMI = 24.8 ± 4.1/23.0 ± 2.4 | Cisplatin ± docetaxel or± bevacizumab + concurrent radiotherapy | 600 kcal: 2.2 g EPA + 1 g DHA + 32 g protein CNT = isocaloric supplement | 6 weeks | N-3: weight maintenance, NC in CRP, IL-6, TNFp55, albumin and HLA-DR | 2012 [53] |
NSCLC (III–IV) | 84 (44/40) 49 F/43 M | Age = 58.8 ± 14/61.1 ± 12.4 Body weight = 60.4 ± 11/64.7 ± 11; BMI = 24.2 ± 3/25.2 ± 4 weight loss before entry = 8.8 ± 8%/7.4 ± 9% | Paclitaxel and cisplatinum | 300 kcal: 1.1 g EPA + protein CNT = isocaloric supplement | 6 weeks supplement and up to 18 weeks chemotherapy) | N-3: weight maintenance; ↓ CRP, TNFα; ↑ protein intake improved global health status (including fatigue and improved appetite); trend towards progression-free survival Control: weight loss, ↑ neuropathy | 2014 [54] |
Pancreatic, NSCLC | 7 2 F/5 M | Age = 55.1 ± 5.0 = Body weight = 77.5 ± 11.5 (12% weight loss in previous 6 months)BMI = 26.8 ± 5.7 | Gemcitabine ± other | 300 kcal: 1.1 g EPA + 16 g protein CNT = N/A | 8 weeks | N-3: ↑ in protein intake, total energy intake, body weight and QOL | 2004 [55] |
Pancreatic (II–IV) | 36 (18/18) (+ 6 no cancer controls) | Age = 64(56–66)/60(54–70) Body weight = 55.0(46.5–60.5)/58.5(47.8–70.7); pre-study weight loss = 17.9% (15.9–20.7)/11.8% (5.6–23.5) | Palliative | 2 × 610 kcal: 2.2 g EPA + 0.96 g DHA + 32 g protein CNT = N/A | 24 days | Baseline: Cancer patients: ↓ albumin, prealbumin and transferrin; ↑ CRP, fibrinogen, haptoglobin, ceruloplasmin. After intervention: N-3: ↑ albumin, prealbumin, transferrin; ↓ CRP; 1.0 kg weight gain | 1999 [59] |
Pancreatic (II–IV) | 20 10 F/10 M | Age = 62 (51–75) Body weight = 55.2 (48.8–61.2); 17.9% (15.9–22.8) weight loss BMI = 19.8 (17.8–21.8) | Palliative surgical procedures | 2 × 610 kcal: 2.2 g EPA, 0.96 g DHA + 32 g protein CNT = N/A | 3–7 weeks | N-3: weight gain = 1.0 kg at 3 weeks, 2 kg at 7 weeks; ↓ IL-6 in stim PBMCs and ↓ trend IL1β (P = 0.07), NC in TNFα, CRP, unstimulated production of cytokines, or serum concentrations of IL-6, sTNF-RI, sTNF-RII, or sIL-6R and NC leptin; ↑ in fasting insulin | 1999, 2001 [60,61] |
Cancer Type (Stage) | N (Int/CNT) Female/Male | Age Body Weight and BMI (Int/CNT) | Chemotherapy | N-3 (EPA + DHA/Day) CNT | Treatment Duration | Experimental Findings | Ref |
---|---|---|---|---|---|---|---|
Esophageal (O–III) | 27 4 F/23 M | Age = 67 ± 3/64 ± 2 | N/A | 150 mg n-3/100 mL (up to max 1.5 L/day = 2.25 g) + protein CNT = EN | Day 0 and 8 | N-3: NC IL-6 between grps, ↓ in IL-8 (day 1 and 3) and PGF1a (day 5) | 2005 [65] |
Esophageal (O–III) | 53 (28/25) 5 F/28 M | Age = 62 ± 11/65.7 ± 9 Body weight = 73.6 ± 14,/77.2 ± 13 BMI = 24.6 ± 3.4/27.1 ± 4.1 | Combined radiation + chemotherapy: fluorouracil and cisplatin + surgery or surgery alone | Preoperative: 2.2 g EPA enteral feed; Postoperative: 0.45 g EPA + 0.19 g DHA/100 mL ~2.25 g EPA/day and 0.95 g DHA/day oral CNT = EN | 5 + 21 days | Both groups: ↑ CRP, IL-6 after surgery and ↓ after 21 d N-3: ↓ IL-10, IL-8, maintenance of lean body mass compared to control | 2009 [46] |
Esophageal (Palliative) | 58 16 F/42 M | Age = 67 (47–80)/66 (36–81) weight = 76.5 (49–111)/70.6 (43–106) | Capecitabine + oxaliplatin + epirubicin | N-3: 0.086 g/kg 0.04 g EPA/kg/0.046 g DHA/kg | 18 weeks | N-3: ↑ in partial response; ↓ in VEGF, TNFα and IL-2 (immediately following infusions); ↓ in nausea, thromboembolism, leucopenia, neutropenia, | 2019 [47] |
Head and neck and Esophageal (II–IV) | 28 (15/13) 5 F/23 M | Age = 57.7 ± 9.9/3.3 ± 10.4 Body weight = 60.5 ± 11.6/62.5 ± 12.6 BMI = 22.0 ± 3.6/22.3 ± 4.6 All had ~10% weight loss before the study | Combined radiation + chemotherapy: fluorouracil and cisplatin | 3.4 g/L EPA + DHA CNT = EN | Chemotherapy: 5–7 weeks Int: 5 days before end of chemotherapy | N-3: ↑ in CD62 L, CD15 and NK cytotoxicity ↓ in CD4, CD8, CD45RA, CD19+, TCR 𝛼/𝛽, TCR𝛾/𝛿, NK cells ↑ in PHA stimulated TNFα and PGE2 Control: similar to N-3, Genes for immune receptors, cytokines, inflammation markers and transcription factorss were differentially expressed in n-3 vs. control | 2015 [19] |
Gastric | 40 (20/20) 12 F/28 M | Age = 59.0 ± 12.6 | Surgery | Exact n-3 formulation not given + 24% protein CNT = EN | 9 days | N-3: ↑ prealbumin, transferrin, IgA, IgG, IgM, CD4, CD4/CD8 ratio and IL-2; ↓ IL-6 and TNF | 2005 [28] |
Gastric (I–II) | 46 (26/20) 20 F/26 M | Age = 59 (36–74)/50.5 (29–75) Body weight = 65(45–89)/62 (42–88) BMI = 22.5(17.8–29.7)/22.2 (15.7–28.1) | Surgery | N-3: 0.2 g/kg body weight parenteral CNT = PN | 6 days | Both groups: no difference in immunological parameters by flow, VEGF or IGF1, ↑ in CRP and IL1β N-3: ↓ in total protein, albumin, prealbumin, total cholesterol postoperative; Control: ↑ in IL-6 and TNF 𝛼 | 2014 [29] |
Colorectal | 200: 4 groups n = 50 control no supplement, control+ supplement, N-3 before and after surgery and N-3 preoperative only 82 F/118 M | Age = 62.2 ± 10.4/61.8 ± 9.9/60.5 ± 11.5/63.0 ± 8.1 20 Patients with weight loss >10% | Surgery | 3.3 g N-3/L (patients received 25 kcal/kg body weight) + protein CNT = EN | 7 + 7 days (pre + post) | N-3: ↑ phagocytic ability of PMN compared to controls (did not drop postoperative), ↑ IL-6 postoperative, but lower compared to control; ↓ Delayed hypersensitivity and ↓ infection in supplemented groups; NC in IGs | 2002 [42] |
Colorectal and Rectal | 42 16 F/25 M | Age = 55.8 ± 10.1/59.2 ± 10.6 Body weight = 63.5 ± 8.9,/65.4 ± 9.2 BMI = 23.4 ± 2.4/23.9 ± 2.8 | Surgery | N-3: 0.2 g/kg body weight parenteral CNT = EN | 7 days | Both groups ↑ IL-6 on day of surgery N-3: ↑ CD4+ and ↓ IL-6 by day 8; NS ↓ TNF | 2008 [43] |
Colorectal and Rectal (Duke B–C) | 57 24 F/33 M | Age = 69.8 ± 10.5/70.8 ± 6.4 BMI = 22.9 ± 3.1/23.2 ± 3.6 | Surgery | N-3: 0.2 g/kg body weight parenteral CNT = EN | 7 days | Both groups: ↓ CD4 on day 8 vs. day 1 N-3: ↓ CD8 day 1 and day 8; ↓ IL6 at day 8 compared to control | 2012 [44] |
Gastrointestinal | 18 7 F/11 M | Age = 69.8 ± 2.7/65.4 ± 4.2 Body weight = 67.5 ± 4.5/59.6 ± 3.0 25% had moderate to severe protein calorie malnutrition | Surgery | N-3: 3.98 g = 2.74 g EPA, 1.24 g DHA CNT = EN | 7 days | N-3: ↓ in ALT, AST and Alkaline phosphatase, ↓ in PGE2 production in LPS stimulated cells | 1997 [22] |
Gastrointestinal | 50 20 F/30 M | Age = 62.5 ± 11.3/60.9 ± 12.5 11 patients with weight loss >10% | Surgery | N-3: 10.5% of 28% fat in 100 mL (patients received 25 kcal/kg body weight) + protein CNT = EN | 7 + 7 days (pre + post) | N-3: ↑ prealbumin and retinol binding protein and ↓ IL-6, IL-1RII and delayed hypersensitivity at day 8, NC in IGs. | 1999 [23] |
Gastrointestinal | 48 17 F/31 M | Age = 55.2 ± 12.1/52.6 ± 9.8 | Surgery | 146 kj/kg/day: 100 mL = 125 kcal = 0.08 g EPA + 0.03 g DHA + 4 g protein CNT = EN | 7 + 7 days (pre + post) | Both groups: ↑ PGE2 and CRP postoperatively N-3: ↓ PGE2, CRP IL-6 and TNF by day 8, NS ↓ in IL2, ↑ glutamine and arginine; ↓ in CD3+, CD4+ CD8+ and NK cells at day 1 and ↑ compared to baseline and compared to control at day 8 | 2001 [24] |
Gastrointestinal (II–III) | 204 73 F/131 M | Age = 56.3 ± 10.1/58.2 ± 11.0 Body weight = 64.2 ± 10.1/64.7 ± 10.0 BMI = 22.8 ± 2.6/23.1 ± 3.1 | Surgery | N-3: 0.2 g/kg body weight parenteral CNT = PN | 8 days | N-3: ↓ in CD8 and NS ↓ in IL-6 and TNF compared to control at day 8 | 2010 [25] |
Pancreatic (Advanced) | 50 (20 F/30 M) | Age = 68 (40–83) | Gemcitabine | N-3: up to 500 mL (4.3–8.6 g of EPA + DHA) 1/week CNT = N/A | Up to 6 cycles (24 weeks) | N-3: ↑ in perceived QOL; 10% ↑ in global health in 47% of patients | 2015 [62] |
Pancreatic/Bile Duct | 27 (11 F/16 M) | Age = 68.8 ± 4.24 | FOLFIRINOX; gemcitabine + nabpaclitaxel or gemcitabine + TS1; TSI alone; gemcitabine alone or cisplatin + irinotecan | N-3: 2–4 packs (200 kcal/300 mg N-3/pack) = 0.60–1.20 g N3/day CNT = N/A | 8 weeks | N-3: ↑ in skeletal muscle mass compared to baseline; ↑ in NK cells at week 8; trend towards increase body weight | 2018 [63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Newell, M.; Mazurak, V.; Postovit, L.M.; Field, C.J. N-3 Long-Chain Polyunsaturated Fatty Acids, Eicosapentaenoic and Docosahexaenoic Acid, and the Role of Supplementation during Cancer Treatment: A Scoping Review of Current Clinical Evidence. Cancers 2021, 13, 1206. https://doi.org/10.3390/cancers13061206
Newell M, Mazurak V, Postovit LM, Field CJ. N-3 Long-Chain Polyunsaturated Fatty Acids, Eicosapentaenoic and Docosahexaenoic Acid, and the Role of Supplementation during Cancer Treatment: A Scoping Review of Current Clinical Evidence. Cancers. 2021; 13(6):1206. https://doi.org/10.3390/cancers13061206
Chicago/Turabian StyleNewell, Marnie, Vera Mazurak, Lynne M. Postovit, and Catherine J. Field. 2021. "N-3 Long-Chain Polyunsaturated Fatty Acids, Eicosapentaenoic and Docosahexaenoic Acid, and the Role of Supplementation during Cancer Treatment: A Scoping Review of Current Clinical Evidence" Cancers 13, no. 6: 1206. https://doi.org/10.3390/cancers13061206
APA StyleNewell, M., Mazurak, V., Postovit, L. M., & Field, C. J. (2021). N-3 Long-Chain Polyunsaturated Fatty Acids, Eicosapentaenoic and Docosahexaenoic Acid, and the Role of Supplementation during Cancer Treatment: A Scoping Review of Current Clinical Evidence. Cancers, 13(6), 1206. https://doi.org/10.3390/cancers13061206