The Prognostic Value of CD206 in Solid Malignancies: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Development of a Search String
2.2. In-and Exclusion Criteria
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Search Results and Study Characteristics
3.2. Meta-Analysis
3.2.1. Overall Survival
3.2.2. Progression-Free, Disease-Specific, and Disease-Free Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
1 | “mannose receptor”[tiab] OR CD206[tiab] OR “Cluster of Differentiation 206”[tiab] OR MRC1[tiab] |
3.378 | |
2 | MMR[tiab] |
7.766 | |
3 | Measles[tiab] OR mumps[tiab] OR Rubella[tiab] OR “major molecular response”[tiab] OR “mismatch repair”[tiab] OR “mismatched repair”[tiab] OR “maternal mortality rate”[tiab] OR “maternal mortality ratio”[tiab] OR “Mass miniature radiography”[tiab] OR “major molecular response”[tiab] OR “major molecular responses”[tiab] OR “major molecular remission”[tiab] OR “mediastinal mass ratio”[tiab] OR “midline malignant reticulosis”[tiab] OR “mass miniature radiophotography”[tiab] |
48.557 | |
4 | Prognosis[Mesh] OR Prognos *[tiab] OR Survival[mesh] OR surviv *[tiab] OR “Survival Analysis”[Mesh] OR hazard[tiab] OR “disease-free”[tiab] OR “disease free”[tiab] OR progressionfree[tiab] OR “progression free”[tiab] OR Kaplan-meier[tiab] OR “Kaplan meier”[tiab] OR predict *[tiab] OR “Outcome Assessment (Health Care)”[Mesh] OR outcome[tiab] OR efficacy[tiab] OR effective *[tiab]OR “Recurrence”[Mesh] OR recur *[tiab] OR relaps *[tiab] OR recrudesce *[tiab] OR (late[tiab] AND (effect[tiab] OR effects[tiab] OR complication *[tiab] OR onset[tiab])) OR sequela *[tiab] OR “long term”[tiab] OR longterm[tiab] OR following[tiab] OR “follow up”[tiab] OR followup[tiab] OR surviv *[tiab] OR “Survivors”[Mesh] OR mortality[tiab] OR “Longitudinal Studies”[Mesh] OR Time factors[MeSH] OR “treatment outcome”[tiab] OR Complications[tiab] OR Risk factors[MeSH] |
9.622.063 | |
5 | Neoplasms[Mesh] OR tumor *[tiab] OR cancer *[tiab] OR neoplas *[tiab] OR malignanc *[tiab] OR melanoma *[tiab] OR *sarcoma[tiab] OR *carcinoma[tiab] OR *glioma[tiab] |
4.164.738 | |
6 | (#1 OR (#2 NOT #3)) AND #4 AND #5 |
579 |
1 | ‘mannose receptor’:ti,ab,kw OR CD206:ti,ab,kw OR ‘Cluster of Differentiation 206′:ti,ab,kw OR MRC1:ti,ab,kw |
5.832 | |
2 | MMR:ti,ab,kw |
13.557 | |
3 | Measles:ti,ab,kw OR mumps:ti,ab,kw OR Rubella:ti,ab,kw OR ‘major molecular response’:ti,ab,kw OR ‘mismatch repair’:ti,ab,kw OR “mismatched repair”:ti,ab,kw OR “maternal mortality rate”:ti,ab,kw OR “maternal mortality ratio”:ti,ab,kw OR “Mass miniature radiography”:ti,ab,kw OR “Mass miniature radiography”:ti,ab,kw OR “major molecular response”:ti,ab,kw OR “major molecular responses”:ti,ab,kw OR “major molecular remission”:ti,ab,kw OR “mediastinal mass ratio”:ti,ab,kw OR “midline malignant reticulosis”:ti,ab,kw OR “mass miniature radiophotography”:ti,ab,kw |
59.219 | |
4 | Prognosis/exp OR Prognos *:ti,ab,kw OR Survival/exp OR surviv *:ti,ab,kw OR ‘Survival Analysis’/exp OR hazard:ti,ab,kw OR ‘disease-free’:ti,ab,kw OR ‘disease free’:ti,ab,kw OR progressionfree:ti,ab,kw OR ‘progression free’:ti,ab,kw OR Kaplan-meier:ti,ab,kw OR ‘Kaplan meier’:ti,ab,kw OR predict *:ti,ab,kw OR ‘Outcome Assessment (Health Care)’/exp OR outcome:ti,ab,kw OR efficacy:ti,ab,kw OR effective *:ti,ab,kw OR ‘Recurrence’/exp OR recur *:ti,ab,kw OR relaps *:ti,ab,kw OR recrudesce *:ti,ab,kw OR (late:ti,ab,kw AND (effect:ti,ab,kw OR effects:ti,ab,kw OR complication *:ti,ab,kw OR onset:ti,ab,kw)) OR sequela *:ti,ab,kw OR ‘long term’:ti,ab,kw OR longterm:ti,ab,kw OR following:ti,ab,kw OR ‘follow up’:ti,ab,kw OR followup:ti,ab,kw OR surviv *:ti,ab,kw OR ‘Survivors’/exp OR mortality:ti,ab,kw OR ‘Longitudinal Studies’/exp OR ‘Time factors’/exp OR ‘treatment outcome’:ti,ab,kw OR Complications:ti,ab,kw OR ‘Risk factors’/exp |
11.822.881 | |
5 | Neoplasms/exp OR tumor *:ti,ab,kw OR cancer *:ti,ab,kw OR neoplas *:ti,ab,kw OR malignanc *:ti,ab,kw OR melanoma *:ti,ab,kw OR sarcoma:ti,ab,kw OR carcinoma:ti,ab,kw OR glioma:ti,ab,kw |
5.644.376 | |
6 | (#1 OR (#2 NOT #3)) AND #4 AND #5 |
1.819 |
1 | TS = “mannose receptor” OR TS = “CD206” OR TS = “Cluster of Differentiation 206” OR TS = “MRC1” |
4.762 | |
2 | TS = “MMR” |
9.274 | |
3 | TS = ”Measles” OR TS = “mumps” OR TS = “Rubella” OR TS = “major molecular response” OR TS = “mismatch repair” OR TS = “maternal mortality rate” OR TS = “maternal mortality ratio” OR TS = “Mass miniature radiography” OR TS = “Mass miniature radiography” OR TS = “Mass miniature radiography” OR TS = “major molecular response” OR TS = “major molecular responses” OR TS = “major molecular remission” OR TS = “mediastinal mass ratio” OR TS = “midline malignant reticulosis” OR TS = “mass miniature radiophotography” |
50.964 | |
4 | TS = “Prognosis” OR TS = “Prognos *” OR TS = “Survival” OR TS = “surviv *” OR TS = “Survival Analysis” OR TS = “hazard” OR TS = “disease-free” OR TS = “disease free” OR TS = “progressionfree” OR TS = “progression free” OR TS = “Kaplan-meier” OR TS = “Kaplan meier” OR TS = “predict *” OR TS = “Outcome Assessment (Health Care)” OR TS = “outcome” OR TS = “efficacy” OR TS = “effective*” OR TS = “Recurrence” OR TS = “recur *” OR TS = “relaps *” OR TS = “recrudesce *” OR TS = “(late:ti,ab,kw AND (effect” OR TS = “effects” OR TS = “complication *” OR TS = “onset:ti,ab,kw)) OR sequela *” OR TS = “long term” OR TS = “longterm” OR TS = “following” OR TS = “follow up” OR TS = “followup” OR TS = “surviv *” OR TS = “Survivors” OR TS = “mortality” OR TS = “Longitudinal Studies” OR TS = “Time factors” OR TS = “treatment outcome” OR TS = “Complications” OR TS = “Risk factors” |
16.167.705 | |
5 | TS = “Neoplasms” OR TS = “tumor *” OR TS = “cancer *” OR TS = “neoplas *” OR TS = “malignanc *” OR TS = “*melanoma *” OR TS = “* sarcoma” OR TS = “* carcinoma” OR TS = “glioma” |
3.836.044 | |
6 | (#1 OR (#2 NOT #3)) AND #4 AND #5 |
772 |
Cancer Type | Manuscript | Country | Type | HR | HR | CI | # Patients | Analysis Technique | Antibody Clone | Method of Scoring |
---|---|---|---|---|---|---|---|---|---|---|
Breast Cancer | ||||||||||
1 | Koru-Sengul et al. [55] | USA | Breast cancer | OS | 1.44 | 0.99–2.09 | 145 | IHC | NA | Qual. |
PFS | 1.65 | 1.16–2.35 | ||||||||
Colo(rectal) cancer | ||||||||||
2 | Feng et al. [52] | China | Colon cancer | OS † | 3.69 | 2.30–5.91 | 521 | IHC | 5C11 | Quant. |
DFS † | 2.93 | 1.99–4.31 | ||||||||
3 | Ding et al. [36] | China | Colorectal cancer | OS † | 71.24 | 1.38–3685.26 | 73 | IHC | D-1 | Quant. |
4 | Strasser et al. [56] | Austria | Colorectal cancer | OS (multi) | 0.79 | 0.53–1.18 | 29 | IHC | 19.2 | Quant. |
TTR | 1.87 | 1.07–3.29 | ||||||||
Ovarian cancer | ||||||||||
5 | Le Page et al. [40] | Canada | Epithelial ovarian cancer | / | 180 | IHC&IF | 5C11 | Quant. | ||
6 | Zhang et al. [57] | China | High grade serous ovarian cancer | OS † | 1.70 | 1.04–2.78 | 150 | IHC | NA | Qual. |
Esophageal cancer | ||||||||||
7 | Yamamoto et al. [51] | Japan | Esophagal cancer | OS ‡ | 2.9 | 1.30–7.8 | 86 | IHC | D-1 | Quant. |
OS multi ‡ | 3.0 | 1.2–7.3 | ||||||||
Gastric cancer | ||||||||||
8 | Liu et al. [34] | China | Gastric cancer | OS § | 2.27 | 1.38–3.72 | 120 | IHC | polyclonal | Qual. |
OS (multi) § | 1.98 | 1.18–3.34 | ||||||||
DFS § | 2.45 | 1.18–3.30 | ||||||||
DFS (multi) § | 2.58 | 1.54–3.49 | ||||||||
9 | Fu et al. [35] | China | Gastric cancer | OS †,§ | 1.54 | 1.00–2.37 | 36 | IHC | Abcam clone NA | Quant. |
10 | Zhang et al. [39] | China | Gastric cancer | OS | 1.71 | 1.13–2.6 | 180 | IHC | Abcam clone NA | Quant. |
Glioma | ||||||||||
11 | Ding et al. [43] | China | Glioma | OS † | 3.52 | 3.52–3.52 | 50 | IHC | NA | Quant. |
PFS † | 10.47 | 10.47–10.47 | ||||||||
Hepatocellular carcinoma | ||||||||||
12 | Dong et al. [42] | China | Hepatocellular Carcinoma | OS (multi) | 1.58 | 1.05–2.39 | 253 | IHC | Abcam clone NA | Quant. |
TTR (multi) | 1.87 | 1.07–3.29 | ||||||||
13 | Fan et al. [58] | China | Hepatocellular Carcinoma | OS | 1.84 | 1.23–2.75 | 327 | IHC | ab64693 | Qual. |
14 | Ren et al. [59] | China | Hepatocellular Carcinoma | OS (multi) | 1.79 | 1.12–2.88 | 268 | IHC | ab117644 | Quant. |
DFS (multi) | 2.22 | 1.28–3.86 | ||||||||
15 | Shu et al. [60] | China | Hepatocellular Carcinoma | OS | 0.45 | 0.26–0.76 | 80 | IHC | ab64693 | Quant. |
OS (multi) | 1.94 | 1.06–3.55 | ||||||||
16 | Zhu et al. [61] | China | Hepatocellular Carcinoma | OS | 2.37 ¶ | 1.06–5.31 | 90 | IHC | Abcam clone NA | Qual. |
Cholangiocarcinoma | ||||||||||
17 | Sun et al. [41] | China | Intrahepatic cholangiocarcinoma | OS | 1.55 | 1.16–2.07 | 322 | IHC | Abcam clone NA | Quant. |
PFS | 1.42 | 1.05–1.91 | ||||||||
Head and neck cancers | ||||||||||
18 | Ooft et al. [14] | Netherlands | Nasopharyngeal carcinoma | / | NA | NA | 91 | IHC | 1C9 | Quant. |
19 | Haque et al. [62] | Japan | Oral squamous cell carcinoma | DFS | 3.29 † | 1.1–14.1 | 44 | IHC | 5C11 | Quant. |
PFS | 3.28 † | 1.1–14.1 | ||||||||
20 | Weber et al. [15] | Germany | Oral squamous cell carcinoma | / | 34 | IHC | 5C11 | Quant. | ||
Pancreatic cancer | ||||||||||
21 | Di Caro et al. [16] | Italy | PDAC | / | 32 | IHC | 755339 | Quant. | ||
22 | Hu et al. [26] | China | PDAC | OS | 1.861 | 1.16–2.99 | 77 | IHC | NA | Qual. |
OS (multi) | 1.595 | 0.99–2.57 | ||||||||
23 | Mahajan et al. [18] | Germany | PDAC | PFS | 0.64 | 0.47–0.87 | 385 | IHC | 685645 | Quant. |
Penile cancers | ||||||||||
24 | Chu et al. [17] | China | Penile cancer | DSS | 0.349 | 0.19–0.63 | 178 | IHC | Ab64693 | Quant. |
Prostate cancer | ||||||||||
25 | Hu et al. [63] | China | Prostate Ca | OS | 1.18 | 1.09–1.28 | 42 | IF | ab64693 | Quant. |
OS (multi) | 0.84 | 0.68–1.04 | ||||||||
Renal cell carcinoma | ||||||||||
26 | Xu et al. [44] | China | Renal cell carcinoma | DSS | 1.949 | 1.11–3.42 | 185 | IHC | Abcam clone NA | Quant. |
Melanoma | ||||||||||
27 | Enninga et al. [64] | USA | Stage IV Melanoma | OS † | 2.37 | 1.15–4.87 | 180 | IHC | 685645 | Quant. |
Appendix B
References
- Whiteside, T.L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008, 27, 5904–5912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinshaw, D.C.; Shevde, L.A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019, 79, 4557–4567. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.W.; Liu, L.; Gong, C.Y.; Shi, H.S.; Zeng, Y.H.; Wang, X.Z.; Zhao, Y.W.; Wei, Y.Q. Prognostic Significance of Tumor-Associated Macrophages in Solid Tumor: A Meta-Analysis of the Literature. PLoS ONE 2012, 7, e50946. [Google Scholar] [CrossRef] [Green Version]
- de Ruiter, E.J.; Ooft, M.L.; Devriese, L.A.; Willems, S.M. The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: A systematic review and meta-analysis. Oncoimmunology 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Mills, C.D. M1 and M2 Macrophages: Oracles of Health and Disease. Crit. Rev. Immunol. 2012, 32, 463–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jetten, N.; Verbruggen, S.; Gijbels, M.J.; Post, M.J.; De Winther, M.P.J.; Donners, M.M.P.C. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 2014, 17, 109–118. [Google Scholar] [CrossRef]
- Qian, B.Z.; Pollard, J.W. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell 2010, 141, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.B.; Yeh, E.S.; Soloff, A.C. Tumor-associated macrophages: Unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer 2016, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- De Palma, M.; Lewis, C.E. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 2013, 23, 277–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Moons, K.G.; Hooft, L.; Williams, K.; Hayden, J.A.; Damen, J.A.; Riley, R.D. Implementing systematic reviews of prognosis studies in Cochrane. Cochrane Database Syst. Rev. 2018, 10, ED000129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tierney, J.F.; Stewart, L.A.; Ghersi, D.; Burdett, S.; Sydes, M.R. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007, 8, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooft, M.L.; van Ipenburg, J.A.; Sanders, M.E.; Kranendonk, M.; Hofland, I.; de Bree, R.; Koljenović, S.; Willems, S.M. Prognostic role of tumour-associated macrophages and regulatory T cells in EBV-positive and EBV-negative nasopharyngeal carcinoma. J. Clin. Pathol. 2018, 71, 267–274. [Google Scholar] [CrossRef]
- Weber, M.; Iliopoulos, C.; Moebius, P.; Büttner-Herold, M.; Amann, K.; Ries, J.; Preidl, R.; Neukam, F.W.; Wehrhan, F. Prognostic significance of macrophage polarization in early stage oral squamous cell carcinomas. Oral Oncol. 2016, 52, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Di Caro, G.; Cortese, N.; Castino, G.F.; Grizzi, F.; Gavazzi, F.; Ridolfi, C.; Capretti, G.; Mineri, R.; Todoric, J.; Zerbi, A.; et al. Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy. Gut 2016, 65, 1710–1720. [Google Scholar] [CrossRef]
- Chu, C.; Yao, K.; Lu, J.; Zhang, Y.; Chen, K.; Lu, J.; Zhang, C.Z.; Cao, Y. Immunophenotypes based on the tumor immune microenvironment allow for unsupervised penile cancer patient stratification. Cancers 2020, 12, 1796. [Google Scholar] [CrossRef]
- Mahajan, U.M.; Langhoff, E.; Goni, E.; Costello, E.; Greenhalf, W.; Halloran, C.; Ormanns, S.; Kruger, S.; Boeck, S.; Ribback, S.; et al. Immune Cell and Stromal Signature Associated With Progression-Free Survival of Patients with Resected Pancreatic Ductal Adenocarcinoma. Gastroenterology 2018, 155, 1625–1639.e2. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Cao, J.; Ma, S.; Dong, R.; Meng, W.; Ying, M.; Weng, Q.; Chen, Z.; Ma, J.; Fang, Q.; et al. Tumor hypoxia enhances non-small cell lung cancer metastasis by selectively promoting macrophage M2 polarization through the activation of ERK signaling. Oncotarget 2014, 5, 9664–9677. [Google Scholar] [CrossRef] [Green Version]
- Laoui, D.; Van Overmeire, E.; Di Conza, G.; Aldeni, C.; Keirsse, J.; Morias, Y.; Movahedi, K.; Houbracken, I.; Schouppe, E.; Elkrim, Y.; et al. Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Res. 2014, 74, 24–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Overmeire, E.; Laoui, D.; Keirsse, J.; Van Ginderachter, J.A. Hypoxia and tumor-associated macrophages: A deadly alliance in support of tumor progression. Oncoimmunology 2014, 3, e27561. [Google Scholar] [CrossRef] [Green Version]
- Shannon, A.M.; Bouchier-Hayes, D.J.; Condron, C.M.; Toomey, D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat. Rev. 2003, 29, 297–307. [Google Scholar] [CrossRef]
- Roig, E.M.; Yaromina, A.; Houben, R.; Groot, A.J.; Dubois, L.; Vooijs, M. Prognostic role of hypoxia-inducible factor-2α tumor cell expression in cancer patients: A meta-analysis. Front. Oncol. 2018, 8, 224. [Google Scholar] [CrossRef]
- Brizel, D.M.; Sibley, G.S.; Prosnitz, L.R.; Scher, R.L.; Dewhirst, M.W. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int. J. Radiat. Oncol. Biol. Phys. 1997, 38, 285–289. [Google Scholar] [CrossRef]
- Tripathi, C.; Tewari, B.N.; Kanchan, R.K.; Baghel, K.S.; Nautiyal, N.; Shrivastava, R.; Kaur, H.; Bramha Bhatt, M.L.; Bhadauria, S. Macrophages are recruited to hypoxic tumor areas and acquire a Pro-Angiogenic M2-Polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget 2014, 5, 5350–5368. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Tu, W.; Chen, Y.; Zhu, M.; Jin, H.; Huang, T.; Zou, Z.; Xia, Q. The combination of PKM2 overexpression and M2 macrophages infiltration confers a poor prognosis for PDAC patients. J. Cancer 2020, 11, 2022–2031. [Google Scholar] [CrossRef]
- Ivashkiv, L.B. The hypoxia–lactate axis tempers inflammation. Nat. Rev. Immunol. 2020, 20, 85–86. [Google Scholar] [CrossRef] [PubMed]
- Linde, N.; Casanova-Acebes, M.; Sosa, M.S.; Mortha, A.; Rahman, A.; Farias, E.; Harper, K.; Tardio, E.; Reyes Torres, I.; Jones, J.; et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piao, Y.J.; Kim, H.S.; Hwang, E.H.; Woo, J.; Zhang, M.; Moon, W.K. Breast cancer cell-derived exosomes and macrophage polarization are associated with lymph node metastasis. Oncotarget 2018, 9, 7398–7410. [Google Scholar] [CrossRef] [PubMed]
- Ni, C.; Yang, L.; Xu, Q.; Yuan, H.; Wang, W.; Xia, W.; Gong, D.; Zhang, W.; Yu, K. CD68- and CD163-positive tumor infiltrating macrophages in non-metastatic breast cancer: A retrospective study and meta-analysis. J. Cancer 2019, 10, 4463–4472. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Janeiro, A.; Padilla-Ansala, C.; de Andrea, C.E.; Hardisson, D.; Melero, I. Prognostic value of macrophage polarization markers in epithelial neoplasms and melanoma. A systematic review and meta-analysis. Mod. Pathol. 2020, 33, 1458–1465. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.M.; Diel, L.F.; Lamers, M.L. Macrophages and prognosis of oral squamous cell carcinoma: A systematic review. J. Oral Pathol. Med. 2018, 47, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Troiano, G.; Caponio, V.C.A.; Adipietro, I.; Tepedino, M.; Santoro, R.; Laino, L.; Lo Russo, L.; Cirillo, N.; Lo Muzio, L. Prognostic significance of CD68+ and CD163+ tumor associated macrophages in head and neck squamous cell carcinoma: A systematic review and meta-analysis. Oral Oncol. 2019, 93, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.R.; Guan, Q.L.; Gao, M.T.; Jiang, L.; Kang, H.X. Mannose receptor as a potential biomarker for gastric cancer: A pilot study. Int. J. Biol. Markers 2017, 32, e278–e283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.L.; Duan, W.; Su, C.Y.; Mao, F.Y.; Lv, Y.P.; Teng, Y.S.; Yu, P.W.; Zhuang, Y.; Zhao, Y.L. Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression. Cancer Immunol. Immunother. 2017, 66, 1597–1608. [Google Scholar] [CrossRef]
- Ding, D.; Yao, Y.; Yang, C.; Zhang, S. Identification of mannose receptor and CD163 as novel biomarkers for colorectal cancer. Cancer Biomark. 2018, 21, 689–700. [Google Scholar] [CrossRef]
- Mei, J.; Xiao, Z.; Guo, C.; Pu, Q.; Ma, L.; Liu, C.; Lin, F.; Liao, H.; You, Z.; Liu, L. Prognostic impact of tumor-associated macrophage infiltration in non-small cell lung cancer: A systemic review and meta-analysis. Oncotarget 2016, 7, 34217–34228. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xie, Y.; Wang, X.; Li, F.; Li, S.; Li, M.; Peng, H.; Yang, L.; Liu, C.; Pang, L.; et al. Prognostic impact of tumor-associated macrophage infiltration in esophageal cancer: A meta-analysis. Futur. Oncol. 2019, 15, 2303–2317. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Shen, Z.; Xu, J.; Qin, J.; Sun, Y. Infiltration of diametrically polarized macrophages predicts overall survival of patients with gastric cancer after surgical resection. Gastric Cancer 2015, 18, 740–750. [Google Scholar] [CrossRef]
- Le Page, C.; Marineau, A.; Bonza, P.K.; Rahimi, K.; Cyr, L.; Labouba, I.; Madore, J.; Delvoye, N.; Mes-Masson, A.M.; Provencher, D.M.; et al. BTN3A2 expression in epithelial ovarian cancer is associated with higher tumor infiltrating T cells and a better prognosis. PLoS ONE 2012, 7, e38541. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Luo, T.; Dong, P.; Zhang, N.; Chen, J.; Zhang, S.; Liu, L.; Dong, L.; Zhang, S. CD86 + /CD206 + tumor-associated macrophages predict prognosis of patients with intrahepatic cholangiocarcinoma. PeerJ 2020, 8, e8458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, P.; Ma, L.; Liu, L.; Zhao, G.; Zhang, S.; Dong, L.; Xue, R.; Chen, S. CD86+/CD206+, diametrically polarized tumor-associated macrophages, predict hepatocellular carcinoma patient prognosis. Int. J. Mol. Sci. 2016, 17, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, P.; Wang, W.; Wang, J.; Yang, Z.; Xue, L. Expression of Tumor-Associated Macrophage in Progression of Human Glioma. Cell Biochem. Biophys. 2014, 70, 1625–1631. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, Y.; Chen, L.; An, H.; Zhang, W.; Wang, G.; Lin, Z.; Xu, J. Prognostic value of diametrically polarized tumor-associated macrophages in renal cell carcinoma. Ann. Surg. Oncol. 2014, 21, 3142–3150. [Google Scholar] [CrossRef] [PubMed]
- Edin, S.; Wikberg, M.L.; Dahlin, A.M.; Rutegård, J.; Öberg, Å.; Oldenborg, P.A.; Palmqvist, R. The Distribution of Macrophages with a M1 or M2 Phenotype in Relation to Prognosis and the Molecular Characteristics of Colorectal Cancer. PLoS ONE 2012, 7, e47045. [Google Scholar] [CrossRef] [Green Version]
- Jackute, J.; Zemaitis, M.; Pranys, D.; Sitkauskiene, B.; Miliauskas, S.; Vaitkiene, S.; Sakalauskas, R. Distribution of M1 and M2 macrophages in tumor islets and stroma in relation to prognosis of non-small cell lung cancer. BMC Immunol. 2018, 19, s12865-s018. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Zhang, J.; Li, D.; Mao, Y.; Mo, F.; Du, W.; Ma, X. Prognostic significance of tumor-associated macrophages in ovarian cancer: A meta-analysis. Gynecol. Oncol. 2017, 147, 181–187. [Google Scholar] [CrossRef]
- Kim, K.J.; Wen, X.Y.; Yang, H.K.; Kim, W.H.; Kang, G.H. Prognostic implication of M2 macrophages are determined by the proportional balance of tumor associated macrophages and tumor infiltrating lymphocytes in microsatellite-unstable gastric carcinoma. PLoS ONE 2015, 10, e0144192. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Xu, Y.; Wu, Y.; Huang, X.Y.; Xie, J.W.; Wang, J.B.; Lin, J.X.; Li, P.; Zheng, C.H.; Huang, A.M.; et al. Tumor-infiltrating CD8+ T cells combined with tumor-associated CD68+ macrophages predict postoperative prognosis and adjuvant chemotherapy benefit in resected gastric cancer. BMC Cancer 2019, 19. [Google Scholar] [CrossRef]
- Soto-Pantoja, D.R.; Wilson, A.S.; Clear, K.Y.J.; Westwood, B.; Triozzi, P.L.; Cook, K.L. Unfolded protein response signaling impacts macrophage polarity to modulate breast cancer cell clearance and melanoma immune checkpoint therapy responsiveness. Oncotarget 2017, 8, 80545–80559. [Google Scholar] [CrossRef]
- Yamamoto, K.; Makino, T.; Sato, E.; Noma, T.; Urakawa, S.; Takeoka, T.; Yamashita, K.; Saito, T.; Tanaka, K.; Takahashi, T.; et al. Tumor-infiltrating M2 macrophage in pretreatment biopsy sample predicts response to chemotherapy and survival in esophageal cancer. Cancer Sci. 2020, 111, 1103–1112. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Chang, W.; Mao, Y.; He, G.; Zheng, P.; Tang, W.; Wei, Y.; Ren, L.; Zhu, D.; Ji, M.; et al. Tumor-associated Macrophages as Prognostic and Predictive Biomarkers for Postoperative Adjuvant Chemotherapy in Patients with Stage II Colon Cancer. Clin. Cancer Res. 2019, 25, 3896–3907. [Google Scholar] [CrossRef] [Green Version]
- Shima, T.; Shimoda, M.; Shigenobu, T.; Ohtsuka, T.; Nishimura, T.; Emoto, K.; Hayashi, Y.; Iwasaki, T.; Abe, T.; Asamura, H.; et al. Infiltration of tumor-associated macrophages is involved in tumor programmed death-ligand 1 expression in early lung adenocarcinoma. Cancer Sci. 2020, 111, 727–738. [Google Scholar] [CrossRef]
- Larionova, I.; Cherdyntseva, N.; Liu, T.; Patysheva, M.; Rakina, M.; Kzhyshkowska, J. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology 2019, 8, e1596004. [Google Scholar] [CrossRef] [Green Version]
- Koru-Sengul, T.; Santander, A.M.; Miao, F.; Sanchez, L.G.; Jorda, M.; Glück, S.; Ince, T.A.; Nadji, M.; Chen, Z.; Penichet, M.L.; et al. Breast cancers from black women exhibit higher numbers of immunosuppressive macrophages with proliferative activity and of crown-like structures associated with lower survival compared to non-black Latinas and Caucasians. Breast Cancer Res. Treat. 2016, 158, 113–126. [Google Scholar] [CrossRef]
- Strasser, K.; Birnleitner, H.; Beer, A.; Pils, D.; Gerner, M.C.; Schmetterer, K.G.; Bachleitner-Hofmann, T.; Stift, A.; Bergmann, M.; Oehler, R. Immunological differences between colorectal cancer and normal mucosa uncover a prognostically relevant immune cell profile. Oncoimmunology 2019, 8, e1537693. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, Y.; Miao, C.; Wang, Y.; Xu, Y.; Dong, R.; Zhang, Z.; Griffin, B.B.; Yuan, C.; Yan, S.; et al. Anti-angiogenesis effect of Neferine via regulating autophagy and polarization of tumor-associated macrophages in high-grade serous ovarian carcinoma. Cancer Lett. 2018, 432, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Yang, X.; Huang, F.; Tong, X.; Zhu, L.; Wang, S. Identification of CD206 as a potential biomarker of cancer stem-like cells and therapeutic agent in liver cancer. Oncol. Lett. 2019, 18, 3218–3226. [Google Scholar] [CrossRef]
- Ren, C.X.; Leng, R.X.; Fan, Y.G.; Pan, H.F.; Li, B.Z.; Wu, C.H.; Wu, Q.; Wang, N.N.; Xiong, Q.R.; Geng, X.P.; et al. Intratumoral and peritumoral expression of CD68 and CD206 in hepatocellular carcinoma and their prognostic value. Oncol. Rep. 2017, 38, 886–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, Q.H.; Ge, Y.S.; Ma, H.X.; Gao, X.Q.; Pan, J.J.; Liu, D.; Xu, G.L.; Ma, J.L.; Jia, W.D. Prognostic value of polarized macrophages in patients with hepatocellular carcinoma after curative resection. J. Cell. Mol. Med. 2016, 20, 1024–1035. [Google Scholar] [CrossRef]
- Zhu, F.; Li, X.; Jiang, Y.; Zhu, H.; Zhang, H.; Zhang, C.; Zhao, Y.; Luo, F. GdCl3 suppresses the malignant potential of hepatocellular carcinoma by inhibiting the expression of CD206 in tumor-associated macrophages. Oncol. Rep. 2015, 34, 2643–2655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, A.S.M.R.; Moriyama, M.; Kubota, K.; Ishiguro, N.; Sakamoto, M.; Chinju, A.; Mochizuki, K.; Sakamoto, T.; Kaneko, N.; Munemura, R.; et al. CD206+ tumor-associated macrophages promote proliferation and invasion in oral squamous cell carcinoma via EGF production. Sci. Rep. 2019, 9, 14611. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Qian, Y.; Yu, F.; Liu, W.; Wu, Y.; Fang, X.; Hao, W. Alternatively activated macrophages are associated with metastasis and poor prognosis in prostate adenocarcinoma. Oncol. Lett. 2015, 10, 1390–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enninga, E.A.L.; Chatzopoulos, K.; Butterfield, J.T.; Sutor, S.L.; Leontovich, A.A.; Nevala, W.K.; Flotte, T.J.; Markovic, S.N. CD206-positive myeloid cells bind galectin-9 and promote a tumor-supportive microenvironment. J. Pathol. 2018, 245, 468–477. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debacker, J.M.; Gondry, O.; Lahoutte, T.; Keyaerts, M.; Huvenne, W. The Prognostic Value of CD206 in Solid Malignancies: A Systematic Review and Meta-Analysis. Cancers 2021, 13, 3422. https://doi.org/10.3390/cancers13143422
Debacker JM, Gondry O, Lahoutte T, Keyaerts M, Huvenne W. The Prognostic Value of CD206 in Solid Malignancies: A Systematic Review and Meta-Analysis. Cancers. 2021; 13(14):3422. https://doi.org/10.3390/cancers13143422
Chicago/Turabian StyleDebacker, Jens M., Odrade Gondry, Tony Lahoutte, Marleen Keyaerts, and Wouter Huvenne. 2021. "The Prognostic Value of CD206 in Solid Malignancies: A Systematic Review and Meta-Analysis" Cancers 13, no. 14: 3422. https://doi.org/10.3390/cancers13143422
APA StyleDebacker, J. M., Gondry, O., Lahoutte, T., Keyaerts, M., & Huvenne, W. (2021). The Prognostic Value of CD206 in Solid Malignancies: A Systematic Review and Meta-Analysis. Cancers, 13(14), 3422. https://doi.org/10.3390/cancers13143422