A Novel Automated Immunoassay Platform to Evaluate the Association of Adiponectin and Leptin Levels with Breast Cancer Risk
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant Selection
2.2. Sample Collection and Storage
2.3. ELISA
2.4. ELLA
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Subjects
3.2. Assay Precision of ELISA and ELLA Methods
3.3. Methods Comparison ELISA vs. ELLA
3.3.1. Adiponectin
3.3.2. Leptin
3.4. Association with Clinical Data by Method (ELISA vs. ELLA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2015 Obesity Collaborators. Health Effects of Overweight and Obesity in 195 Countries Over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef]
- Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The Incidence of Co-Morbidities Related to Obesity and Overweight: A Systematic Review and Meta-Analysis. BMC Public Health 2009, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Nyberg, S.T.; Batty, G.D.; Pentti, J.; Virtanen, M.; Alfredsson, L.; Fransson, E.I.; Goldberg, M.; Heikkilä, K.; Jokela, M.; Knutsson, A. Obesity and Loss of Disease-Free Years Owing to Major Non-Communicable Diseases: A Multicohort Study. Lancet Public Health 2018, 3, e490–e497. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional Cloning of the Mouse Obese Gene and its Human Homologue. Nature 1994, 372, 425–432. [Google Scholar] [CrossRef]
- Kershaw, E.E.; Flier, J.S. Adipose Tissue as an Endocrine Organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef]
- Stern, J.H.; Rutkowski, J.M.; Scherer, P.E. Adiponectin, Leptin, and Fatty Acids in the Maintenance of Metabolic Homeostasis through Adipose Tissue Crosstalk. Cell Metab. 2016, 23, 770–784. [Google Scholar] [CrossRef] [Green Version]
- Nimptsch, K.; Konigorski, S.; Pischon, T. Diagnosis of Obesity and use of Obesity Biomarkers in Science and Clinical Medicine. Metab. Clin. Exp. 2019, 92, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Guerrieri-Gonzaga, A.; Macis, D.; Gandini, S.; Aristarco, V.; Johansson, H.; Bollani, G.; Roth, T.; Sandri, M.; Knox, J.; Cuzick, J. Low Serum Adiponectin Level is an Independent Risk Factor of DCIS in Postmenopausal Women at Increased Risk of Breast Cancer. Cancer Res. 2015, 75 (Suppl. 9), P4-11-16. [Google Scholar]
- Macis, D.; Gandini, S.; Guerrieri-Gonzaga, A.; Johansson, H.; Magni, P.; Ruscica, M.; Lazzeroni, M.; Serrano, D.; Cazzaniga, M.; Mora, S.; et al. Prognostic Effect of Circulating Adiponectin in a Randomized 2 × 2 Trial of Low-Dose Tamoxifen and Fenretinide in Premenopausal Women at Risk for Breast Cancer. J. Clin. Oncol. 2012, 30, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macis, D.; Guerrieri-Gonzaga, A.; Gandini, S. Circulating Adiponectin and Breast Cancer Risk: A Systematic Review and Meta-Analysis. Int. J. Epidemiol. 2014, 43, 1226–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydin, S. A Short History, Principles, and Types of ELISA, and our Laboratory Experience with Peptide/Protein Analyses using ELISA. Peptides 2015, 72, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Cuzick, J.; Sestak, I.; Forbes, J.F.; Dowsett, M.; Knox, J.; Cawthorn, S.; Saunders, C.; Roche, N.; Mansel, R.E.; Von Minckwitz, G. Anastrozole for Prevention of Breast Cancer in High-Risk Postmenopausal Women (IBIS-II): An International, Double-Blind, Randomised Placebo-Controlled Trial. Lancet 2014, 383, 1041–1048. [Google Scholar] [CrossRef]
- Forbes, J.F.; Sestak, I.; Howell, A.; Bonanni, B.; Bundred, N.; Levy, C.; Von Minckwitz, G.; Eiermann, W.; Neven, P.; Stierer, M. Anastrozole Versus Tamoxifen for the Prevention of Locoregional and Contralateral Breast Cancer in Postmenopausal Women with Locally Excised Ductal Carcinoma in Situ (IBIS-II DCIS): A Double-Blind, Randomised Controlled Trial. Lancet 2016, 387, 866–873. [Google Scholar] [CrossRef] [Green Version]
- Sestak, I.; Smith, S.; Howell, A.; Forbes, J.; Cuzick, J. Early Participant-Reported Symptoms as Predictors of Adherence to Anastrozole in the International Breast Cancer Intervention Studies II. Ann. Oncol. 2018, 29, 504–509. [Google Scholar] [CrossRef]
- Cao, J.; Seegmiller, J.; Hanson, N.Q.; Zaun, C.; Li, D. A Microfluidic Multiplex Proteomic Immunoassay Device for Translational Research. Clin. Proteom. 2015, 12, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Aldo, P.; Marusov, G.; Svancara, D.; David, J.; Mor, G. Simple Plex™: A Novel Multi-analyte, Automated Microfluidic Immunoassay Platform for the Detection of Human and Mouse Cytokines and Chemokines. Am. J. Reprod. Immunol. 2016, 75, 678–693. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman Analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Ludbrook, J. Comparing Methods of Measurement. Clin. Exp. Pharmacol. Physiol. 1997, 24, 198–203. [Google Scholar] [CrossRef]
- Passing, H.; Bablok, W. A New Biometrical Procedure for Testing the Equality of Measurements from Two Different Analytical Methods. Application of Linear Regression Procedures for Method Comparison Studies in Clinical Chemistry, Part I. J. Clin. Chem. Clin. Biochem. 1983, 21, 709–720. [Google Scholar] [CrossRef]
- Linnet, K. Performance of Deming Regression Analysis in Case of Misspecified Analytical Error Ratio in Method Comparison Studies. Clin. Chem. 1998, 44, 1024–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilic-Zulle, L. Comparison of Methods: Passing and Bablok Regression. Biochem. Medica 2011, 21, 49–52. [Google Scholar] [CrossRef]
- Linnet, K. Evaluation of Regression Procedures for Methods Comparison Studies. Clin. Chem. 1993, 39, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Valentin, M.; Ma, S.; Zhao, A.; Legay, F.; Avrameas, A. Validation of Immunoassay for Protein Biomarkers: Bioanalytical Study Plan Implementation to Support Pre-Clinical and Clinical Studies. J. Pharm. Biomed. Anal. 2011, 55, 869–877. [Google Scholar] [CrossRef]
- Suominen, P. Evaluation of an Enzyme Immunometric Assay to Measure Serum Adiponectin Concentrations. Clin. Chem. 2004, 50, 219–221. [Google Scholar] [CrossRef]
- Bluher, M.; Brennan, A.M.; Kelesidis, T.; Kratzsch, J.; Fasshauer, M.; Kralisch, S.; Williams, C.J.; Mantzoros, C.S. Total and High-Molecular Weight Adiponectin in Relation to Metabolic Variables at Baseline and in Response to an Exercise Treatment Program: Comparative Evaluation of Three Assays. Diabetes Care 2007, 30, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Martos-Moreno, G.Á.; Burgos-Ramos, E.; Canelles, S.; Argente, J.; Barrios, V. Evaluation of a Multiplex Assay for Adipokine Concentrations in Obese Children. Clin. Chem. Lab. Med. (CCLM) 2010, 48, 1439–1446. [Google Scholar] [CrossRef]
- Risch, L.; Hoefle, G.; Saely, C.; Berchthold, S.; Weber, M.; Gouya, G.; Rein, P.; Langer, P.; Marte, T.; Aczel, S. Evaluation of Two Fully Automated Novel Enzyme-Linked Immunosorbent Assays for the Determination of Human Adiponectin in Serum. Clin. Chim. Acta 2006, 373, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Treviño-Garza, C.; Mancillas-Adame, L.; Estrada-Zúñiga, C.M.; Villarreal-Pérez, J.Z.; Villarreal-Martinez, L.; De la O-Cavazos, M.E. Measurement of Leptin by RIA Versus MIA in a Population of Healthy Newborns. J. Clin. Lab. Anal. 2016, 30, 254–257. [Google Scholar] [CrossRef] [PubMed]
- van Andel, M.; Drent, M.L.; van Herwaarden, A.E.; Ackermans, M.T.; Heijboer, A.C. A Method Comparison of Total and HMW Adiponectin: HMW/Total Adiponectin Ratio Varies Versus Total Adiponectin, Independent of Clinical Condition. Clin. Chim. Acta 2017, 465, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.Y.; Xydakis, A.M.; Hoogeveen, R.C.; Jones, P.H.; Smith, E.O.; Nelson, K.W.; Ballantyne, C.M. Multiplexed Analysis of Biomarkers Related to Obesity and the Metabolic Syndrome in Human Plasma, using the Luminex-100 System. Clin. Chem. 2005, 51, 1102–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loo, B.; Marniemi, J.; Jula, A. Evaluation of Multiplex Immunoassays, used for Determination of Adiponectin, Resistin, Leptin, and Ghrelin from Human Blood Samples, in Comparison to ELISA Assays. Scand. J. Clin. Lab. Investig. 2011, 71, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Fellahi, S.; Beraud, L.; Marlin, G.; Vigouroux, C.; Warszawski, J.; Capeau, J.; Bastard, J.P. Comparison of Two Techniques of Adiponectin Assay, ELISA and Immunoturbidimetry: Should we Move Towards Standardization? Diabetes Metab. 2017, 43, 395–397. [Google Scholar] [CrossRef]
- Gu, L.; Cao, C.; Fu, J.; Li, Q.; Li, D.; Chen, M. Serum Adiponectin in Breast Cancer: A Meta-Analysis. Medicine 2018, 97. [Google Scholar] [CrossRef]
- Gui, Y.; Pan, Q.; Chen, X.; Xu, S.; Luo, X.; Chen, L. The Association between Obesity Related Adipokines and Risk of Breast Cancer: A Meta-Analysis. Oncotarget 2017, 8, 75389–75399. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.S.; Kwon, A.R.; Lee, Y.K.; Oh, S.W. Circulating Adipokines and Risk of Obesity Related Cancers: A Systematic Review and Meta-Analysis. Obes. Res. Clin. Pract. 2019, 13, 329–339. [Google Scholar] [CrossRef]
- Yu, Z.; Tang, S.; Ma, H.; Duan, H.; Zeng, Y. Association of Serum Adiponectin with Breast Cancer: A Meta-Analysis of 27 Case-Control Studies. Medicine (Baltimore) 2019, 98, e14359. [Google Scholar] [CrossRef]
- Befort, C.A.; Kimler, B.F.; Bantis, L.E.; Phillips, T.A.; Fabian, C.J. Effects of Weight Loss and Weight Regain on Circulating Biomarkers in Overweight/Obese Breast Cancer Survivors Enrolled in a Weight Loss Trial in the Rural Midwest. Cancer Epidemiol. Biomarkers Prev. 2020, 29, 1321–1328. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Wang, C.D.; Cao, C.; Cai, L.R.; Li, D.H.; Zheng, Y.Z. Association of Serum Leptin with Breast Cancer: A Meta-Analysis. Medicine (Baltimore) 2019, 98, e14094. [Google Scholar] [CrossRef]
- Niu, J.; Jiang, L.; Guo, W.; Shao, L.; Liu, Y.; Wang, L. The Association between Leptin Level and Breast Cancer: A Meta-Analysis. PLoS ONE 2013, 8, e67349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, H.; Deng, L.; Cui, J.; Shi, L.; Yang, Y.; Luo, J.; Qin, D.; Wang, L. Association between Serum Leptin Levels and Breast Cancer Risk: An Updated Systematic Review and Meta-Analysis. Medicine 2018, 97, e11345. [Google Scholar] [CrossRef] [PubMed]
Subjects Randomized in the Prevention IBIS-II Trial | Subjects Randomized in the DCIS IBIS-II Trial | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | n | Median | Lower Quartile | Upper Quartile | n | Median | Lower Quartile | Upper Quartile | p-Value 1 |
Adiponectin ELISA | 63 | 11.7 | 8.6 | 16.9 | 53 | 10.6 | 6.4 | 18.0 | 0.391 |
Adiponectin ELLA | 63 | 10.1 | 8.6 | 12.6 | 53 | 9.6 | 6.8 | 14.7 | 0.719 |
Leptin ELISA | 53 | 21.2 | 13.5 | 30.2 | 51 | 17.4 | 9.1 | 36.1 | 0.314 |
Leptin ELLA | 53 | 31.4 | 21.8 | 43.0 | 51 | 26.4 | 14.3 | 50.0 | 0.227 |
BMI | 69 | 25.7 | 23.6 | 29.1 | 61 | 24.5 | 22.3 | 27.3 | 0.034 |
Age | 69 | 59 | 55 | 64 | 62 | 59 | 53 | 63 | 0.829 |
Adiponectin | Leptin | |||
---|---|---|---|---|
ELLA | ELISA | ELLA | ELISA | |
Median (IQR 1) | 9.96 µg/mL (7.39; 12.76) | 11.28 µg/mL (7.73; 17.54) | 28.59 ng/mL (17.48; 47.67) | 19.66 ng/mL (12.28; 32.95) |
Min; Max | 2.23; 33.50 µg/mL | 1.48; 64.88 µg/mL | 2.17; 145.56 ng/mL | 1.71; 95.49 ng/mL |
Intra-assay CV 2 % | 3.40 | 4.72 | 1.92 | 1.94 |
QCs 3 Intra-assay CV% | 4.26 | 3.05 | 2.38 | 1.63 |
Pool Intra-assay CV% | 3.16 | 5.29 | 2.02 | 3.39 |
QCs Inter-assay CV% | 4.98 | 9.65 | 6.77 | 16.63 |
Pool Inter-assay CV% | 6.62 | 5.7 | 5.35 | 6.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macis, D.; Aristarco, V.; Johansson, H.; Guerrieri-Gonzaga, A.; Raimondi, S.; Lazzeroni, M.; Sestak, I.; Cuzick, J.; DeCensi, A.; Bonanni, B.; et al. A Novel Automated Immunoassay Platform to Evaluate the Association of Adiponectin and Leptin Levels with Breast Cancer Risk. Cancers 2021, 13, 3303. https://doi.org/10.3390/cancers13133303
Macis D, Aristarco V, Johansson H, Guerrieri-Gonzaga A, Raimondi S, Lazzeroni M, Sestak I, Cuzick J, DeCensi A, Bonanni B, et al. A Novel Automated Immunoassay Platform to Evaluate the Association of Adiponectin and Leptin Levels with Breast Cancer Risk. Cancers. 2021; 13(13):3303. https://doi.org/10.3390/cancers13133303
Chicago/Turabian StyleMacis, Debora, Valentina Aristarco, Harriet Johansson, Aliana Guerrieri-Gonzaga, Sara Raimondi, Matteo Lazzeroni, Ivana Sestak, Jack Cuzick, Andrea DeCensi, Bernardo Bonanni, and et al. 2021. "A Novel Automated Immunoassay Platform to Evaluate the Association of Adiponectin and Leptin Levels with Breast Cancer Risk" Cancers 13, no. 13: 3303. https://doi.org/10.3390/cancers13133303
APA StyleMacis, D., Aristarco, V., Johansson, H., Guerrieri-Gonzaga, A., Raimondi, S., Lazzeroni, M., Sestak, I., Cuzick, J., DeCensi, A., Bonanni, B., & Gandini, S. (2021). A Novel Automated Immunoassay Platform to Evaluate the Association of Adiponectin and Leptin Levels with Breast Cancer Risk. Cancers, 13(13), 3303. https://doi.org/10.3390/cancers13133303