Proteomic Profiling of Tissue Exosomes Indicates Continuous Release of Malignant Exosomes in Urinary Bladder Cancer Patients, Even with Pathologically Undetectable Tumour
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Exosome Isolation from Tissue Explants
2.3. Flow Cytometry
2.4. Nanoparticle Tracking Analysis
2.5. Electron Microscopy
2.6. Proteomics
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chamie, K.; Litwin, M.S.; Bassett, J.C.; Daskivich, T.J.; Lai, J.; Hanley, J.M.; Konety, B.R.; Saigal, C.S.; The Urologic Diseases in America Project. Recurrence of high-risk bladder cancer: A population-based analysis. Cancer 2013, 119, 3219–3227. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sonpavde, G.; Khan, M.M.; Svatek, R.S.; Lee, R.; Novara, G.; Tilki, D.; Lerner, S.P.; Amiel, G.E.; Skinner, E.; Karakiewicz, P.I.; et al. Prognostic risk stratification of pathological stage T2N0 bladder cancer after radical cystectomy. BJU Int. 2011, 108, 687–692. [Google Scholar] [CrossRef]
- Rosenblatt, R.; Sherif, A.; Rintala, E.; Wahlqvist, R.; Ullen, A.; Nilsson, S.; Malmstrom, P.U.; The Nordic Urothelial Cancer Group. Pathologic downstaging is a surrogate marker for efficacy and increased survival following neoadjuvant chemotherapy and radical cystectomy for muscle-invasive urothelial bladder cancer. Eur. Urol. 2012, 61, 1229–1238. [Google Scholar] [CrossRef]
- Valadi, H.; Ekstrom, K.; Bossios, A.; Sjostrand, M.; Lee, J.J.; Lotvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef][Green Version]
- Admyre, C.; Johansson, S.M.; Qazi, K.R.; Filen, J.-J.; Lahesmaa, R.; Norman, M.; Neve, E.P.A.; Scheynius, A.; Gabrielsson, S. Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 2007, 179, 1969–1978. [Google Scholar] [CrossRef]
- Caby, M.P.; Lankar, D.; Vincendeau-Scherrer, C.; Raposo, G.; Bonnerot, C. Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 2005, 17, 879–887. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lasser, C.; Alikhani, V.S.; Ekstrom, K.; Eldh, M.; Paredes, P.T.; Bossios, A.; Sjostrand, M.; Gabrielsson, S.; Lotvall, J.; Valadi, H. Human saliva, plasma and breast milk exosomes contain RNA: Uptake by macrophages. J. Transl. Med. 2011, 9, 9. [Google Scholar] [CrossRef][Green Version]
- Pisitkun, T.; Shen, R.F.; Knepper, M.A. Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad. Sci. USA 2004, 101, 13368–13373. [Google Scholar] [CrossRef][Green Version]
- Yoon, Y.J.; Kim, D.-K.; Yoon, C.M.; Park, J.; Kim, Y.-K.; Roh, T.-Y.; Gho, Y.S. Egr-1 activation by cancer-derived extracellular vesicles promotes endothelial cell migration via ERK1/2 and JNK signaling pathways. PLoS ONE 2014, 9, e115170. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015, 527, 329–335. [Google Scholar] [CrossRef][Green Version]
- Wu, C.H.; Silvers, C.R.; Messing, E.M.; Lee, Y.F. Bladder cancer extracellular vesicles drive tumorigenesis by inducing the unfolded protein response in endoplasmic reticulum of nonmalignant cells. J. Biol. Chem. 2019, 294, 3207–3218. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kim, J.W.; Wieckowski, E.; Taylor, D.D.; Reichert, T.E.; Watkins, S.; Whiteside, T.L. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin. Cancer Res. 2005, 11, 1010–1020. [Google Scholar] [PubMed]
- Wada, J.; Onishi, H.; Suzuki, H.; Yamasaki, A.; Nagai, S.; Morisaki, T.; Katano, M. Surface-bound TGF-beta1 on effusion-derived exosomes participates in maintenance of number and suppressive function of regulatory T-cells in malignant effusions. Anticancer Res. 2010, 30, 3747–3757. [Google Scholar] [PubMed]
- Beckham, C.J.; Olsen, J.; Yin, P.-N.; Wu, C.-H.; Ting, H.-J.; Hagen, F.K.; Scosyrev, E.; Messing, E.M.; Lee, Y.-F. Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression. J. Urol. 2014, 192, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Hiltbrunner, S.; Mints, M.; Eldh, M.; Rosenblatt, R.; Holmstrom, B.; Alamdari, F.; Johansson, M.; Veerman, R.E.; Winqvist, O.; Sherif, A.; et al. Urinary Exosomes from Bladder Cancer Patients Show a Residual Cancer Phenotype despite Complete Pathological Downstaging. Sci. Rep. 2020, 10, 5960. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mincheva-Nilsson, L.; Baranov, V.; Nagaeva, O.; Dehlin, E. Isolation and Characterization of Exosomes from Cultures of Tissue Explants and Cell Lines. Curr. Protoc. Immunol. 2016, 115, 14.42.1–14.42.21. [Google Scholar] [CrossRef] [PubMed]
- Le, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef][Green Version]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2017, 171, 540–556.e25. [Google Scholar] [CrossRef][Green Version]
- Hothorn, T.; Lausen, B. On the exact distribution of maximally selected rank statistics. Comput. Stat. Data Anal. 2003, 43, 121–137. [Google Scholar] [CrossRef]
- Kassambara, A.; Kosinski, M.; Biecek, P. Drawing Survival Curves Using ‘ggplot2’. R Package Version 0.4.8. Available online: https://cran.r-project.org/web/packages/survminer/index.html (accessed on 22 February 2021).
- Hoshino, A.; Kim, H.S.; Bojmar, L.; Gyan, K.E.; Cioffi, M.; Hernandez, J.; Zambirinis, C.P.; Rodrigues, G.; Molina, H.; Heissel, S.; et al. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell 2020, 182, 1044–1061.e18. [Google Scholar] [CrossRef]
- Leitolis, A.; Suss, P.H.; Roderjan, J.G.; Angulski, A.B.B.; da Costa, F.D.A.; Stimamiglio, M.A.; Correa, A. Human Heart Explant-Derived Extracellular Vesicles: Characterization and Effects on the In Vitro Recellularization of Decellularized Heart Valves. Int. J. Mol. Sci. 2019, 20, 1279. [Google Scholar] [CrossRef][Green Version]
- Mungan, N.A.; Kiemeney, L.A.; van Dijck, J.A.; van der Poel, H.G.; Witjes, J.A. Gender differences in stage distribution of bladder cancer. Urology 2000, 55, 368–371. [Google Scholar] [CrossRef]
- Kucan Brlic, P.; Lenac Rovis, T.; Cinamon, G.; Tsukerman, P.; Mandelboim, O.; Jonjic, S. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell. Mol. Immunol. 2019, 16, 40–52. [Google Scholar] [CrossRef][Green Version]
- Sloan, K.E.; Eustace, B.K.; Stewart, J.K.; Zehetmeier, C.; Torella, C.; Simeone, M.; Roy, J.E.; Unger, C.; Louis, D.N.; Ilag, L.L.; et al. CD155/PVR plays a key role in cell motility during tumor cell invasion and migration. BMC Cancer 2004, 4, 73. [Google Scholar] [CrossRef][Green Version]
- Chan, C.J.; Andrews, D.M.; McLaughlin, N.M.; Yagita, H.; Gilfillan, S.; Colonna, M.; Smyth, M.J. DNAM-1/CD155 interactions promote cytokine and NK cell-mediated suppression of poorly immunogenic melanoma metastases. J. Immunol. 2010, 184, 902–911. [Google Scholar] [CrossRef]
- Ma, W.; Ma, J.; Lei, T.; Zhao, M.; Zhang, M. Targeting immunotherapy for bladder cancer by using anti-CD3 × CD155 bispecific antibody. J. Cancer 2019, 10, 5153–5161. [Google Scholar] [CrossRef]
- Molfetta, R.; Zingoni, A.; Santoni, A.; Paolini, R. Post-translational Mechanisms Regulating NK Cell Activating Receptors and Their Ligands in Cancer: Potential Targets for Therapeutic Intervention. Front. Immunol. 2019, 10, 2557. [Google Scholar] [CrossRef][Green Version]
- Di Pace, A.L.; Tumino, N.; Besi, F.; Alicata, C.; Conti, L.A.; Munari, E.; Maggi, E.; Vacca, P.; Moretta, L. Characterization of Human NK Cell-Derived Exosomes: Role of DNAM1 Receptor In Exosome-Mediated Cytotoxicity Against Tumor. Cancers 2020, 12, 661. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhao, J.; Schlosser, H.A.; Wang, Z.; Qin, J.; Li, J.; Popp, F.; Popp, M.C.; Alakus, H.; Chon, S.-H.; Hansen, H.P.; et al. Tumor-Derived Extracellular Vesicles Inhibit Natural Killer Cell Function in Pancreatic Cancer. Cancers 2019, 11, 874. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Komohara, Y.; Jinushi, M.; Takeya, M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci. 2014, 105, 1–8. [Google Scholar] [CrossRef][Green Version]
- Xu, Z.; Wang, L.; Tian, J.; Man, H.; Li, P.; Shan, B. High expression of B7-H3 and CD163 in cancer tissues indicates malignant clinicopathological status and poor prognosis of patients with urothelial cell carcinoma of the bladder. Oncol. Lett. 2018, 15, 6519–6526. [Google Scholar] [CrossRef][Green Version]
- Opzoomer, J.W.; Sosnowska, D.; Anstee, J.E.; Spicer, J.F.; Arnold, J.N. Cytotoxic Chemotherapy as an Immune Stimulus: A Molecular Perspective on Turning Up the Immunological Heat on Cancer. Front. Immunol. 2019, 10, 1654. [Google Scholar] [CrossRef][Green Version]
- Batista, R.; Vinagre, N.; Meireles, S.; Vinagre, J.; Prazeres, H.; Leao, R.; Maximo, V.; Soares, P. Biomarkers for Bladder Cancer Diagnosis and Surveillance: A Comprehensive Review. Diagnostics 2020, 10, 39. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Oeyen, E.; Hoekx, L.; De Wachter, S.; Baldewijns, M.; Ameye, F.; Mertens, I. Bladder Cancer Diagnosis and Follow-Up: The Current Status and Possible Role of Extracellular Vesicles. Int. J. Mol. Sci. 2019, 20, 821. [Google Scholar] [CrossRef][Green Version]
- Oliveira, M.C.; Caires, H.R.; Oliveira, M.J.; Fraga, A.; Vasconcelos, M.H.; Ribeiro, R. Urinary Biomarkers in Bladder Cancer: Where Do We Stand and Potential Role of Extracellular Vesicles. Cancers 2020, 12, 1400. [Google Scholar] [CrossRef]
Patient | Preoperative Clinical Stage | Staging Post-Cystectomy | Gender | Age | NAC/noNAC | Number of Cycles | Response | Additional Information |
---|---|---|---|---|---|---|---|---|
1 †#¤ | cT2N0M0,G3 * | pT0N0M0 | female | 69 | NAC | 1 | CR | |
2 †¤ | cT2N0M0,G3 | pT0N0M0 | male | 39 | NAC | 4 | CR | |
3 † | cT2N0M0,G3 | pT0N0M0 | male | 66 | NAC | 3 | CR | Prostatic cancer Gleason score (3 + 4 = 7) |
4 † | cT2N0M0,G3 | pT0N0M0 | female | 79 | NAC | 3 | CR | |
5 † | cT2N0M0,G3 | pT0N0M0 | female | 77 | noNAC | 0 | / | |
6 † | cT2N0M0,G3 | pT0N0M0 | male | 76 | NAC | 3 | CR | Prostatic cancer Gleason score (3 + 3 = 6) |
7 † | cT1N0M0,G3 | pT0N0M0 | male | 57 | noNAC | 0 | / | Prostatic cancer Gleason score (3 + 3 = 6) |
8 #§ | cT2N0M0,G3 | pT0N0M0 | male | 73 | NAC | 3 | CR | |
9 § | cT2N0M0,G2 | pT0N0M0 | female | 67 | NAC | 3 | CR | |
10 § | cT2N0M0,G3 | pT0N0M0 | male | 83 | noNAC | 0 | / |
A | ||||||||
---|---|---|---|---|---|---|---|---|
ID | Description | Gene Ratio | Bg Ratio | p Value | p Adjust | q Value | Gene ID | Count |
hsa04144 | Endocytosis | 33/149 | 252/8081 | 1.36 × 10−19 | 3.12 × 10−17 | 2.58 × 10−17 | VPS37C/CHMP2A/VPS4B/SRC/FOLR1/RAB5A/CAPZA2/RAB7A/IST1/CHMP1B/VPS37D/CHMP4C/MVB12A/CHMP6/TSG101/CHMP4A/EHD4/VPS37B/CHMP1A/VTA1/CHMP5/VPS28/VPS4A/CHMP2B/RAB5C/CDC42/RAB8A/RAB5B/ARF3/RAB35/PDCD6IP/CHMP4B/EHD1 | 33 |
hsa04610 | Complement and coagulation cascades | 12/149 | 85/8081 | 4.10 × 10−8 | 4.71 × 10−6 | 3.91 × 10−6 | MASP2/CFB/SERPINC1/C1QB/C1QC/VWF/SERPIND1/CD55/CR1/F2/CFH/CD59 | 12 |
hsa04810 | Regulation of actin cytoskeleton | 14/149 | 218/8081 | 4.62 × 10−5 | 2.36 × 10−3 | 1.95 × 10−3 | ACTN4/KRAS/EGF/SRC/ITGA3/RDX/IQGAP1/GNG12/BAIAP2/F2/EZR/MSN/CDC42/GNA13 | 14 |
hsa04614 | Renin–angiotensin system | 5/149 | 23/8081 | 5.13 × 10−5 | 2.36 × 10−3 | 1.95 × 10−3 | MME/ACE/ENPEP/ACE2/ANPEP | 5 |
hsa04964 | Proximal tubule bicarbonate reclamation | 5/149 | 23/8081 | 5.13 × 10−5 | 2.36 × 10−3 | 1.95 × 10−3 | CA2/CA4/AQP1/ATP1A1/MDH1 | 5 |
hsa04730 | Long-term depression | 7/149 | 60/8081 | 1.07 × 10−4 | 4.11 × 10−3 | 3.41 × 10−3 | KRAS/LYN/GNAI3/GNA11/GNAQ/GNAS/GNA13 | 7 |
hsa04217 | Necroptosis | 11/149 | 159/8081 | 1.61 × 10−4 | 5.30 × 10−3 | 4.39 × 10−3 | CHMP2A/VPS4B/CHMP1B/CHMP4C/CHMP6/CHMP4A/CHMP1A/CHMP5/VPS4A/CHMP2B/CHMP4B | 11 |
hsa04520 | Adherens junction | 7/149 | 71/8081 | 3.12 × 10−4 | 8.97 × 10−3 | 7.43 × 10−3 | ACTN4/YES1/SRC/IQGAP1/PTPRJ/BAIAP2/CDC42 | 7 |
hsa05146 | Amoebiasis | 8/149 | 102/8081 | 5.62 × 10−4 | 1.44 × 10−2 | 1.19 × 10−2 | ACTN4/RAB5A/GNA11/RAB7A/GNAQ/RAB5C/RAB5B/GNAS | 8 |
hsa05130 | Pathogenic Escherichia coli infection | 11/149 | 197/8081 | 1.00 × 10−3 | 2.14 × 10−2 | 1.78 × 10−2 | SLC9A3R1/MYO1D/SRC/CTTN/ABI1/BAIAP2L1/BAIAP2/F2/EZR/CDC42/GNA13 | 11 |
hsa04530 | Tight junction | 10/149 | 169/8081 | 1.10 × 10−3 | 2.14 × 10−2 | 1.78 × 10−2 | SLC9A3R1/ACTN4/SRC/RDX/CTTN/EZR/MSN/RAB13/CDC42/RAB8A | 10 |
hsa04540 | Gap junction | 7/149 | 88/8081 | 1.15 × 10−3 | 2.14 × 10−2 | 1.78 × 10−2 | KRAS/EGF/GNAI3/SRC/GNA11/GNAQ/GNAS | 7 |
hsa04962 | Vasopressin-regulated water reabsorption | 5/149 | 44/8081 | 1.21 × 10−3 | 2.14 × 10−2 | 1.78 × 10−2 | RAB5A/AQP2/RAB5C/RAB5B/GNAS | 5 |
hsa00010 | Glycolysis/Gluconeogenesis | 6/149 | 67/8081 | 1.40 × 10−3 | 2.31 × 10−2 | 1.91 × 10−2 | ALDOB/GPI/LDHA/LDHB/AKR1A1/TPI1 | 6 |
hsa05120 | Epithelial cell signalling in Helicobacter pylori infection | 6/149 | 70/8081 | 1.76 × 10−3 | 2.71 × 10−2 | 2.24 × 10−2 | ADAM10/LYN/SRC/ATP6V1B1/ATP6V1A/CDC42 | 6 |
hsa04145 | Phagosome | 9/149 | 152/8081 | 1.93 × 10−3 | 2.72 × 10−2 | 2.25 × 10−2 | STX7/LAMP1/LAMP2/ATP6V1B1/RAB5A/RAB7A/ATP6V1A/RAB5C/RAB5B | 9 |
hsa04611 | Platelet activation | 8/149 | 124/8081 | 2.01 × 10−3 | 2.72 × 10−2 | 2.25 × 10−2 | VWF/LYN/GNAI3/SRC/F2/GNAQ/GNAS/GNA13 | 8 |
hsa04640 | Hematopoietic cell lineage | 7/149 | 99/8081 | 2.27 × 10−3 | 2.91 × 10−2 | 2.41 × 10−2 | CD55/MME/CR1/ITGA3/CD59/ANPEP/CD9 | 7 |
hsa04971 | Gastric acid secretion | 6/149 | 76/8081 | 2.69 × 10−3 | 3.10 × 10−2 | 2.57 × 10−2 | CA2/GNAI3/ATP1A1/EZR/GNAQ/GNAS | 6 |
hsa05142 | Chagas disease | 7/149 | 102/8081 | 2.70 × 10−3 | 3.10 × 10−2 | 2.57 × 10−2 | C1QB/C1QC/GNAI3/ACE/GNA11/GNAQ/GNAS | 7 |
hsa04974 | Protein digestion and absorption | 7/149 | 103/8081 | 2.85 × 10−3 | 3.12 × 10−2 | 2.58 × 10−2 | XPNPEP2/SLC3A2/MME/SLC6A19/ACE2/ATP1A1/DPP4 | 7 |
hsa04960 | Aldosterone-regulated sodium reabsorption | 4/149 | 37/8081 | 4.57 × 10−3 | 4.78 × 10−2 | 3.96 × 10−2 | KRAS/SFN/SLC9A3R2/ATP1A1 | 4 |
B | ||||||||
ID | Description | Gene Ratio | Bg Ratio | p Value | p Adjust | q Value | Gene ID | Count |
hsa05132 | Salmonella infection | 16/117 | 249/8081 | 5.09 × 10−7 | 1.15 × 10−4 | 1.01 × 10−4 | HSP90B1/RPS3/MAPK1/ACTR1A/FLNC/TUBA1A/TUBB6/GAPDH/TUBB/CD14/FLNA/ACTB/S100A10/ACTR3/TUBA1B/DYNC1H1 | 16 |
hsa04141 | Protein processing in endoplasmic reticulum | 12/117 | 171/8081 | 6.11 × 10−6 | 6.90 × 10−4 | 6.05 × 10−4 | RPN1/P4HB/HSPA5/HSP90B1/CALR/CANX/ERP29/LMAN1/CKAP4/GANAB/TXNDC5/PDIA3 | 12 |
hsa00010 | Glycolysis/Gluconeogenesis | 7/117 | 67/8081 | 4.73 × 10−5 | 3.46 × 10−3 | 3.03 × 10−3 | ADH1B/PFKM/PFKP/GAPDH/ADH5/PFKL/ALDH9A1 | 7 |
hsa04145 | Phagosome | 10/117 | 152/8081 | 6.57 × 10−5 | 3.46 × 10−3 | 3.03 × 10−3 | CALR/CANX/TUBA1A/TUBB6/MRC2/TUBB/CD14/ACTB/TUBA1B/DYNC1H1 | 10 |
hsa04979 | Cholesterol metabolism | 6/117 | 50/8081 | 7.66 × 10−5 | 3.46 × 10−3 | 3.03 × 10−3 | APOC2/LCAT/LRP1/APOA2/APOC3/APOH | 6 |
hsa05130 | Pathogenic Escherichia coli infection | 11/117 | 197/8081 | 1.24 × 10−4 | 4.68 × 10−3 | 4.10 × 10−3 | RPS3/MAPK1/MYH11/TMED10/TUBA1A/TUBB6/GAPDH/TUBB/ACTB/ACTR3/TUBA1B | 11 |
hsa04510 | Focal adhesion | 10/117 | 201/8081 | 6.39 × 10−4 | 2.02 × 10−2 | 1.77 × 10−2 | COL6A1/MAPK1/ILK/FLNC/MYLK/COL6A3/FLNA/ACTB/PPP1CB/TLN1 | 10 |
hsa04918 | Thyroid hormone synthesis | 6/117 | 75/8081 | 7.23 × 10−4 | 2.02 × 10−2 | 1.77 × 10−2 | TTR/SERPINA7/HSPA5/HSP90B1/CANX/ALB | 6 |
hsa00030 | Pentose phosphate pathway | 4/117 | 30/8081 | 8.55 × 10−4 | 2.02 × 10−2 | 1.77 × 10−2 | PFKM/G6PD/PFKP/PFKL | 4 |
hsa00052 | Galactose metabolism | 4/117 | 31/8081 | 9.71 × 10−4 | 2.02 × 10−2 | 1.77 × 10−2 | PFKM/PFKP/AKR1B1/PFKL | 4 |
hsa04066 | HIF-1 signalling pathway | 7/117 | 109/8081 | 9.82 × 10−4 | 2.02 × 10−2 | 1.77 × 10−2 | PFKM/MAPK1/STAT3/PFKP/TF/GAPDH/PFKL | 7 |
hsa00051 | Fructose and mannose metabolism | 4/117 | 33/8081 | 1.23 × 10−3 | 2.33 × 10−2 | 2.04 × 10−2 | PFKM/PFKP/AKR1B1/PFKL | 4 |
hsa01200 | Carbon metabolism | 7/117 | 118/8081 | 1.56 × 10−3 | 2.72 × 10−2 | 2.38 × 10−2 | PFKM/G6PD/PFKP/GAPDH/ESD/ADH5/PFKL | 7 |
hsa05171 | Coronavirus disease—COVID-19 | 10/117 | 232/8081 | 1.90 × 10−3 | 3.07 × 10−2 | 2.69 × 10−2 | F13A1/RPSA/RPS2/RPS3/MAPK1/RPL12/STAT3/RPL5/RPL15/RPS4X | 10 |
hsa05230 | Central carbon metabolism in cancer | 5/117 | 70/8081 | 3.34 × 10−3 | 5.03 × 10−2 | 4.41 × 10−2 | PFKM/G6PD/MAPK1/PFKP/PFKL | 5 |
A | ||||||||
---|---|---|---|---|---|---|---|---|
ID | Description | Gene Ratio | Bg Ratio | p Value | p Adjust | q Value | Gene ID | Count |
hsa05146 | Amoebiasis | Jun-23 | 102/8081 | 2.96 × 10−7 | 3.11 × 10−5 | 2.65 × 10−5 | C9/C8B/CD14/CTSG/RAB5C/GNAS | 6 |
hsa05322 | Systemic lupus erythematosus | Jun-23 | 136/8081 | 1.62 × 10−6 | 8.52 × 10−5 | 7.26 × 10−5 | C9/C8B/CTSG/H2AZ1/C6/H3C1 | 6 |
hsa04610 | Complement and coagulation cascades | Apr-23 | 85/8081 | 8.67 × 10−5 | 3.03 × 10−3 | 2.59 × 10−3 | C9/C8B/F13A1/C6 | 4 |
hsa05171 | Coronavirus disease—COVID-19 | May-23 | 232/8081 | 4.12 × 10−4 | 1.08 × 10−2 | 9.21 × 10−3 | C9/C8B/RPL12/F13A1/C6 | 5 |
hsa04614 | Renin–angiotensin system | Feb-23 | 23/8081 | 1.89 × 10−3 | 3.97 × 10−2 | 3.38 × 10−2 | CPA3/CTSG | 2 |
B | ||||||||
ID | Description | Gene Ratio | Bg Ratio | p Value | p Adjust | q Value | Gene ID | Count |
hsa05132 | Salmonella infection | Nov-49 | 249/8081 | 1.97 × 10−7 | 3.05 × 10−5 | 2.74 × 10−5 | DCTN1/RAB5B/MYL9/ARPC2/MAP2K1/ARL8A/DYNLL1/TUBA1C/TUBB2A/ARPC4/CSE1L | 11 |
hsa04530 | Tight junction | Jun-49 | 169/8081 | 5.08 × 10−4 | 3.91 × 10−2 | 3.50 × 10−2 | MYL9/HSPA4/ARPC2/RAP1A/TUBA1C/ARPC4 | 6 |
hsa00630 | Glyoxylate and dicarboxylate metabolism | Mar-49 | 30/8081 | 7.58 × 10−4 | 3.91 × 10−2 | 3.50 × 10−2 | GRHPR/MDH1/SHMT1 | 3 |
hsa05100 | Bacterial invasion of epithelial cells | Apr-49 | 77/8081 | 1.17 × 10−3 | 3.91 × 10−2 | 3.50 × 10−2 | CAV1/ARPC2/SEPTIN9/ARPC4 | 4 |
hsa04510 | Focal adhesion | Jun-49 | 201/8081 | 1.26 × 10−3 | 3.91 × 10−2 | 3.50 × 10−2 | COL6A2/MYL9/CAV1/RAP1A/MAP2K1/CAPN2 | 6 |
C | ||||||||
ID | Description | Gene Ratio | Bg Ratio | p Value | p Adjust | q Value | Gene ID | Count |
hsa04962 | Vasopressin-regulated water reabsorption | Mar-49 | 44/8081 | 2.33 × 10−3 | 5.35 × 10−2 | 4.80 × 10−2 | DCTN1/RAB5B/DYNLL1 | 3 |
hsa01240 | Biosynthesis of cofactors | May-49 | 156/8081 | 2.42 × 10−3 | 5.35 × 10−2 | 4.80 × 10−2 | NAPRT/AKR1A1/SHMT1/SPR/MTHFD1 | 5 |
hsa04610 | Complement and coagulation cascades | Jun-40 | 85/8081 | 3.27 × 10−6 | 2.64 × 10−4 | 2.37 × 10−4 | SERPINA1/A2M/KNG1/VTN/SERPING1/CLU | 6 |
hsa04979 | Cholesterol metabolism | May-40 | 50/8081 | 4.13 × 10−6 | 2.64 × 10−4 | 2.37 × 10−4 | APOA1/APOE/APOA2/APOC3/APOH | 5 |
hsa05143 | African trypanosomiasis | Apr-40 | 37/8081 | 3.02 × 10−5 | 1.29 × 10−3 | 1.16 × 10−3 | KNG1/APOA1/HBB/HBA1 | 4 |
hsa00010 | Glycolysis/Gluconeogenesis | Apr-40 | 67/8081 | 3.15 × 10−4 | 1.01 × 10−2 | 9.04 × 10−3 | PGK1/ALDOA/GAPDH/PKM | 4 |
hsa01230 | Biosynthesis of amino acids | Apr-40 | 75/8081 | 4.86 × 10−4 | 1.24 × 10−2 | 1.11 × 10−2 | PGK1/ALDOA/GAPDH/PKM | 4 |
hsa04216 | Ferroptosis | Mar-40 | 41/8081 | 1.05 × 10−3 | 2.24 × 10−2 | 2.01 × 10−2 | CP/TF/FTH1 | 3 |
hsa04066 | HIF-1 signalling pathway | Apr-40 | 109/8081 | 1.97 × 10−3 | 3.60 × 10−2 | 3.23 × 10−2 | PGK1/TF/ALDOA/GAPDH | 4 |
hsa01200 | Carbon metabolism | Apr-40 | 118/8081 | 2.63 × 10−3 | 4.21 × 10−2 | 3.77 × 10−2 | PGK1/ALDOA/GAPDH/PKM | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eldh, M.; Mints, M.; Hiltbrunner, S.; Ladjevardi, S.; Alamdari, F.; Johansson, M.; Jakubczyk, T.; Veerman, R.E.; Winqvist, O.; Sherif, A.; et al. Proteomic Profiling of Tissue Exosomes Indicates Continuous Release of Malignant Exosomes in Urinary Bladder Cancer Patients, Even with Pathologically Undetectable Tumour. Cancers 2021, 13, 3242. https://doi.org/10.3390/cancers13133242
Eldh M, Mints M, Hiltbrunner S, Ladjevardi S, Alamdari F, Johansson M, Jakubczyk T, Veerman RE, Winqvist O, Sherif A, et al. Proteomic Profiling of Tissue Exosomes Indicates Continuous Release of Malignant Exosomes in Urinary Bladder Cancer Patients, Even with Pathologically Undetectable Tumour. Cancers. 2021; 13(13):3242. https://doi.org/10.3390/cancers13133242
Chicago/Turabian StyleEldh, Maria, Michael Mints, Stefanie Hiltbrunner, Sam Ladjevardi, Farhood Alamdari, Markus Johansson, Tomasz Jakubczyk, Rosanne E. Veerman, Ola Winqvist, Amir Sherif, and et al. 2021. "Proteomic Profiling of Tissue Exosomes Indicates Continuous Release of Malignant Exosomes in Urinary Bladder Cancer Patients, Even with Pathologically Undetectable Tumour" Cancers 13, no. 13: 3242. https://doi.org/10.3390/cancers13133242