An Evaluation of the Tolerability and Feasibility of Combining 5-Amino-Levulinic Acid (5-ALA) with BCNU Wafers in the Surgical Management of Primary Glioblastoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Treatment
2.2. Patients and Assessments
2.3. Genetic Analysis
2.4. Outcomes and Statistical Considerations
3. Results
3.1. Patients
3.2. Treatment Compliance and Safety
3.3. Efficacy
3.4. IDH1 and IDH2 Mutation and MGMT Methylation Analysis
4. Discussion
5. Conclusions
- Use of 5-ALA and BCNU wafers in the surgical management of newly diagnosed GBM patients is both feasible and tolerable in terms of surgical morbidity and overall toxicity.
- Any potential therapeutic benefit of 5-ALA and BCNU wafers with chemoRT requires further investigation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Brodbelt, A.; Greenberg, D.; Winters, T.; Williams, M.; Vernon, S.; Collins, V.P. Glioblastoma in England: 2007–2011. Eur. J. Cancer 2015, 51, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, F.H.; Pruitt, A. Assumptions in the radiotherapy of glioblastoma. Neurology 1980, 30, 907–911. [Google Scholar] [CrossRef] [PubMed]
- Wait, S.D.; Prabhu, R.S.; Burri, S.H.; Atkins, T.G.; Asher, A.L. Polymeric drug delivery for the treatment of glioblastoma. Neuro. Oncol. 2015, 17, ii9–ii23. [Google Scholar] [CrossRef] [Green Version]
- Westphal, M.; Hilt, D.C.; Bortey, E.; Delavault, P.; Olivares, R.; Warnke, P.C.; Whittle, I.R.; Jääskeläinen, J.; Ram, Z. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro. Oncol. 2003, 5, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Valtonen, S.; Timonen, U.; Toivanen, P.; Kalimo, H.; Kivipelto, L.; Heiskanen, O.; Unsgaard, G.; Kuurne, T. Interstitial chemotherapy with carmustine-loaded polymers for high- grade gliomas: A randomized double-blind study. Neurosurgery 1997, 41, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; van den Bent, M.; Tonn, J.C.; Stupp, R.; Preusser, M.; Cohen-Jonathan-Moyal, E.; Henriksson, R.; Rhun, E.L.; Balana, C.; Chinot, O.; et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. 2017, 18, e315–e329. [Google Scholar] [CrossRef] [Green Version]
- Westphal, M.; Ram, Z.; Riddle, V.; Hilt, D.; Bortey, E. Gliadel® wafer in initial surgery for malignant glioma: Long-term follow-up of a multicenter controlled trial. Acta Neurochir. 2006, 148, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Ashby, L.S.; Smith, K.A.; Stea, B. Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: A systematic literature review. World J. Surg. Oncol. 2016, 14, 225. [Google Scholar] [CrossRef] [Green Version]
- Sanai, N.; Berger, M.S. Surgical oncology for gliomas: The state of the art. Nat. Rev. Clin. Oncol. 2018, 15, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.J.; Brennan, M.C.; Li, M.; Church, E.W.; Brandmeir, N.J.; Rakszawski, K.L.; Patel, A.S.; Rizk, E.B.; Suki, D.; Sawaya, R.; et al. Association of the extent of resection with survival in glioblastoma a systematic review and meta-Analysis. JAMA Oncol. 2016, 2, 1460–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol. 2006, 7, 392–401. [Google Scholar] [CrossRef]
- Pichlmeier, U.; Bink, A.; Schackert, G.; Stummer, W. Resection and survival in glioblastoma multiforme: An RTOG recursive partitioning analysis of ALA study patients. Neuro. Oncol. 2008, 10, 1025–1034. [Google Scholar] [CrossRef] [Green Version]
- Hervey-Jumper, S.L.; Berger, M.S. Maximizing safe resection of low- and high-grade glioma. J. Neurooncol. 2016, 130, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.Y.; Macdonald, D.R.; Reardon, D.A.; Cloughesy, T.F.; Sorensen, A.G.; Galanis, E.; DeGroot, J.; Wick, W.; Gilbert, M.R.; Lassman, A.B.; et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J. Clin. Oncol. 2010, 28, 1963–1972. [Google Scholar] [CrossRef]
- Capper, D.; Weißert, S.; Balss, J.; Habel, A.; Meyer, J.; Jäger, D.; Ackermann, U.; Tessmer, C.; Korshunov, A.; Zentgraf, H.; et al. Characterization of r132h mutation-specific idh1 antibody binding in brain tumors. Brain Pathol. 2010, 20, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Collins, V.P.; Ichimura, K.; Di, Y.; Pearson, D.; Chan, R.; Thompson, L.C.; Gabe, R.; Brada, M.; Stenning, S.P. Prognostic and predictive markers in recurrent high grade glioma; results from the BR12 randomised trial. Acta Neuropathol. Commun. 2014, 2, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, M.G.; Garside, R.; Rogers, G.; Somerville, M.; Stein, K.; Grant, R. Chemotherapy wafers for high grade glioma. Cochrane Database Syst. Rev. 2011, 2011. [Google Scholar] [CrossRef]
- Ma, R.; Chari, A.; Brennan, P.M.; Alalade, A.; Anderson, I.; Solth, A.; Marcus, H.J.; Watts, C.; Kolias, A.; Sinha, R.; et al. Residual enhancing disease after surgery for glioblastoma: Evaluation of practice in the United Kingdom. Neuro-Oncol. Pract. 2018, 5, 74–81. [Google Scholar] [CrossRef]
- Sage, W.; Guilfoyle, M.; Luney, C.; Young, A.; Sinha, R.; Sgubin, D.; McAbee, J.H.; Ma, R.; Jefferies, S.; Jena, R.; et al. Local alkylating chemotherapy applied immediately after 5-ALA guided resection of glioblastoma does not provide additional benefit. J. Neurooncol. 2018, 136, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Roux, A.; Peeters, S.; Zanello, M.; Bou Nassif, R.; Abi Lahoud, G.; Dezamis, E.; Parraga, E.; Lechapt-Zalcmann, E.; Dhermain, F.; Dumont, S.; et al. Extent of resection and Carmustine wafer implantation safely improve survival in patients with a newly diagnosed glioblastoma: A single center experience of the current practice. J. Neurooncol. 2017, 135, 83–92. [Google Scholar] [CrossRef]
- Champeaux, C.; Weller, J. Implantation of carmustine wafers (Gliadel®) for high-grade glioma treatment. A 9-year nationwide retrospective study. J. Neurooncol. 2020, 147, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Della Puppa, A.; Lombardi, G.; Rossetto, M.; Rustemi, O.; Berti, F.; Cecchin, D.; Gardiman, M.P.; Rolma, G.; Persano, L.; Zagonel, V.; et al. Outcome of patients affected by newly diagnosed glioblastoma undergoing surgery assisted by 5-aminolevulinic acid guided resection followed by BCNU wafers implantation: A 3-year follow-up. J. Neurooncol. 2017, 131, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.R.; Wang, M.; Aldape, K.D.; Stupp, R.; Hegi, M.E.; Jaeckle, K.A.; Armstrong, T.S.; Wefel, J.S.; Won, M.; Blumenthal, D.T.; et al. Dose-dense temozolomide for newly diagnosed glioblastoma: A randomized phase III clinical trial. J. Clin. Oncol. 2013, 31, 4085–4091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, M.R.; Dignam, J.J.; Armstrong, T.S.; Wefel, J.S.; Blumenthal, D.T.; Vogelbaum, M.A.; Colman, H.; Chakravarti, A.; Pugh, S.; Won, M.; et al. A Randomized Trial of Bevacizumab for Newly Diagnosed Glioblastoma. N. Engl. J. Med. 2014, 370, 699–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinot, O.L.; Wick, W.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; Carpentier, A.F.; Hoang-Xuan, K.; Kavan, P.; Cernea, D.; et al. Bevacizumab plus Radiotherapy–Temozolomide for Newly Diagnosed Glioblastoma. N. Engl. J. Med. 2014, 370, 709–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacko, A.; Hou, M.M.; Temgoua, M.; Alkhafaji, A.; Marantidou, A.; Belin, C.; Mandonnet, E.; Ursu, R.; Doridam, J.; Coman, I.; et al. Evolution of the Karnosky Performance Status throughout life in glioblastoma patients. J. Neurooncol. 2015, 122, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, T.S.; Vera-Bolanos, E.; Acquaye, A.A.; Gilbert, M.R.; Ladha, H.; Mendoza, T. The symptom burden of primary brain tumors: Evidence for a core set of tumor-and treatment-related symptoms. Neuro. Oncol. 2016, 18, 252–260. [Google Scholar] [CrossRef] [Green Version]
- Shankar, G.M.; Francis, J.M.; Rinne, M.L.; Ramkissoon, S.H.; Huang, F.W.; Venteicher, A.S.; Akama-Garren, E.H.; Kang, Y.J.; Lelic, N.; Kim, J.C.; et al. Rapid intraoperative molecular characterization of glioma. JAMA Oncol. 2015, 1, 662–667. [Google Scholar] [CrossRef]
- Orringer, D.A.; Pandian, B.; Niknafs, Y.S.; Hollon, T.C.; Boyle, J.; Lewis, S.; Garrard, M.; Hervey-Jumper, S.L.; Garton, H.J.L.; Maher, C.O.; et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng. 2017, 1, 1–13. [Google Scholar] [CrossRef]
- Shankar, G.M.; Kirtane, A.R.; Miller, J.J.; Mazdiyasni, H.; Rogner, J.; Tai, T.; Williams, E.A.; Higuchi, F.; Juratli, T.A.; Tateishi, K.; et al. Genotype-targeted local therapy of glioma. Proc. Natl. Acad. Sci. USA 2018, 115, E8388–E8394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gawley, M.; Almond, L.; Daniel, S.; Lastakchi, S.; Kaur, S.; Detta, A.; Cruickshank, G.; Miller, R.; Hingtgen, S.; Sheets, K.; et al. Development and in vivo evaluation of Irinotecan-loaded Drug Eluting Seeds (iDES) for the localised treatment of recurrent glioblastoma multiforme. J. Control. Release 2020, 324, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Tabet, A.; Jensen, M.P.; Parkins, C.C.; Patil, P.G.; Watts, C.; Scherman, O.A. Designing Next-Generation Local Drug Delivery Vehicles for Glioblastoma Adjuvant Chemotherapy: Lessons from the Clinic. Adv. Healthc. Mater. 2019, 8, 1801391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowland, M.J.; Parkins, C.C.; McAbee, J.H.; Kolb, A.K.; Hein, R.; Loh, X.J.; Watts, C.; Scherman, O.A. An adherent tissue-inspired hydrogel delivery vehicle utilised in primary human glioma models. Biomaterials 2018, 179, 199–208. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristic. | N = 59 |
---|---|
n (%) | |
Gender | |
Female | 22 (37.3) |
Male | 37 (62.7) |
Karnofsky Performance Status | |
100 | 21 (35.6) |
90 | 29 (49.2) |
80 | 6 (10.2) |
70 | 1 (1.7) |
60 | 2 (3.4) |
WHO Performance Status | |
0 | 37 (62.7) |
1 2–4 | 22 (37.3) 0 (0.0) |
Tumour Location | |
Frontal | 20 (33.9) |
Parietal | 14 (23.7) |
Temporal | 14 (23.7) |
Central | 1 (1.7) |
Occipital | 1 (1.7) |
Other: Frontal and Parietal | 3 (5.1) |
Other: Temporal and Parietal | 3 (5.1) |
Other: Parietal and Occipital | 2 (3.4) |
Other: Frontal and Temporal | 1 (1.7) |
Tumour Hemisphere | |
Left | 29 (49.2) |
Right | 29 (49.2) |
Both | 1 (1.7) |
Median (Range) | |
Age (years) | 59.0 (37.0–71.0) |
Haemoglobin (g/dL) | 14.7 (11.7–17.7) |
Platelets (×109/L) | 258.0 (125.0–475.0) |
INR (n = 52) | 0.9 (0.8–1.1) |
Absolute Neutrophil Count (×109/L) (n = 57) | 11.1 (2.2–21.7) |
White Blood Cell Count (×109/L) | 12.9 (4.9–25.3) |
Adverse Events | N = 59 | |
---|---|---|
n | (%) | |
Any grade 3 or higher * | 34 | (57.6) |
Any grade 3+ at least “possibly” related to 5-ALA | 0 | (0) |
Any grade 3+ at least “possibly” related to BCNU wafers | 6 | (10.2) |
Sepsis | 2 | (3.4) |
Wound Infection | 2 | (3.4) |
Cerebrospinal Fluid Leakage | 1 | (1.7) |
Cerebral Oedema | 1 | (1.7) |
Seizure | 1 | (1.7) |
Any grade 3+ at least “possibly” related to surgery | 15 | (25.4) |
Wound Infection | 3 | (5.1) |
Muscle Weakness | 2 | (3.4) |
Seizure | 2 | (3.4) |
Thrombolytic Event | 2 | (3.4) |
Blurred Vision | 1 | (1.7) |
Cerebral Abscess | 1 | (1.7) |
Cerebrospinal Fluid Leakage | 1 | (1.7) |
Cerebral Oedema | 1 | (1.7) |
Intra-operative Neurological Injury | 1 | (1.7) |
Paraesthesia | 1 | (1.7) |
Sepsis | 1 | (1.7) |
Stroke | 1 | (1.7) |
Visual Field Loss | 1 | (1.7) |
(A) Mini-Mental State Examination (0–30, Severe to No Cognitive Impairment). | ||||||
Visit | N = 59 | Median (IQR) | ||||
Registration | 58 | 28.0 (25.0, 29.0) | ||||
Post-adjuvant chemotherapy | 18 | 26.0 (22.0, 29.0) | ||||
Change from registration to post-adjuvant chemotherapy | 18 | −1.5 (−4.0, 2.0) | ||||
(B) NIH Stroke Scale (0–42, No to Severe Symptoms). | ||||||
Visit | N = 59 | Median (IQR) | ||||
Registration | 58 | 0.0 (0.0, 1.0) | ||||
Post-surgery | 54 | 0.0 (0.0, 1.0) | ||||
Pre-radiotherapy | 39 | 0.0 (0.0, 2.0) | ||||
Post-radiotherapy | 34 | 0.5 (0.0, 2.0) | ||||
Mid-adjuvant chemotherapy | 26 | 1.0 (0.0, 2.0) | ||||
Post-adjuvant chemotherapy | 18 | 0.5 (0.0, 2.0) | ||||
Change from registration to post-adjuvant chemotherapy | 18 | 0.0 (0.0, 0.2) | ||||
(C) Quality of Life: EORTC QLQ-C30 Functional Domains (0–100, No to High/Healthy Level of Functioning). | ||||||
Visit | N = 59 | Physical Functioning | Role Functioning | Emotional Functioning | Cognitive Functioning | Social Functioning |
Registration | 58 | 100.0 (86.7, 100.0) | 83.3 (50.0, 100.0) | 79.2 (66.7, 91.7) | 66.7 (66.7, 83.3) | 83.3 (66.7, 100.0) |
Pre-radiotherapy | 36 | 80.0 (62.5, 93.3) | 66.7 (33.3, 100.0) | 83.3 (66.7, 95.8) | 75.0 (66.7, 83.3) | 66.7 (50.0, 83.3) |
Post-radiotherapy | 34 | 76.7 (53.3, 93.3) | 66.7 (33.3, 100.0) | 83.3 (66.7, 100.0) | 66.7 (50.0, 83.3) | 66.7 (33.3, 100.0) |
Mid-adjuvant chemotherapy | 29 | 73.3 (60.0, 93.3) | 66.7 (33.3, 100.0) | 83.3 (66.7, 100.0) | 66.7 (50.0, 83.3) | 66.7 (33.3, 100.0) |
Post-adjuvant chemotherapy | 20 | 73.3 (60.0, 86.7) | 66.7 (33.3, 100.0) | 75.0 (66.7, 100.0) | 83.3 (66.7, 83.3) | 66.7 (50.0, 100.0) |
Change from registration to post-adjuvant chemotherapy | 20 | −20.0 (−40.0, 0.0) | 0.0 (−33.3, 33.3) | 0.0 (−20.8, 8.3) | 0.0 (−16.7, 16.7) | −16.7 (−41.7, 0.0) |
(D) Quality of Life: EORTC QLQ-BN20 (0–100, No to Severe Symptoms). | ||||||
Visit | N = 59 | Future Uncertainty | Visual Disorder | Motor Dysfunction | Communication Deficit | |
Registration | 58 | 33.3 (16.7, 58.3) | 0.0 (0.0, 22.2) | 11.1 (0.0, 22.2) | 16.7 (0.0, 33.3) | |
Pre-radiotherapy | 36 | 25.0 (16.7, 50.0) | 5.6 (0.0, 22.2) | 22.2 (11.1, 33.3) | 11.1 (0.0, 27.8) | |
Post-radiotherapy | 34 | 29.2 (8.3, 50.0) | 5.6 (0.0, 22.2) | 16.7 (0.0, 33.3) | 11.1 (0.0, 33.3) | |
Mid-adjuvant chemotherapy | 29 | 16.7 (8.3, 41.7) | 0.0 (0.0, 11.1) | 11.1 (0.0, 22.2) | 11.1 (0.0, 33.3) | |
Post-adjuvant chemotherapy | 18 | 16.7 (8.3, 41.7) | 0.0 (0.0, 11.1) | 11.1 (0.0, 33.3) | 11.1 (0.0, 22.2) | |
Change from registration to post-adjuvant chemotherapy | 18 | −8.3 (−25.0, 16.7) | 0.0 (0.0, 0.0) | 0.0 (0.0, 22.2) | 0.0 (0.0, 11.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watts, C.; Ashkan, K.; Jenkinson, M.D.; Price, S.J.; Santarius, T.; Matys, T.; Zhang, T.T.; Finch, A.; Collins, P.; Allinson, K.; et al. An Evaluation of the Tolerability and Feasibility of Combining 5-Amino-Levulinic Acid (5-ALA) with BCNU Wafers in the Surgical Management of Primary Glioblastoma. Cancers 2021, 13, 3241. https://doi.org/10.3390/cancers13133241
Watts C, Ashkan K, Jenkinson MD, Price SJ, Santarius T, Matys T, Zhang TT, Finch A, Collins P, Allinson K, et al. An Evaluation of the Tolerability and Feasibility of Combining 5-Amino-Levulinic Acid (5-ALA) with BCNU Wafers in the Surgical Management of Primary Glioblastoma. Cancers. 2021; 13(13):3241. https://doi.org/10.3390/cancers13133241
Chicago/Turabian StyleWatts, Colin, Keyoumars Ashkan, Michael D. Jenkinson, Stephen J. Price, Thomas Santarius, Tomasz Matys, Ting Ting Zhang, Alina Finch, Peter Collins, Kieren Allinson, and et al. 2021. "An Evaluation of the Tolerability and Feasibility of Combining 5-Amino-Levulinic Acid (5-ALA) with BCNU Wafers in the Surgical Management of Primary Glioblastoma" Cancers 13, no. 13: 3241. https://doi.org/10.3390/cancers13133241
APA StyleWatts, C., Ashkan, K., Jenkinson, M. D., Price, S. J., Santarius, T., Matys, T., Zhang, T. T., Finch, A., Collins, P., Allinson, K., Jefferies, S. J., Scoffings, D. J., Zisakis, A., Phillips, M., Wanek, K., Smith, P., Clifton-Hadley, L., & Counsell, N. (2021). An Evaluation of the Tolerability and Feasibility of Combining 5-Amino-Levulinic Acid (5-ALA) with BCNU Wafers in the Surgical Management of Primary Glioblastoma. Cancers, 13(13), 3241. https://doi.org/10.3390/cancers13133241