Modern Diagnosis of Early Esophageal Cancer: From Blood Biomarkers to Advanced Endoscopy and Artificial Intelligence
Abstract
:Simple Summary
Abstract
1. Introduction
2. Literature Search
3. Blood Biomarkers of Esophageal Cancer: A Liquid Biopsy
3.1. Blood Biomarkers of Esophageal Squamous Cell Carcinoma
3.2. Blood Biomarkers of Esophageal Adenocarcinoma
3.3. Serum Autoantibodies in Esophageal Squamous Cell Carcinoma and Adenocarcinoma
4. Advanced Endoscopic Imaging in the Diagnosis of Esophageal Cancer
4.1. Dye Spray Chromoendoscopy
4.2. Virtual Chromoendoscopy
4.3. Confocal Laser Endomicroscopy
4.4. Volumetric Laser Endomicroscopy (Optical Coherence Tomography)
5. Artificial Intelligence in the Diagnosis of Esophageal Cancer
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [Green Version]
- Jemal, A.; Center, M.M.; DeSantis, C.; Ward, E.M. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1893–1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamel, S.; Tukanova, K.; Markar, S. Detection and management of oligometastatic disease in oesophageal cancer and identification of prognostic factors: A systematic review. World J. Gastrointest. Oncol. 2019, 11, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xia, J.; Wang, K.; Zhang, J. Serum autoantibodies in the early detection of esophageal cancer: A systematic review. Tumor Biol. 2015, 36, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.C.; Mansour, N.; White, D.L.; Sisson, A.; El-Serag, H.B.; Thrift, A.P. Systematic review with meta-analysis: Prevalence of prior and concurrent Barrett’s oesophagus in oesophageal adenocarcinoma patients. Aliment. Pharmacol. Ther. 2020, 52, 20–36. [Google Scholar] [CrossRef]
- Huang, L.-M.; Yang, W.-J.; Huang, Z.-Y.; Tang, C.-W.; Li, J. Artificial intelligence technique in detection of early esophageal cancer. World J. Gastroenterol. 2020, 26, 5959–5969. [Google Scholar] [CrossRef] [PubMed]
- Yamashina, T.; Ishihara, R.; Nagai, K.; Matsuura, N.; Matsui, F.; Ito, T.; Fujii, M.; Yamamoto, S.; Hanaoka, N.; Takeuchi, Y.; et al. Long-term outcome and metastatic risk after endoscopic resection of superficial esophageal squamous cell carcinoma. Am. J. Gastroenterol. 2013, 108, 544–551. [Google Scholar] [CrossRef]
- Marabotto, E.; Pellegatta, G.; Sheijani, A.D.; Ziola, S.; Zentilin, P.; De Marzo, M.G.; Giannini, E.G.; Ghisa, M.; Barberio, B.; Scarpa, M.; et al. Prevention Strategies for Esophageal Cancer—An Expert Review. Cancers 2021, 13. [Google Scholar] [CrossRef]
- Henry, N.L.; Hayes, D.F. Cancer biomarkers. Mol. Oncol. 2012, 6, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Gion, M.; Trevisiol, C.; Fabricio, A.S.C. State of the art and trends of circulating cancer biomarkers. Int. J. Biol. Markers 2020, 35, 12–15. [Google Scholar] [CrossRef]
- Sharma, S. Tumor markers in clinical practice: General principles and guidelines. Indian J. Med. Paediatr. Oncol. 2009, 30, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Lu, X.; Hu, C.; Li, Y.; Yang, H.; Yan, H.; Fan, J.; Xu, G.; Abnet, C.C.; Qiao, Y. Serum Metabolomics for Biomarker Screening of Esophageal Squamous Cell Carcinoma and Esophageal Squamous Dysplasia Using Gas Chromatography-Mass Spectrometry. ACS Omega 2020, 5, 26402–26412. [Google Scholar] [CrossRef]
- Bagaria, B.; Sood, S.; Sharma, R.; Lalwani, S. Comparative study of CEA and CA19-9 in esophageal, gastric and colon cancers individually and in combination (ROC curve analysis). Cancer Biol. Med. 2013, 10, 148–157. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Z.; Liu, Y.; Jin, X.; Xu, Z.; Yu, Q.; Li, K. Diagnostic value of multiple tumor markers for patients with esophageal carcinoma. PLoS ONE 2015, 10, e0116951. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Wang, C.; Guan, X.; Liu, Y.; Li, D.; Zhou, X.; Zhang, Y.; Chen, X.; Wang, J.; Zen, K.; et al. Diagnostic and prognostic implications of a serum miRNA panel in oesophageal squamous cell carcinoma. PLoS ONE 2014, 9, e92292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Wang, C.; Chen, X.; Yang, C.; Li, K.; Wang, J.; Dai, J.; Hu, Z.; Zhou, X.; Chen, L.; et al. Expression profile of microRNAs in serum: A fingerprint for esophageal squamous cell carcinoma. Clin. Chem. 2010, 56, 1871–1879. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, S.; Ichikawa, D.; Takeshita, H.; Tsujiura, M.; Morimura, R.; Nagata, H.; Kosuga, T.; Iitaka, D.; Konishi, H.; Shiozaki, A.; et al. Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Br. J. Cancer 2011, 105, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Fassan, M.; Realdon, S.; Cascione, L.; Hahne, J.C.; Munari, G.; Guzzardo, V.; Arcidiacono, D.; Lampis, A.; Brignola, S.; Dal Santo, L.; et al. Circulating microRNA expression profiling revealed miR-92a-3p as a novel biomarker of Barrett’s carcinogenesis. Pathol. Res. Pract. 2020, 216, 152907. [Google Scholar] [CrossRef]
- Chiam, K.; Wang, T.; Watson, D.I.; Mayne, G.C.; Irvine, T.S.; Bright, T.; Smith, L.; White, I.A.; Bowen, J.M.; Keefe, D.; et al. Circulating Serum Exosomal miRNAs as Potential Biomarkers for Esophageal Adenocarcinoma. J. Gastrointest. Surg. 2015, 19, 1208–1215. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Wu, X.; Wang, J.; Lopez, J.; Zhou, W.; Yang, L.; Wang, S.E.; Raz, D.J.; Kim, J.Y. Circulating miRNA profile in esophageal adenocarcinoma. Am. J. Cancer Res. 2016, 6, 2713–2721. [Google Scholar] [PubMed]
- Hu, H.B.; Jie, H.Y.; Zheng, X.X. Three Circulating LncRNA Predict Early Progress of Esophageal Squamous Cell Carcinoma. Cell. Physiol. Biochem. 2016, 40, 117–125. [Google Scholar] [CrossRef]
- Tong, Y.S.; Wang, X.W.; Zhou, X.L.; Liu, Z.H.; Yang, T.X.; Shi, W.H.; Xie, H.W.; Lv, J.; Wu, Q.Q.; Cao, X.F. Identification of the long non-coding RNA POU3F3 in plasma as a novel biomarker for diagnosis of esophageal squamous cell carcinoma. Mol. Cancer 2015, 14, 3. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Liu, Y.; Ma, L.; Wen, X.; Ji, H.; Li, K. Exploring potential biomarkers of early stage esophageal squamous cell carcinoma in pre- and post-operative serum metabolomic fingerprint spectrum using (1)H-NMR method. Am. J. Transl. Res. 2019, 11, 819–831. [Google Scholar]
- Xu, Y.W.; Peng, Y.H.; Chen, B.; Wu, Z.Y.; Wu, J.Y.; Shen, J.H.; Zheng, C.P.; Wang, S.H.; Guo, H.P.; Li, E.M.; et al. Autoantibodies as potential biomarkers for the early detection of esophageal squamous cell carcinoma. Am. J. Gastroenterol. 2014, 109, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Espiridion, B.; Liang, D.; Ajani, J.A.; Liang, S.; Ye, Y.; Hildebrandt, M.A.; Gu, J.; Wu, X. Identification of Serum Markers of Esophageal Adenocarcinoma by Global and Targeted Metabolic Profiling. Clin. Gastroenterol. Hepatol. 2015, 13, 1730–1737.e1739. [Google Scholar] [CrossRef] [Green Version]
- Campos, V.J.; Mazzini, G.S.; Juchem, J.F.; Gurski, R.R. Neutrophil-Lymphocyte Ratio as a Marker of Progression from Non-Dysplastic Barrett’s Esophagus to Esophageal Adenocarcinoma: A Cross-Sectional Retrospective Study. J. Gastrointest. Surg. 2020, 24, 8–18. [Google Scholar] [CrossRef]
- Haboubi, H.N.; Lawrence, R.L.; Rees, B.; Williams, L.; Manson, J.M.; Al-Mossawi, N.; Bodger, O.; Griffiths, P.; Thornton, C.; Jenkins, G.J. Developing a blood-based gene mutation assay as a novel biomarker for oesophageal adenocarcinoma. Sci. Rep. 2019, 9, 5168. [Google Scholar] [CrossRef] [PubMed]
- Gowda, G.A.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn. 2008, 8, 617–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasim, A.; Ma, H.; Mamtimin, B.; Abudula, A.; Niyaz, M.; Zhang, L.-W.; Anwer, J.; Sheyhidin, I. Revealing the metabonomic variation of EC using 1H-NMR spectroscopy and its association with the clinicopathological characteristics. Mol. Biol. Rep. 2012, 39, 8955–8964. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wang, S.; Zhang, T.; Zhang, E.Y.; Zhou, L.; Hu, C.; Yu, J.J.; Xu, G. Activation of choline kinase drives aberrant choline metabolism in esophageal squamous cell carcinomas. J. Pharm. Biomed. Anal. 2018, 155, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Fan, N.J.; Gao, C.F.; Zhao, G.; Wang, X.L.; Qiao, L. Serum peptidome patterns for early screening of esophageal squamous cell carcinoma. Biotechnol. Appl. Biochem. 2012, 59, 276–282. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, C.; Liu, H.N.; Wu, H.; Chen, Y.J.; Li, Y.; Fang, Y.; Shen, X.Z.; Liu, T.T. Diagnostic and Prognostic Value of Circulating MicroRNAs for Esophageal Squamous Cell Carcinoma: A Systematic Review and Meta-analysis. J. Cancer 2018, 9, 2876–2884. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wu, F.; Ji, Y.; Yang, L.; Li, F. Meta-analysis of microRNAs as potential biomarkers for detecting esophageal carcinoma in Asian populations. Int. J Biol. Markers 2017, 32, e375–e383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, L.-Y.; Peng, Y.-H.; Weng, X.-F.; Xie, J.-J.; Xu, Y.-W. Blood-based biomarkers for early detection of esophageal squamous cell carcinoma. World J. Gastroenterol. 2020, 26, 1708–1725. [Google Scholar] [CrossRef] [PubMed]
- Craig, M.P.; Rajakaruna, S.; Paliy, O.; Sajjad, M.; Madhavan, S.; Reddy, N.; Zhang, J.; Bottomley, M.; Agrawal, S.; Kadakia, M.P. Differential MicroRNA Signatures in the Pathogenesis of Barrett’s Esophagus. Clin. Transl. Gastroenterol. 2020, 11, e00125. [Google Scholar] [CrossRef]
- Shah, A.K.; Hartel, G.; Brown, I.; Winterford, C.; Na, R.; Cao, K.L.; Spicer, B.A.; Dunstone, M.A.; Phillips, W.A.; Lord, R.V.; et al. Evaluation of Serum Glycoprotein Biomarker Candidates for Detection of Esophageal Adenocarcinoma and Surveillance of Barrett’s Esophagus. Mol. Cell. Proteom. 2018, 17, 2324–2334. [Google Scholar] [CrossRef] [Green Version]
- Ben-Mahrez, K.; Sorokine, I.; Thierry, D.; Kawasumi, T.; Ishii, S.; Salmon, R.; Kohiyama, M. Circulating antibodies against c-myc oncogene product in sera of colorectal cancer patients. Int. J. Cancer 1990, 46, 35–38. [Google Scholar] [CrossRef]
- Zhong, L.; Coe, S.P.; Stromberg, A.J.; Khattar, N.H.; Jett, J.R.; Hirschowitz, E.A. Profiling tumor-associated antibodies for early detection of non-small cell lung cancer. J. Thorac. Oncol. 2006, 1, 513–519. [Google Scholar] [CrossRef]
- Chapman, C.J.; Thorpe, A.J.; Murray, A.; Parsy-Kowalska, C.B.; Allen, J.; Stafford, K.M.; Chauhan, A.S.; Kite, T.A.; Maddison, P.; Robertson, J.F. Immunobiomarkers in small cell lung cancer: Potential early cancer signals. Clin. Cancer 2011, 17, 1474–1480. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Karjalainen, A.; Koskinen, H.; Hemminki, K.; Vainio, H.; Shnaidman, M.; Ying, Z.; Pukkala, E.; Brandt-Rauf, P.W. p53 autoantibodies predict subsequent development of cancer. Int. J. Cancer 2005, 114, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Lubin, R.; Zalcman, G.; Bouchet, L.; Trédanel, J.; Legros, Y.; Cazals, D.; Hirsch, A.; Soussi, T. Serum p53 antibodies as early markers of lung cancer. Nat. Med. 1995, 1, 701–702. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, I.; Nabeya, Y.; Takiguchi, N.; Gunji, H.; Ishige, F.; Iwatate, Y.; Shiratori, F.; Yajima, S.; Okada, R.; Shimada, H. Prognostic impact of p53 and/or NY-ESO-1 autoantibody induction in patients with gastroenterological cancers. Ann. Gastroenterol. Surg. 2020, 4, 275–282. [Google Scholar] [CrossRef] [PubMed]
- di Pietro, M.; Canto, M.I.; Fitzgerald, R.C. Endoscopic Management of Early Adenocarcinoma and Squamous Cell Carcinoma of the Esophagus: Screening, Diagnosis, and Therapy. Gastroenterology 2018, 154, 421–436. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Savides, T.J.; Canto, M.I.; Corley, D.A.; Falk, G.W.; Goldblum, J.R.; Wang, K.K.; Wallace, M.B.; Wolfsen, H.C. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on imaging in Barrett’s Esophagus. Gastrointest. Endosc. 2012, 76, 252–254. [Google Scholar] [CrossRef]
- Abrams, J.A.; Kapel, R.C.; Lindberg, G.M.; Saboorian, M.H.; Genta, R.M.; Neugut, A.I.; Lightdale, C.J. Adherence to biopsy guidelines for Barrett’s esophagus surveillance in the community setting in the United States. Clin. Gastroenterol. Hepatol. 2009, 7, 736–742, quiz 710. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.T.; Chang, C.Y.; Lee, Y.C.; Tai, C.M.; Wang, W.L.; Tseng, P.H.; Hwang, J.C.; Hwang, T.Z.; Wang, C.C.; Lin, J.T. Narrow-band imaging with magnifying endoscopy for the screening of esophageal cancer in patients with primary head and neck cancers. Endoscopy 2010, 42, 613–619. [Google Scholar] [CrossRef]
- Mwachiro, M.M.; Burgert, S.L.; Lando, J.; Chepkwony, R.; Bett, C.; Bosire, C.; Abnet, C.C.; Githanga, J.; Waweru, W.; Giffen, C.A.; et al. Esophageal Squamous Dysplasia is Common in Asymptomatic Kenyans: A Prospective, Community-Based, Cross-Sectional Study. Am. J. Gastroenterol. 2016, 111, 500–507. [Google Scholar] [CrossRef]
- Coletta, M.; Sami, S.S.; Nachiappan, A.; Fraquelli, M.; Casazza, G.; Ragunath, K. Acetic acid chromoendoscopy for the diagnosis of early neoplasia and specialized intestinal metaplasia in Barrett’s esophagus: A meta-analysis. Gastrointest. Endosc. 2016, 83, 57–67.e51. [Google Scholar] [CrossRef]
- Morita, F.H.; Bernardo, W.M.; Ide, E.; Rocha, R.S.; Aquino, J.C.; Minata, M.K.; Yamazaki, K.; Marques, S.B.; Sakai, P.; de Moura, E.G. Narrow band imaging versus lugol chromoendoscopy to diagnose squamous cell carcinoma of the esophagus: A systematic review and meta-analysis. BMC Cancer 2017, 17, 54. [Google Scholar] [CrossRef] [Green Version]
- Thosani, N.; Abu Dayyeh, B.K.; Sharma, P.; Aslanian, H.R.; Enestvedt, B.K.; Komanduri, S.; Manfredi, M.; Navaneethan, U.; Maple, J.T.; Pannala, R.; et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE Preservation and Incorporation of Valuable Endoscopic Innovations thresholds for adopting real-time imaging–assisted endoscopic targeted biopsy during endoscopic surveillance of Barrett’s esophagus. Gastrointest. Endosc. 2016, 83, 684–698.e687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohli, D.R.; Schubert, M.L.; Zfass, A.M.; Shah, T.U. Performance characteristics of optical coherence tomography in assessment of Barrett’s esophagus and esophageal cancer: Systematic review. Dis. Esophagus 2017, 30, 1–8. [Google Scholar] [CrossRef]
- Falk, G.W.; Wani, S. 25-Barrett’s Esophagus: Diagnosis, Surveillance, and Medical Management. In Clinical Gastrointestinal Endoscopy, 3rd ed.; Chandrasekhara, V., Elmunzer, B.J., Khashab, M.A., Muthusamy, V.R., Eds.; Elsevier: Philadelphia, PA, USA, 2019; pp. 279–290. [Google Scholar] [CrossRef]
- Tholoor, S.; Bhattacharyya, R.; Tsagkournis, O.; Longcroft-Wheaton, G.; Bhandari, P. Acetic acid chromoendoscopy in Barrett’s esophagus surveillance is superior to the standardized random biopsy protocol: Results from a large cohort study (with video). Gastrointest. Endosc. 2014, 80, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Ngamruengphong, S.; Sharma, V.K.; Das, A. Diagnostic yield of methylene blue chromoendoscopy for detecting specialized intestinal metaplasia and dysplasia in Barrett’s esophagus: A meta-analysis. Gastrointest. Endosc. 2009, 69, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Omori, T.; Yokoyama, A.; Yoshida, T.; Hirota, J.; Ono, Y.; Yamamoto, J.; Kato, M.; Asaka, M. Endoscopic diagnosis of early squamous neoplasia of the esophagus with iodine staining: High-grade intra-epithelial neoplasia turns pink within a few minutes. J. Gastroenterol. Hepatol. 2008, 23, 546–550. [Google Scholar] [CrossRef]
- Manfredi, M.A.; Abu Dayyeh, B.K.; Bhat, Y.M.; Chauhan, S.S.; Gottlieb, K.T.; Hwang, J.H.; Komanduri, S.; Konda, V.; Lo, S.K.; Maple, J.T.; et al. Electronic chromoendoscopy. Gastrointest. Endosc. 2015, 81, 249–261. [Google Scholar] [CrossRef]
- Verna, C.; Feyles, E.; Lorenzi, L.; Rolle, E.; Grassini, M.; Giacobbe, U.; Niola, P.; Battaglia, E.; Bassotti, G.; Villanacci, V. I-SCAN targeted versus random biopsies in Barrett’s oesophagus. Dig. Liver Dis. 2014, 46, 131–134. [Google Scholar] [CrossRef]
- Lipman, G.; Bisschops, R.; Sehgal, V.; Ortiz-Fernández-Sordo, J.; Sweis, R.; Esteban, J.M.; Hamoudi, R.; Banks, M.R.; Ragunath, K.; Lovat, L.B.; et al. Systematic assessment with I-SCAN magnification endoscopy and acetic acid improves dysplasia detection in patients with Barrett’s esophagus. Endoscopy 2017, 49, 1219–1228. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yangjin, C.; Shi, Y.; Wen, Y.; Jin, Z.; Cui, R.; Zhang, H.; Ding, S. The Significance of a Pale Area via Flexible Spectral Imaging Color Enhancement in the Diagnosis of Esophageal Precancerous Lesions and Early-stage Squamous Cancer. J. Clin. Gastroenterol. 2019, 53, e400–e404. [Google Scholar] [CrossRef]
- Qumseya, B.J.; Wang, H.; Badie, N.; Uzomba, R.N.; Parasa, S.; White, D.L.; Wolfsen, H.; Sharma, P.; Wallace, M.B. Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with Barrett’s esophagus: A meta-analysis and systematic review. Clin. Gastroenterol. Hepatol. 2013, 11, 1562–1570. [Google Scholar] [CrossRef] [Green Version]
- Mashimo, H.; Gordon, S.R.; Singh, S.K. Advanced endoscopic imaging for detecting and guiding therapy of early neoplasias of the esophagus. Ann. N. Y. Acad. Sci. 2020, 1482, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.; Lauwers, G.Y.; Chen, Y.; Dekker, E.; Fockens, P.; Sharma, P.; Meining, A. Miami classification for probe-based confocal laser endomicroscopy. Endoscopy 2011, 43, 882–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pech, O.; Rabenstein, T.; Manner, H.; Petrone, M.C.; Pohl, J.; Vieth, M.; Stolte, M.; Ell, C. Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus. Clin. Gastroenterol. Hepatol. 2008, 6, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Houston, T.; Sharma, P. Volumetric laser endomicroscopy in Barrett’s esophagus: Ready for primetime. Transl. Gastroenterol. Hepatol. 2020, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Trindade, A.J.; Inamdar, S.; Smith, M.S.; Chang, K.J.; Leggett, C.L.; Lightdale, C.J.; Pleskow, D.K.; Sejpal, D.V.; Tearney, G.J.; Thomas, R.M.; et al. Volumetric laser endomicroscopy in Barrett’s esophagus: Interobserver agreement for interpretation of Barrett’s esophagus and associated neoplasia among high-frequency users. Gastrointest. Endosc. 2017, 86, 133–139. [Google Scholar] [CrossRef]
- Vakoc, B.J.; Shishko, M.; Yun, S.H.; Oh, W.Y.; Suter, M.J.; Desjardins, A.E.; Evans, J.A.; Nishioka, N.S.; Tearney, G.J.; Bouma, B.E. Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video). Gastrointest. Endosc. 2007, 65, 898–905. [Google Scholar] [CrossRef] [Green Version]
- Le Berre, C.; Sandborn, W.J.; Aridhi, S.; Devignes, M.-D.; Fournier, L.; Smaïl-Tabbone, M.; Danese, S.; Peyrin-Biroulet, L. Application of Artificial Intelligence to Gastroenterology and Hepatology. Gastroenterology 2020, 158, 76–94. [Google Scholar] [CrossRef] [Green Version]
- Mori, Y.; Kudo, S.-E.; Mohmed, H.E.N.; Misawa, M.; Ogata, N.; Itoh, H.; Oda, M.; Mori, K. Artificial intelligence and upper gastrointestinal endoscopy: Current status and future perspective. Dig. Endosc. 2019, 31, 378–388. [Google Scholar] [CrossRef] [Green Version]
- Tomie, A.; Dohi, O.; Yagi, N.; Kitae, H.; Majima, A.; Horii, Y.; Kitaichi, T.; Onozawa, Y.; Suzuki, K.; Kimura-Tsuchiya, R.; et al. Blue Laser Imaging-Bright Improves Endoscopic Recognition of Superficial Esophageal Squamous Cell Carcinoma. Gastroenterol. Res. Pract. 2016, 2016, 6140854. [Google Scholar] [CrossRef]
- Ishihara, R.; Takeuchi, Y.; Chatani, R.; Kidu, T.; Inoue, T.; Hanaoka, N.; Yamamoto, S.; Higashino, K.; Uedo, N.; Iishi, H.; et al. Prospective evaluation of narrow-band imaging endoscopy for screening of esophageal squamous mucosal high-grade neoplasia in experienced and less experienced endoscopists. Dis. Esophagus 2010, 23, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Arribas, J.; Antonelli, G.; Frazzoni, L.; Fuccio, L.; Ebigbo, A.; van der Sommen, F.; Ghatwary, N.; Palm, C.; Coimbra, M.; Renna, F.; et al. Standalone performance of artificial intelligence for upper GI neoplasia: A meta-analysis. Gut 2020. [Google Scholar] [CrossRef]
- Bang, C.S.; Lee, J.J.; Baik, G.H. Computer-aided diagnosis of esophageal cancer and neoplasms in endoscopic images: A systematic review and meta-analysis of diagnostic test accuracy. Gastrointest. Endosc. 2020. [Google Scholar] [CrossRef]
- Lui, T.K.L.; Tsui, V.W.M.; Leung, W.K. Accuracy of artificial intelligence-assisted detection of upper GI lesions: A systematic review and meta-analysis. Gastrointest. Endosc. 2020, 92, 821–830.e829. [Google Scholar] [CrossRef]
- Mohan, B.P.; Khan, S.R.; Kassab, L.L.; Ponnada, S.; Dulai, P.S.; Kochhar, G.S. Accuracy of convolutional neural network-based artificial intelligence in diagnosis of gastrointestinal lesions based on endoscopic images: A systematic review and meta-analysis. Endosc. Int. Open 2020, 8, e1584–e1594. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, H.; Ishihara, R.; Kato, Y.; Matsunaga, T.; Nishida, T.; Yamada, T.; Ogiyama, H.; Horie, M.; Kinoshita, K.; Tada, T. Comparison of performances of artificial intelligence versus expert endoscopists for real-time assisted diagnosis of esophageal squamous cell carcinoma (with video). Gastrointest. Endosc. 2020, 92, 848–855. [Google Scholar] [CrossRef]
- Struyvenberg, M.R.; de Groof, A.J.; van der Putten, J.; van der Sommen, F.; Baldaque-Silva, F.; Omae, M.; Pouw, R.; Bisschops, R.; Vieth, M.; Schoon, E.J.; et al. A computer-assisted algorithm for narrow-band imaging-based tissue characterization in Barrett’s esophagus. Gastrointest. Endosc. 2021, 93, 89–98. [Google Scholar] [CrossRef] [PubMed]
- de Groof, A.J.; Struyvenberg, M.R.; Fockens, K.N.; van der Putten, J.; van der Sommen, F.; Boers, T.G.; Zinger, S.; Bisschops, R.; de With, P.H.; Pouw, R.E.; et al. Deep learning algorithm detection of Barrett’s neoplasia with high accuracy during live endoscopic procedures: A pilot study (with video). Gastrointest. Endosc. 2020, 91, 1242–1250. [Google Scholar] [CrossRef]
- Ebigbo, A.; Mendel, R.; Probst, A.; Manzeneder, J.; Prinz, F.; de Souza, L.A., Jr.; Papa, J.; Palm, C.; Messmann, H. Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus. Gut 2020, 69, 615–616. [Google Scholar] [CrossRef]
- Inoue, H.; Kaga, M.; Ikeda, H.; Sato, C.; Sato, H.; Minami, H.; Santi, E.G.; Hayee, B.H.; Eleftheriadis, N. Magnification endoscopy in esophageal squamous cell carcinoma: A review of the intrapapillary capillary loop classification. Ann. Gastroenterol. 2015, 28, 41–48. [Google Scholar]
- Sato, H.; Inoue, H.; Ikeda, H.; Sato, C.; Onimaru, M.; Hayee, B.; Phlanusi, C.; Santi, E.G.; Kobayashi, Y.; Kudo, S.E. Utility of intrapapillary capillary loops seen on magnifying narrow-band imaging in estimating invasive depth of esophageal squamous cell carcinoma. Endoscopy 2015, 47, 122–128. [Google Scholar] [CrossRef]
- Everson, M.; Herrera, L.; Li, W.; Luengo, I.M.; Ahmad, O.; Banks, M.; Magee, C.; Alzoubaidi, D.; Hsu, H.M.; Graham, D.; et al. Artificial intelligence for the real-time classification of intrapapillary capillary loop patterns in the endoscopic diagnosis of early oesophageal squamous cell carcinoma: A proof-of-concept study. UK Gastroenterol. J. 2019, 7, 297–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Peraza-Herrera, L.C.; Everson, M.; Lovat, L.; Wang, H.P.; Wang, W.L.; Haidry, R.; Stoyanov, D.; Ourselin, S.; Vercauteren, T. Intrapapillary capillary loop classification in magnification endoscopy: Open dataset and baseline methodology. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Tokai, Y.; Yoshio, T.; Aoyama, K.; Horie, Y.; Yoshimizu, S.; Horiuchi, Y.; Ishiyama, A.; Tsuchida, T.; Hirasawa, T.; Sakakibara, Y.; et al. Application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma. Esophagus J. Jpn. Esophageal Soc. 2020, 17, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Ishihara, R.; Aoyama, K.; Ohmori, M.; Nakahira, H.; Matsuura, N.; Shichijo, S.; Nishida, T.; Yamada, T.; Yamaguchi, S.; et al. Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. Gastrointest. Endosc. 2019, 90, 407–414. [Google Scholar] [CrossRef]
- Ebigbo, A.; Mendel, R.; Rückert, T.; Schuster, L.; Probst, A.; Manzeneder, J.; Prinz, F.; Mende, M.; Steinbrück, I.; Faiss, S.; et al. Endoscopic prediction of submucosal invasion in Barrett’s cancer with the use of Artificial Intelligence: A pilot Study. Endoscopy 2020. [Google Scholar] [CrossRef]
- Jaffer, A.A.; Thomas, A.D.A.; David, J.B.; Joseph, C.; Carlos, C.; Prajnan, D.; Crystal, S.D.; Peter, C.E.; Paul, F.; Farhood, F.; et al. Esophageal and Esophagogastric Junction Cancers, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2019, 17, 855–883. [Google Scholar] [CrossRef] [Green Version]
- Qumseya, B.; Sultan, S.; Bain, P.; Jamil, L.; Jacobson, B.; Anandasabapathy, S.; Agrawal, D.; Buxbaum, J.L.; Fishman, D.S.; Gurudu, S.R.; et al. ASGE guideline on screening and surveillance of Barrett′s esophagus. Gastrointest. Endosc. 2019, 90, 335–359.e332. [Google Scholar] [CrossRef] [Green Version]
- Lordick, F.; Mariette, C.; Haustermans, K.; Obermannová, R.; Arnold, D. Oesophageal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27, v50–v57. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Uno, T.; Oyama, T.; Kato, K.; Kato, H.; Kawakubo, H.; Kawamura, O.; Kusano, M.; Kuwano, H.; Takeuchi, H.; et al. Esophageal cancer practice guidelines 2017 edited by the Japan esophageal society: Part 2. Esophagus J. Jpn. Esophageal Soc. 2019, 16, 25–43. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Uno, T.; Oyama, T.; Kato, K.; Kato, H.; Kawakubo, H.; Kawamura, O.; Kusano, M.; Kuwano, H.; Takeuchi, H.; et al. Esophageal cancer practice guidelines 2017 edited by the Japan Esophageal Society: Part 1. Esophagus J. Jpn. Esophageal Soc. 2019, 16, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Niu, C.; Zhao, L.; Guo, X.; Shen, Y.; Shao, Y.; Liu, F. Diagnostic Accuracy of circRNAs in Esophageal Cancer: A Meta-Analysis. Dis. Markers 2019, 2019, 9673129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type of Biomarker | Disease | Panel |
---|---|---|
miRNA | ESCC [15,16,17] | miR-25, miR-100, miR-193-3p, miR-194, miR-223, miR-337-5p, miR-483-5p |
miR-10a, miR-22, miR-100, miR-148b, miR-223, miR-133a, miR-127-3p | ||
MiR-21, miR-375 | ||
EAC [18,19,20] | miR-92a-3p, miR-151a-5p, miR-362-3p, miR-345-3p, miR-619-3p, miR-1260b, and miR-1276 | |
RNU6-1/miR-16-5p, miR-25-3p/miR-320a, let-7e-5p/miR-15b-5p, miR-30a-5p/miR-324-5p, miR-17-5p/miR-194-5p | ||
miR-25-3p, miR-151a-3p, miR-100-5p, miR-375 | ||
lncRNA | ESCC [21,22] | POU3F3, SCCA |
Linc00152, CFLAR-AS1, POU3F3 | ||
Metabolite | ESCC [12,23] | propanoic acid, linoleic acid, glycerol-3-phosphate, and L-glutamine |
propanoic acid, L-leucine, and hydroxyproline | ||
α-glucose, choline, glutamine, glutamate, valine, and dihydrothymine | ||
Antibody | ESCC [24] | Antibody against p53, NY-ESO-1, MMP-7, Hsp70, Prx VI, Bmi-1 |
EAC [25] | Antibody against amino acid L-proline, ketone body 3-hydroxybutyrate, carbohydrate D-mannose | |
ESCC/EAC [4] | anti-p53, anti-HSP70, anti-p16, anti-cyclin B1, anti c-Myc, anti-LY6K | |
Blood cells | EAC [26,27] | Neutrophil-lymphocyte ratio |
Erythrocyte mutant frequency |
Author | Endoscopic Technique | Disease | Sensitivity (95% CI, %) | Specificity (95% CI, %) |
---|---|---|---|---|
Coletta et al. [49] | AA Chromoendoscopy | EAC | 92% (83 to 97) | 96% (85 to 99) |
Morita et al. [50] | Lugol Chromoendoscopy | ESCC | 92% (86 to 96) | 82% (80 to 85) |
Thosani et al. [51] | NBI | EAC | 94.2% (82.6 to 98.2) | 94.4% (80.5 to 98.6) |
Morita et al. [50] | ESCC | 88% (86 to 93) | 88% (86 to 90) | |
Thosani et al. [51] | pCLE * | EAC | 90.4% (71.9 to 97.2) | 92.7% (87 to 96) |
Kohli et al. [52] | VLE # | EC | 81–97% | 57–92% |
Author | Disease | Endoscopic Light | AUC (95% CI)/Accuracy (95% CI, %) | Sensitivity (95% CI, %) | Specificity (95% CI, %) | PPV (95% CI, %) | NPV (95% CI, %) |
---|---|---|---|---|---|---|---|
Arribas et al. [72] | ESCC | WLE and/or NBI | - |
93% (73 to 99) |
89% (77 to 95) |
77% (55 to 89) |
97% (88 to 100) |
EAC | - |
89% (83 to 93) |
88% (84 to 91) |
88% (84 to 91) |
89% (83 to 93) | ||
Bang et al. [73] | ESCC or EAC | WLE and/or NBI | 0.97 (0.89–0.96) |
94% (89 to 96) |
88% (76 to 94) | - | - |
Lui et al. [74] | ESCC | WLE and/or NBI or ECS or ME | 0.88 (0.82–0.96) |
75.6% (48.3 to 92.5) |
92.5% (66.8 to 99.5) | - | - |
EAC | WLE or VLE |
0.96 (0.93 to 0.99) |
88% (82.0 to 92.1) |
90.4% (85.6 to 94.5) | - | - | |
Mohan et al. [75] | ESCC or EAC | WLE and/or NBI |
87.2% (76–93.6) |
87.1% (69.4 to 95.3) |
87.3% (74.3 to 94.2) |
72.3% (41.7 to 90.5) |
92.1% (85.9 to 95.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visaggi, P.; Barberio, B.; Ghisa, M.; Ribolsi, M.; Savarino, V.; Fassan, M.; Valmasoni, M.; Marchi, S.; de Bortoli, N.; Savarino, E. Modern Diagnosis of Early Esophageal Cancer: From Blood Biomarkers to Advanced Endoscopy and Artificial Intelligence. Cancers 2021, 13, 3162. https://doi.org/10.3390/cancers13133162
Visaggi P, Barberio B, Ghisa M, Ribolsi M, Savarino V, Fassan M, Valmasoni M, Marchi S, de Bortoli N, Savarino E. Modern Diagnosis of Early Esophageal Cancer: From Blood Biomarkers to Advanced Endoscopy and Artificial Intelligence. Cancers. 2021; 13(13):3162. https://doi.org/10.3390/cancers13133162
Chicago/Turabian StyleVisaggi, Pierfrancesco, Brigida Barberio, Matteo Ghisa, Mentore Ribolsi, Vincenzo Savarino, Matteo Fassan, Michele Valmasoni, Santino Marchi, Nicola de Bortoli, and Edoardo Savarino. 2021. "Modern Diagnosis of Early Esophageal Cancer: From Blood Biomarkers to Advanced Endoscopy and Artificial Intelligence" Cancers 13, no. 13: 3162. https://doi.org/10.3390/cancers13133162
APA StyleVisaggi, P., Barberio, B., Ghisa, M., Ribolsi, M., Savarino, V., Fassan, M., Valmasoni, M., Marchi, S., de Bortoli, N., & Savarino, E. (2021). Modern Diagnosis of Early Esophageal Cancer: From Blood Biomarkers to Advanced Endoscopy and Artificial Intelligence. Cancers, 13(13), 3162. https://doi.org/10.3390/cancers13133162