Reporting of Incidence and Outcome of Bone Metastases in Clinical Trials Enrolling Patients with Epidermal Growth Factor Receptor Mutated Lung Adenocarcinoma—A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.2. Study Selection
2.3. Data Selection
3. Results
3.1. Study Selection
3.2. Description of Studies
3.3. Assessment of the Risk of Bias Within Studies
3.4. Results of Individual Studies
3.4.1. Imaging and Incidence of Bone Metastases at Baseline
3.4.2. Imaging and Incidence of Bone Metastases during Follow-Up
3.4.3. Skeletal Related Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kerner, G.S.M.A.; Schuuring, E.; Sietsma, J.; Hiltermann, T.J.N.; Pieterman, R.M.; De Leede, G.P.J.; Van Putten, J.W.G.; Liesker, J.; Renkema, T.E.J.; Van Hengel, P.; et al. Common and Rare EGFR and KRAS Mutations in a Dutch Non-Small-Cell Lung Cancer Population and Their Clinical Outcome. PLoS ONE 2013, 8, e70346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosell, R.; Moran, T.; Queralt, C.; Porta, R.; Cardenal, F.; Camps, C.; Majem, M.; Lopez-Vivanco, G.; Isla, D.; Provencio, M.; et al. Screening for Epidermal Growth Factor Receptor Mutations in Lung Cancer. N. Engl. J. Med. 2009, 361, 958–967. [Google Scholar] [CrossRef] [Green Version]
- Sequist, L.V.; Heist, R.S.; Shaw, A.T.; Fidias, P.; Rosovsky, R.; Temel, J.S.; Lennes, I.T.; Digumarthy, S.; Waltman, B.A.; Bast, E.; et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann. Oncol. 2011, 22, 2616–2624. [Google Scholar] [CrossRef]
- Yamamoto, N.; Seto, T.; Nishio, M.; Goto, K.; Okamoto, I.; Yamanaka, T.; Tanaka, M.; Takahashi, K.; Fukuoka, M.; Yamamoto, N. Erlotinib plus bevacizumab (EB) versus erlotinib alone (E) as first-line treatment for advanced EGFR mutation–positive non-squamous non–small-cell lung cancer (NSCLC): Survival follow-up results of JO25567. J. Clin. Oncol. 2018, 36, 9007. [Google Scholar] [CrossRef]
- Maemondo, M.; Fukuhara, T.; Saito, H.; Furuya, N.; Watanabe, K.; Sugawara, S.; Iwasawa, S.; Tsunezuka, Y.; Yamaguchi, O.; Okada, M.; et al. NEJ026: Final overall survival analysis of bevacizumab plus erlotinib treatment for NSCLC patients harboring activating EGFR-mutations. J. Clin. Oncol. 2020, 38, 9506. [Google Scholar] [CrossRef]
- Cancer Stat Facts: Lung and Bronchus Cancer. Available online: https://seer.cancer.gov/statfacts/html/lungb.html (accessed on 6 June 2021).
- Remon, J.; Hendriks, L.; Cabrera, C.; Reguart, N.; Besse, B. Immunotherapy for oncogenic-driven advanced non-small cell lung cancers: Is the time ripe for a change? Cancer Treat. Rev. 2018, 71, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Dormieux, A.; Mezquita, L.; Cournede, P.H.; Remon, J.; Tazdait, M.; Lacroix, L.; Rouleau, E.; Adam, J.; Bluthgen, M.V.; Facchinetti, F.; et al. Association of metastatic pattern and molecular status in stage IV non-small cell lung cancer adenocarcinoma. Eur. Radiol. 2020, 30, 5021–5028. [Google Scholar] [CrossRef]
- Kuijpers, C.; Hendriks, L.; Derks, J.; Dingemans, A.-M.; van Lindert, A.; Heuvel, M.V.D.; Damhuis, R.; Willems, S. Association of molecular status and metastatic organs at diagnosis in patients with stage IV non-squamous non-small cell lung cancer. Lung Cancer 2018, 121, 76–81. [Google Scholar] [CrossRef]
- Doebele, R.C.; Lu, X.; Sumey, C.; Bs, D.A.M.; Weickhardt, A.J.; Oton, A.B.; Bunn, P.A.; Barón, A.E.; Franklin, W.A.; Aisner, D.L.; et al. Oncogene status predicts patterns of metastatic spread in treatment-naive nonsmall cell lung cancer. Cancer 2012, 118, 4502–4511. [Google Scholar] [CrossRef]
- Guan, J.; Chen, M.; Xiao, N.; Li, L.; Zhang, Y.; Li, Q.; Yang, M.; Liu, L.; Chen, L. EGFR mutations are associated with higher incidence of distant metastases and smaller tumor size in patients with non-small-cell lung cancer based on PET/CT scan. Med Oncol. 2016, 33, 1–8. [Google Scholar] [CrossRef]
- Hendriks, L.; Smit, E.; Vosse, B.; Mellema, W.; Heideman, D.; Bootsma, G.; Westenend, M.; Pitz, C.; de Vries, G.; Houben, R.; et al. EGFR mutated non-small cell lung cancer patients: More prone to development of bone and brain metastases? Lung Cancer 2014, 84, 86–91. [Google Scholar] [CrossRef]
- Li, H.; Cao, J.; Zhang, X.; Song, X.; Wang, W.; Jia, S.; Li, Z.; Jia, H.; Cao, X.; Zhou, W.; et al. Correlation between status of epidermal growth factor receptor mutation and distant metastases of lung adenocarcinoma upon initial diagnosis based on 1063 patients in China. Clin. Exp. Metastasis 2017, 34, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Brouns, A.J.W.M.; Hendriks, L.E.L.; Van Der Noort, V.; Van De Borne, B.E.E.M.; Schramel, F.M.N.H.; Groen, H.J.; Biesma, B.; Smit, H.J.M.; Dingemans, A.-M.C. Efficacy of Ibandronate Loading Dose on Rapid Pain Relief in Patients With Non-Small Cell Lung Cancer and Cancer Induced Bone Pain: The NVALT-9 Trial. Front. Oncol. 2020, 10, 890. [Google Scholar] [CrossRef]
- Levasseur, N.; Clemons, M.; Hutton, B.; Shorr, R.; Jacobs, C. Bone-targeted therapy use in patients with bone metastases from lung cancer: A systematic review of randomized controlled trials. Cancer Treat. Rev. 2016, 50, 183–193. [Google Scholar] [CrossRef] [PubMed]
- NCCN. NCCN Guidelines Version 3.2020 Non-Small Cell Lung Cancer; NCCN Evidence Books: Plymouth, PA, USA, 2020. [Google Scholar]
- Peters, S.; Danson, S.; Hasan, B.; Dafni, U.; Reinmuth, N.; Majem, M.; Tournoy, K.G.; Mark, M.T.; Pless, M.; Cobo, M.; et al. A randomised open-label phase iii trial evaluating the addition of denosumab to standard first-line treatment in advanced nsclc—The etop and eortc splendour trial. J. Thorac. Oncol. 2020, 15, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: Esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv192–iv237. [Google Scholar] [CrossRef]
- O’Carrigan, B.; Wong, M.H.; Willson, M.L.; Stockler, M.R.; Pavlakis, N.; Goodwin, A. Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst. Rev. 2017, 10, CD003474. [Google Scholar] [CrossRef]
- Gartrell, B.A.; Coleman, R.; Efstathiou, E.; Fizazi, K.; Logothetis, C.J.; Smith, M.R.; Sonpavde, G.; Sartor, O.; Saad, F. Metastatic Prostate Cancer and the Bone: Significance and Therapeutic Options. Eur. Urol. 2015, 68, 850–858. [Google Scholar] [CrossRef]
- Macherey, S.; Monsef, I.; Jahn, F.; Jordan, K.; Yuen, K.K.; Heidenreich, A.; Skoetz, N. Bisphosphonates for advanced prostate cancer. Cochrane Database Syst. Rev. 2017, 12, CD006250. [Google Scholar] [CrossRef] [PubMed]
- Daniele, S.; Sandro, B.; Salvatore, I.; Alfredo, F.; Francesco, F.; Domenico, G.; Luca, M.; Nicla, L.V.; Toni, I.; Fausto, P.; et al. Natural history of non-small-cell lung cancer with bone metastases. Sci. Rep. 2015, 5, 1–9. [Google Scholar]
- Silva, G.T.; Silva, L.M.; Bergmann, A.; Thuler, L.C. Bone metastases and skeletal-related events: Incidence and prognosis according to histological subtype of lung cancer. Futur. Oncol. 2019, 15, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.M.d.C.; Pimenta, C.A.d.M.; Nobre, M.R.C. The pico strategy for the research question construction and evidence search. Revista Latino-Americana de Enfermagem 2007, 15, 508–511. [Google Scholar] [CrossRef] [Green Version]
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials 1996, 17, 1–12. [Google Scholar] [CrossRef]
- Mok, T.S.; Wu, Y.-L.; Ahn, M.-J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.M.E.; et al. Osimertinib or platinum–pemetrexed in egfr t790m–positive lung cancer. N. Engl. J. Med. 2017, 376, 629–640. [Google Scholar] [CrossRef] [Green Version]
- Noronha, V.; Patil, V.M.; Joshi, A.; Menon, N.; Chougule, A.; Mahajan, A.; Janu, A.; Purandare, N.; Kumar, R.; More, S.; et al. Gefitinib Versus Gefitinib Plus Pemetrexed and Carboplatin Chemotherapy in EGFR-Mutated Lung Cancer. J. Clin. Oncol. 2020, 38, 124–136. [Google Scholar] [CrossRef]
- Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012, 13, 239–246. [Google Scholar] [CrossRef]
- Soria, J.-C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in UntreatedEGFR-Mutated Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef]
- Ahn, M.J.; Tsai, C.M.; Shepherd, F.A.; Bazhenova, L.; Sequist, L.V.; Hida, T.; Yang, J.C.H.; Ramalingam, S.S.; Mitsudomi, T.; Jänne, P.A.; et al. Osimertinib in patients with t790m mutation-positive, advanced non–small cell lung cancer: Long-term follow-up from a pooled analysis of 2 phase 2 studies. Cancer 2019, 125, 892–901. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Lim, S.H.; An, H.J.; Kim, K.H.; Park, K.U.; Kang, E.J.; Choi, Y.H.; Ahn, M.S.; Lee, M.H.; Sun, J.-M.; et al. Osimertinib for Patients With Non–Small-Cell Lung Cancer Harboring Uncommon EGFR Mutations: A Multicenter, Open-Label, Phase II Trial (KCSG-LU15-09). J. Clin. Oncol. 2020, 38, 488–495. [Google Scholar] [CrossRef]
- Goss, G.; Tsai, C.-M.; Shepherd, A.F.; Bazhenova, L.; Lee, J.S.; Chang, G.-C.; Crino, L.; Satouchi, M.; Chu, Q.; Hida, T.; et al. Osimertinib for pretreated EGFR Thr790Met-positive advanced non-small-cell lung cancer (AURA2): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2016, 17, 1643–1652. [Google Scholar] [CrossRef]
- Hirano, S.; Naka, G.; Takeda, Y.; Iikura, M.; Hayama, N.; Yanagisawa, A.; Amano, H.; Nakamura, M.; Nakamura, S.; Tabeta, H.; et al. A prospective, multicenter phase II trial of low-dose erlotinib as maintenance treatment after platinum doublet chemotherapy for advanced non-small cell lung cancer harboring EGFR mutation. Chin. Clin. Oncol. 2016, 5, 77. [Google Scholar] [CrossRef] [PubMed]
- Inoue, A.; Kobayashi, K.; Usui, K.; Maemondo, M.; Okinaga, S.; Mikami, I.; Ando, M.; Yamazaki, K.; Saijo, Y.; Gemma, A.; et al. First-Line Gefitinib for Patients With Advanced Non–Small-Cell Lung Cancer Harboring Epidermal Growth Factor Receptor Mutations Without Indication for Chemotherapy. J. Clin. Oncol. 2009, 27, 1394–1400. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.W.; Park, S.; Kim, Y.; Cho, J.H.; Park, S.E.; Lee, H.; Kim, H.K.; Kim, S.M.; Sun, J.M.; Lee, S.-H.; et al. Continuation of gefitinib beyond progression in patients with EGFR mutation-positive non-small-cell lung cancer: A phase II single-arm trial. Lung Cancer 2018, 124, 293–297. [Google Scholar] [CrossRef]
- Sunaga, N.; Tomizawa, Y.; Yanagitani, N.; Iijima, H.; Kaira, K.; Shimizu, K.; Tanaka, S.; Suga, T.; Hisada, T.; Ishizuka, T.; et al. Phase II prospective study of the efficacy of gefitinib for the treatment of stage III/IV non-small cell lung cancer with EGFR mutations, irrespective of previous chemotherapy. Lung Cancer 2007, 56, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-L.; Cheng, Y.; Zhou, J.; Lu, S.; Zhang, Y.; Zhao, J.; Kim, D.-W.; Soo, R.A.; Kim, S.-W.; Pan, H.; et al. Tepotinib plus gefitinib in patients with EGFR-mutant non-small-cell lung cancer with MET overexpression or MET amplification and acquired resistance to previous EGFR inhibitor (INSIGHT study): An open-label, phase 1b/2, multicentre, randomised trial. Lancet Respir. Med. 2020, 8, 1132–1143. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Y.; Xu, Z.; Yang, Q.; Zhu, G.; Liao, X.; Chen, X.; Zhu, B.; Duan, Y.; Sun, J. Concurrent EGFR-TKI and Thoracic Radiotherapy as First-Line Treatment for Stage IV Non-Small Cell Lung Cancer Harboring EGFR Active Mutations. Oncologist 2019, 24, 1031. [Google Scholar] [CrossRef] [Green Version]
- Atagi, S.; Goto, K.; Seto, T.; Yamamoto, N.; Tamura, T.; Tajima, K.; Inagaki, N. Erlotinib for Japanese patients with activating EGFR mutation-positive non-small-cell lung cancer: Combined analyses from two Phase II studies. Futur. Oncol. 2016, 12, 2117–2126. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Tan, E.-H.; O’Byrne, K.; Zhang, L.; Boyer, M.; Mok, T.; Hirsh, V.; Yang, J.C.-H.; Lee, K.H.; Lu, S.; et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): A phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016, 17, 577–589. [Google Scholar] [CrossRef]
- Park, K.; Yu, C.J.; Kim, S.W.; Lin, M.C.; Sriuranpong, V.; Tsai, C.M.; Lee, J.S.; Kang, J.H.; Chan, K.C.A.; Perez-Moreno, P.; et al. First-line erlotinib therapy until and beyond response evaluation criteria in solid tumors progression in asian patients with epidermal growth factor receptor mutation-positive non-small-cell lung cancer the aspiration study. JAMA Oncology 2016, 2, 305–312. [Google Scholar] [CrossRef]
- Reguart, N.; Rosell, R.; Cardenal, F.; Cardona, A.F.; Isla, D.; Palmero, R.; Moran, T.; Rolfo, C.; Pallarès, M.C.; Insa, A.; et al. Phase I/II trial of vorinostat (SAHA) and erlotinib for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations after erlotinib progression. Lung Cancer 2014, 84, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, N.; Kudoh, S.; Mitsuoka, S.; Yoshimoto, N.; Oka, T.; Nakai, T.; Suzumira, T.; Matusura, K.; Tochino, Y.; Asai, K.; et al. Phase II study of a combination regimen of gefitinib and pemetrexed as first-line treatment in patients with advanced non-small cell lung cancer harboring a sensitive EGFR mutation. Lung Cancer 2015, 90, 65–70. [Google Scholar] [CrossRef]
- Yoshimura, N.; Okishio, K.; Mitsuoka, S.; Kimura, T.; Kawaguchi, T.; Kobayashi, M.; Hirashima, T.; Daga, H.; Takeda, K.; Hirata, K.; et al. Prospective Assessment of Continuation of Erlotinib or Gefitinib in Patients with Acquired Resistance to Erlotinib or Gefitinib Followed by the Addition of Pemetrexed. J. Thorac. Oncol. 2013, 8, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Zwitter, M.; Rajer, M.; Stanic, K.; Vrankar, M.; Doma, A.; Cuderman, A.; Grmek, M.; Kern, I.; Kovac, V. Intercalated chemotherapy and erlotinib for non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutations. Cancer Biol. Ther. 2016, 17, 833–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwitter, M.; Stanic, K.; Rajer, M.; Kern, I.; Vrankar, M.; Edelbaher, N.; Kovac, V. Intercalated chemotherapy and erlotinib for advanced NSCLC: High proportion of complete remissions and prolonged progression-free survival among patients with EGFR activating mutations. Radiol. Oncol. 2014, 48, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Mok, T.S.; Cheng, Y.; Zhou, X.; Lee, K.H.; Nakagawa, K.; Niho, S.; Lee, M.; Linke, R.; Rosell, R.; Corral, J.; et al. Improvement in overall survival in a randomized study that compared dacomitinib with gefitinib in patients with advanced non–small-cell lung cancer and egfr-activating mutations. J. Clin. Oncol. 2018, 36, 2244–2250. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, I.; Morita, S.; Tashiro, N.; Imamura, F.; Inoue, A.; Seto, T.; Yamamoto, N.; Ohe, Y.; Nakagawa, K.; Fukuoka, M. Real world treatment and outcomes in EGFR mutation-positive non-small cell lung cancer: Long-term follow-up of a large patient cohort. Lung Cancer 2018, 117, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Laganà, M.; Gurizzan, C.; Roca, E.; Cortinovis, D.; Signorelli, D.; Pagani, F.; Bettini, A.; Bonomi, L.; Rinaldi, S.; Berardi, R.; et al. High Prevalence and Early Occurrence of Skeletal Complications in EGFR Mutated NSCLC Patients With Bone Metastases. Front. Oncol. 2020, 10, 588862. [Google Scholar] [CrossRef]
- Fujimoto, D.; Ueda, H.; Shimizu, R.; Kato, R.; Otoshi, T.; Kawamura, T.; Tamai, K.; Shibata, Y.; Matsumoto, T.; Nagata, K.; et al. Features and prognostic impact of distant metastasis in patients with stage IV lung adenocarcinoma harboring EGFR mutations: Importance of bone metastasis. Clin. Exp. Metastasis 2014, 31, 543–551. [Google Scholar] [CrossRef]
- Hosomi, Y.; Morita, S.; Sugawara, S.; Kato, T.; Fukuhara, T.; Gemma, A.; Takahashi, K.; Fujita, Y.; Harada, T.; Minato, K.; et al. Gefitinib alone versus gefitinib plus chemotherapy for non–small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 study. J. Clin. Oncol. 2020, 38, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Garon, E.B.; Seto, T.; Nishio, M.; Aix, S.P.; Paz-Ares, L.; Chiu, C.-H.; Park, K.; Novello, S.; Nadal, E.; et al. Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 1655–1669. [Google Scholar] [CrossRef] [Green Version]
- D’Antonio, C.; Passaro, A.; Gori, B.; Del Signore, E.; Migliorino, M.R.; Ricciardi, S.; Fulvi, A.; de Marinis, F. Bone and brain metastasis in lung cancer: Recent advances in therapeutic strategies. Ther. Adv. Med Oncol. 2014, 6, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-M.; Yang, J.-J.; Chen, H.-J.; Wu, S.-P.; Bai, X.-Y.; Zhou, Q.; Tu, H.-Y.; Wu, Y.-L. Epidermal growth factor receptor is associated with the onset of skeletal related events in non-small cell lung cancer. Oncotarget 2017, 8, 81369–81376. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Li, S.; Gu, J.; Lin, Z.; Lai, B.; Huang, L.; Feng, J.; Liu, B.; Zhou, Y. Retrospective study on the efficacy of bisphosphonates in tyrosine kinase inhibitor-treated patients with non-small cell lung cancer exhibiting bone metastasis. Oncol. Lett. 2019, 18, 5437–5447. [Google Scholar] [CrossRef]
- Zhang, G.; Cheng, R.; Zhang, Z.; Jiang, T.; Ren, S.; Ma, Z.; Zhao, S.; Zhou, C.; Zhang, J. Bisphosphonates enhance antitumor effect of EGFR-TKIs in patients with advanced EGFR mutant NSCLC and bone metastases. Sci. Rep. 2017, 7, 42979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagata, M.; Kudoh, S.; Mitsuoka, S.; Suzumura, T.; Umekawa, K.; Tanaka, H.; Matsuura, K.; Kimura, T.; Yoshimura, N.; Hirata, K. Skeletal-related events in advanced lung adenocarcinoma patients evaluated EGFR mutations. Osaka City Med. J. 2013, 59, 45–52. [Google Scholar]
- Higuchi, T.; Sugisawa, N.; Park, J.H.; Sun, Y.; Zhu, G.; Yamamoto, N.; Hayashi, K.; Kimura, H.; Miwa, S.; Igarashi, K.; et al. Osimertinib regressed an EGFR-mutant lung-adenocarcinoma bone-metastasis mouse model and increased long-term survival. Transl. Oncol. 2020, 13, 100826. [Google Scholar] [CrossRef]
- Chang, J.W.-C.; Hsieh, J.-J.; Shen, Y.-C.; Yeh, K.-Y.; Wang, C.-H.; Li, Y.-Y.; Hsu, T. Bisphosphonate zoledronic acid enhances the inhibitory effects of gefitinib on EGFR-mutated non-small cell lung carcinoma cells. Cancer Lett. 2009, 278, 17–26. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Fukuhara, T.; Furuya, N.; Watanabe, K.; Sugawara, S.; Iwasawa, S.; Tsunezuka, Y.; Yamaguchi, O.; Okada, M.; Yoshimori, K.; et al. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): Interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol. 2019, 20, 625–635. [Google Scholar] [CrossRef]
- Cancer Stat Facts: Female Breast Cancer. Available online: https://seer.cancer.gov/statfacts/html/breast.html (accessed on 6 June 2021).
- Cancer Stat Facts: Prostate Cancer. Available online: https://seer.cancer.gov/statfacts/html/prost.html (accessed on 6 June 2021).
- Hanna, N.; Johnson, D.; Temin, S.; Baker, S.; Brahmer, J.; Ellis, P.M.; Giaccone, G.; Hesketh, P.J.; Jaiyesimi, I.; Leighl, N.B.; et al. Systemic therapy for stage iv non–small-cell lung cancer: American society of clinical oncology clinical practice guideline update. J. Clin. Oncol. 2017, 35, 3484–3515. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; Senkus, E.; Costa, A.; Papadopoulos, E.; Aapro, M.; André, F.; Harbeck, N.; Aguilar Lopez, B.; Barrios, C.H.; Bergh, J.; et al. 4th eso-esmo international consensus guidelines for advanced breast cancer (abc 4). Ann. Oncol. 2018, 29, 1634–1657. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.; Hadji, P.; Body, J.-J.; Santini, D.; Chow, E.; Terpos, E.; Oudard, S.; Bruland, Ø.; Flamen, P.; Kurth, A.; et al. Bone health in cancer: ESMO Clinical Practice Guidelines. Ann. Oncol. 2020, 31, 1650–1663. [Google Scholar] [CrossRef] [PubMed]
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) Non-Small Cell Lung Cancer. Version 3. 2020. Available online: https://www2.tri-kobe.org/nccn/guideline/lung/english/non_small.pdf (accessed on 6 June 2021).
- Confavreux, C.B.; Pialat, J.-B.; Bellière, A.; Brevet, M.; Decroisette, C.; Tescaru, A.; Wegrzyn, J.; Barrey, C.; Mornex, F.; Souquet, P.-J.; et al. Bone metastases from lung cancer: A paradigm for multidisciplinary onco-rheumatology management. Jt. Bone Spine 2019, 86, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, M.; DeLea, T.E.; Cong, Z.; Chung, K. Utilization of intravenous bisphosphonates in patients with bone metastases secondary to breast, lung, or prostate cancer. Support. Care Cancer 2013, 22, 103–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oster, G.; Lamerato, L.; Glass, A.G.; Richert-Boe, K.E.; López, A.; Chung, K.; Richhariya, A.; Dodge, T.; Wolff, G.G.; Balakumaran, A.; et al. Use of intravenous bisphosphonates in patients with breast, lung, or prostate cancer and metastases to bone: A 15-year study in two large US health systems. Support. Care Cancer 2014, 22, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
Criterion | Definition |
---|---|
Subjects included | Human only |
Language | English |
Article type | Original article; reviews excluded |
Study phase | II or III |
Year of publication | January 2006–Jan 2021 |
Site of primary tumor | NSCLC, ≥10 patients with EGFR mutation |
Tumor stage | IIIB or IV |
Age | ≥18 years |
Treatment | At least one of the trial arms was treatment with EGFR-TKI |
Follow-up period | No lower or upper limit |
Dosing, route, and frequency or duration of treatment | No restrictions |
Outcome | Bone metastases and SREs at baseline or during the course of the disease, and/or their outcome. Regardless of whether they were primary, secondary, or no pre-specified endpoint of the trial |
Study (y) | Trial Type | Jadad Score | Total pts/EGFR+ pts | Histological Diagnosis (%) | Stage (%) | Treatment Arm (dose) | Comparator Arm | Median Follow-Up (Months) | Primary Objective(s) | Secondary Objective (s) |
---|---|---|---|---|---|---|---|---|---|---|
Sunaga (2007) | Phase II, single-arm, multicenter study | 1 | 21/21 | AdC (100) | IIIB (24)IV (76) | Gefitinib (250 mg q.d.) | - | 12.6 | ORR | PFS, tolerability |
Inoue (2009) | Phase II, single-arm study | 1 | 29/29 | AdC (93) Adenosquamous (3) Undifferentiated (3) | IV (93) Other (7) | Gefitinib (250 mg q.d.) | - | 17.8 | ORR | PS improvement rate, toxicity, PFS, OS |
Rosell (2012) [Eurtac] | Phase III, open-label, multicenter RCT | 3 * | 173/173 | AdC (92) BAC (1) LCC (2) SCC (0.5) NOS (3) | IIIA (1) IIIB (6) IV (92) | Erlotinib (150 mg q.d.) | 3-week cycles of chemotherapy 1 | Erlotinib arm: 18.9 Chemotherapy arm: 14.4 | PFS | OS, ORR, serum analysis EGFR mutation |
Yoshimura (2013) | Phase II, single-arm, study | 1 | 27/27 | AdC (96) SCC (1) | IV (100) | 3-weekly cycles of pemetrexed d1 (500 mg/m2) and erlotinib/gefitinib d2-16 (dose NR) | - | 11.4 | DCR | ORR, PFS, OS, toxicity, safety |
Reguart (2014) | Phase I-II, single-arm, multicenter study | 1 | 25/25 | AdC (84) SCC (1) LCC (8) | IIIB (4) IV (96) | Erlotinib (150 mg q.d.) + vorinostat (400 mg q.d.) | - | NR | PFS at 12 weeks | Median PFS, OS |
Zwitter (2014) | Phase II, single-arm, study | 1 | 53/38 | AdC (100) | IIIB (4) IV (96) | 3-weekly cycles of gemcitabin 120 mg/m2 d1, cisplatin 75 mg/m2 d2, gemcitabin 1250 mg/m2 d4, erlotinib 150 mg q.d. d5-15 | - | NR | PFS, response to treatment | OS, toxicity, metabolic response only from 2010 |
Yoshimura (2015) | Phase II, open-label, single-arm study | 1 | 26/26 | AdC (100) | III (4) IV (96) | 3-weekly cycles of pemetrexed d1 (500 mg/m2) and gefitinib 250 mg q.d. d2-16 | - | 19.7 | ORR | - |
Park (2016a) [Aspiration study] | Phase II, single-arm, multicenter study | 1 | 207/207 | AdC (97) SCC (1) NOS (2) | IV (85) Recurrent (16) | Erlotinib 150 mg q.d. | - | 11.3 | PFS-12 | PFS-2 3, ORR, DCR, PFS-12 in exon 19 del and L858R subsets, OS, safety |
Park (2016b)[Lux-lung 7] | Phase IIB, open-label, multicenter RCT | 3 * | 319/319 | AdC (99) NOS (1) | IIIB (3) IV (97) | Afatinib (40 mg q.d.); dose escalation to 50 mg q.d. allowed after 4 weeks without AE | Gefitinib (250 mg q.d.) | 27.3 | PFS, time-to-treatment failure, OS | ObR, time to and duration of ObR, % pts that achieved DCR, duration of DCR, tumor shrinkage, QoL |
Zwitter (2016) | Phase II, open-label, single-arm, study | 1 | 38/38 | Non-SCC (100) | IIIB (3) IV (97) | 3-weekly cycles of gemcitabin (1250 mg/m2) d1 + 4, cisplatin 75 mg/m2 d2, erlotinib 150 mg q.d. d 5–15 | - | 35 | PFS | - |
Atagi (2016) | Combined results of 2 phase II studies: JO22903 (single-arm) and JO25567 study (randomized) | JO22903: 1 JO25567: 2 | 177/177 | NSCLC (100) | IIIB/IV (78) Recurrent (22) | JO22903: erlotinib 150 mg q.d. JO25567: erlotinib 150 mg q.d. | JO22903: -JO25567: bevacizumab 15 mg/kg 3-weekly cycles + erlotinib 150 mg q.d. | JO22903: 20.4 JO25567: at minimum 20 | PFS both studies | JO22903 and JO25567: ORR, DCR, OS. JO25567: also QoL, symptom improvement4, safety |
Hirano (2016) | Phase II, single-arm, multicenter study | 1 | 11/11 | AdC (100) | IV (100%) | Erlotinib (25 mg q.d.); dose escalation to 150 mg q.d. in case of PD | - | NR | ORR | PFS, OS, safety |
Goss (2016) [Aura 2] | Phase II, open-label, multicenter single-arm study | 1 | 199/199 | AdC (95) SCC (1) Adenosquamous (1) NOS (3) | IIIB (6%) IV (94%) | Osimertinib (80 mg q.d.) | - | 13.0 | ORR | PFS, duration of response, DCR, tumor shrinkage, OS, safety, QoL, pharmacokinetics |
Mok (2017) [Aura 3] | Phase III, open-label, multicenter RCT | 2 | 419/419 | AdC NOS (86) | IIIB (NR) IV (NR) | Osimertinib 80 mg q.d. | 3-weekly cycles of pemetrexed (500 mg/m2) + carboplatin (AUC 5) or cisplatin (75 mg/m2) | 8.3 | PFS | ORR, DoR, DCR, OS, tumor shrinkage, PROMS, safety, side-effect profiles |
Soria (2018) [FLAURA] | Phase III, multicenter, double-blind, RCT | 4 * | 556/556 | AdC (97) Other (3) | IIIB (5) IV (95) Missing (<1) | Osimertinib 80 mg q.d. | Erlotinib (150mg q.d.) or Gefitinib (250 mg q.d.) | 15 | PFS | OS, ORR, DoR, DCR, depth of response 5, safety |
Lim (2018) | Phase II, single-arm, study | 1 | 49/49 | NSCLC NOS (100) | IV (98.7)Recurrent (10.2) | Gefitinib 250 mg q.d. | - | At minimum 6 | PFS-2 3 | PFS-1 2, difference between PFS-2- PFS-1 6, OS, safety |
Ahn (2019) | Combined results of 2 phase II studies (AURA extension and AURA 2 trial), both single-arm | Aura extension trial: 1 Aura 2 trial: 1 | 411/411 | AdC (96) SCC (<1) Adenosquamous (<1) Other (3) | IIIB (4) IV (96) | Osimertinib 80 mg q.d. | - | NR | ORR | DoR, DCR, PFS, OS, safety |
Zheng (2019) | Phase II, single-arm study | 1 | 10/10 | AdC (100) | IV (100%) | Erlotinib 150 mg q.d. or Gefitinib 250 mg q.d. plus thoracic radiotherapy 7 | - | 12 | PFS at 12 months | PFS, OS, safety, ORR, time to progression of irradiated lesion |
Cho (2019) [KCSG-Lu15-09] | Phase II, open-label, single arm, study | 1 | 36/36 | AdC (97) SCC (3) | IV (64) Recurrent (36) | Osimertinib 80 mg q.d. | - | 20.6 | ORR | PFS, OS, DoR, safety |
Noronha (2020) | Phase III, open-label, study | 3 * | 350/350 | Gefitinib + chemo arm: AdC (98) Adenosquamous (2) SCC (1) Gefitinib arm: AdC (97) Adenosquamous (2) SCC (1) Sarcomatoid carcinoma (1) | Gefitinib+chemo arm: IIIB (2) IV (98) Gefitinib arm: IIIB (3) IV (97) | 3-weekly cycles of Gefitinib 250 mg q.d. and pemetrexed 500 mg/m2 + carboplatin (AUC 5) on d1, (up to four cycles), followed by 3-weekly cycles maintenance pemetrexed | Gefitinib 250 mg q.d. | 17 | PFS | PS, RR, toxicity, QoL |
Wu (2020) [Insight study] | Phase Ib/II, open-label, study | 2 | 55/55 | Teponitinib plus gefitinib arm: AdC (97) SCC (3) Chemotherapy arm: AdC (100) | NR | Teponitinib 500 mg q.d. + gefitinib 250 mg q.d. | Pemetrexed 500 mg/m2 + cisplatin 75 mg/m2 or carboplatin (AUC 5–6) on d1 ≤ 6 cycles or 4 cycles + pemetrexed maintenance | 21.8 | Investigator-assessed PFS | OS, safety |
Study (y) | Required Imaging at Baseline | Method of Imaging during Follow-Up | BM at Baseline (%) | BM at Progression (%) | Number of SRE (%) | BTA Use |
---|---|---|---|---|---|---|
Sunaga (2007) | Chest X-ray, chest + abdominal CT scan, brain MRI scan, radionuclide bone scan | NR | 24 | NR | NR | NR |
Inoue (2009) | NR | NR | 41 | NR | NR | NR |
Rosell (2012) (Eurtac) | Ct scan, optional PET-CT scan | CT scan (not further specified) | Erlotinib arm: 33 Chemotherapy arm: 33 | NR | NR | NR |
Yoshimura (2013) | Chest X-ray, chest + abdominal CT scan, brain MRI or CT scan, radionuclide bone scan | NR | 59 | NR | NR | NR |
Reguart (2014) | Chest + abdominal CT scan. Brain CT scan and bone scintigraphy on indication | Chest CT scan, abdominal CT scan. Brain CT scan and bone scintigraphy on indication | 40 | NR | NR | NR |
Zwitter (2014) | Chest X-ray, brain + chest + upper abdominal CT scan from 2010 PET-CT scan | Before 2010 NR, from 2010 PET-CT scan | 63 | EGFR+ group: 26 | NR | NR |
Yoshimura (2015) | Chest X-ray, chest + abdominal CT scan, brain MRI or CT scan, radionuclide bone imaging or PET-CT scan | CT scan not further specified every 6 wks for first 24 wks, thereafter every 8 wks till PD or new therapy | 31 | NR | NR | NR |
Park (2016a) (Aspiration study) | NR | NR | NR | 8.2 | NR | NR |
Park (2016b) (Lux-lung 7) | NR | CT scan (not further specified) or MRI scan | Afatinib arm: 50 Gefitinib arm: 46 | NR | NR | NR |
Zwitter (2016) | PET-CT scan | PET-CT scan | 63 | “bone (10) most frequent site of PD.” Number of pts with PD NR. | NR | NR |
Atagi (2016) | Chest + abdominal scans (CT/MRI), brain scan (CT/MRI), bone scans (bone scintigraphy, PET-CT, MRI) | NR | NR | 16 | NR | NR |
Hirano (2016) | Chest X-ray, chest +abdominal/pelvis CT scan, brain MRI, bone scintigraphy | CT, MRI, bone scan every 2 months | NR | 12.5 | NR | NR |
Goss (2016) (Aura 2) | CT scan or MRI scan (not further specified) | CT scan or MRI scan (not further specified) | NR | 13.8 | NR | Permitted, no further information |
Mok (2017) (Aura 3) | Chest + abdominal scans (CT/MRI), any other areas of disease involvement based on patients’ signs or symptoms | Chest + abdominal scans (CT/MRI), any other areas of disease involvement based on patients’ signs or symptoms | NR | Osimertinib arm: 3, Platinum/ pemetrexed arm: 4 | NR | NR |
Soria (2018) (Flaura) | Chest + abdominal scans (CT/MRI), any other areas of disease involvement based on patients’ signs or symptoms | Chest + abdominal scans (CT/MRI), any other areas of disease involvement based on patients’ signs or symptoms | NR | Osimertinib arm: 4, Gefitinib or erlotinib arm: 4 | NR | NR |
Lim (2018) | NR | Tumor assessments every 8 weeks by CT-scan (not further specified) | 18 | NR | NR | NR |
Ahn (2019) | AURA extension: CT scan or MRI scan (not further specified), AURA2 study: NR | AURA extension: CT scan or MRI scan (not further specified), AURA2 study: NR | NR | 7 | NR | NR |
Zheng (2019) | NR | NR | 90 | 20 | NR | NR |
Cho (2019) (KCSG-Lu15-09) | CT scan or MRI scan, not further specified | Chest X-ray every 3 weeks, CT scan every 6 weeks | 28 | NR | NR | NR |
Noronha (2020) | NR | Every 9 wks by CT scans (not further specified) | Gefitinib + chemo arm: 14 Gefitinib arm: 14 | Gefitinib + chemo arm: 3 Gefitinib arm: 5 | NR | NR |
Wu (2020) (Insight study) | NR | NR | Teponitinib plus gefitinib arm: 23 Chemotherapy arm: 37.5 | NR | NR | NR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brouns, A.; Dursun, S.; Bootsma, G.; Dingemans, A.-M.C.; Hendriks, L. Reporting of Incidence and Outcome of Bone Metastases in Clinical Trials Enrolling Patients with Epidermal Growth Factor Receptor Mutated Lung Adenocarcinoma—A Systematic Review. Cancers 2021, 13, 3144. https://doi.org/10.3390/cancers13133144
Brouns A, Dursun S, Bootsma G, Dingemans A-MC, Hendriks L. Reporting of Incidence and Outcome of Bone Metastases in Clinical Trials Enrolling Patients with Epidermal Growth Factor Receptor Mutated Lung Adenocarcinoma—A Systematic Review. Cancers. 2021; 13(13):3144. https://doi.org/10.3390/cancers13133144
Chicago/Turabian StyleBrouns, Anita, Safiye Dursun, Gerben Bootsma, Anne-Marie C. Dingemans, and Lizza Hendriks. 2021. "Reporting of Incidence and Outcome of Bone Metastases in Clinical Trials Enrolling Patients with Epidermal Growth Factor Receptor Mutated Lung Adenocarcinoma—A Systematic Review" Cancers 13, no. 13: 3144. https://doi.org/10.3390/cancers13133144
APA StyleBrouns, A., Dursun, S., Bootsma, G., Dingemans, A.-M. C., & Hendriks, L. (2021). Reporting of Incidence and Outcome of Bone Metastases in Clinical Trials Enrolling Patients with Epidermal Growth Factor Receptor Mutated Lung Adenocarcinoma—A Systematic Review. Cancers, 13(13), 3144. https://doi.org/10.3390/cancers13133144