Association between Pre-Diagnostic Serum Bile Acids and Hepatocellular Carcinoma: The Singapore Chinese Health Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Ascertainment of Incident Cancer Cases and Death
2.3. Nested Case–Control Study of Hepatocellular Carcinoma
2.4. Measurement of Serum Bile Acids and Hepatitis B Virus
2.5. Statistical Analysis
3. Results
3.1. Serum Concentrations of Primary Bile Acids and HCC Risk
3.2. Serum Concentrations of Secondary Bile Acids and HCC Risk
3.3. Taurine-Conjugated and Glycine-Conjugated Bile Acids and HCC Risk
3.4. Serum Concentrations of Other Minor Bile Acids and HCC Risk
3.5. Correlation of Serum Bile Acids with Each Other and Other Covariates
3.6. Sensitivity Analysis for Bile Acids and HCC Risk
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Approval and Consent to Participate
References
- World Health Organization. International Agency for Research on Cancer. Available online: https://gco.iarc.fr/today/home (accessed on 26 May 2020).
- Wild, C.; Weiderpass, E.; Stewart, B. World Cancer Report: Cancer Research for Cancer Prevention 2020; International Agency for Research on Cancer: Lyon, France, 2020. [Google Scholar]
- El-Serag, H.B.; Rudolph, K.L. Hepatocellular Carcinoma: Epidemiology and Molecular Carcinogenesis. Gastroenterology 2007, 132, 2557–2576. [Google Scholar] [CrossRef]
- Gomaa, A.I.; Khan, S.; Toledano, M.B.; Waked, I.; Taylor-Robinson, S.D. Hepatocellular carcinoma: Epidemiology, risk factors and pathogenesis. World J. Gastroenterol. 2008, 14, 4300–4308. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, A. Hepatocellular Carcinoma. N. Engl. J. Med. 2019, 380, 1450–1462. [Google Scholar] [CrossRef] [Green Version]
- Global Burden of Disease Liver Cancer Collaboration. The Burden of Primary Liver Cancer and Underlying Etiologies from 1990 to 2015 at the Global, Regional, and National Level: Results from the Global Burden of Disease Study 2015. JAMA Oncol. 2017, 3, 1683–1691. [Google Scholar] [CrossRef]
- Eslam, M.; Sanyal, A.J.; George, J. International Consensus Panel. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020, 158, 1999–2014. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Key Statistics About Liver Cancer. Available online: https://www.cancer.org/cancer/liver-cancer/about/what-is-key-statistics.html (accessed on 26 May 2020).
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef]
- Vanni, E.; Bugianesi, E. Obesity and Liver Cancer. Clin. Liver Dis. 2014, 18, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Marengo, A.; Rosso, C.; Bugianesi, E. Liver Cancer: Connections with Obesity, Fatty Liver, and Cirrhosis. Annu. Rev. Med. 2016, 67, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Campo, L.; Eiseler, S.; Apfel, T.; Pyrsopoulos, N. Fatty Liver Disease and Gut Microbiota: A Comprehensive Update. J. Clin. Transl. Hepatol. 2018, 7, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.-W.; Chen, X.-H.; Ren, Z.-G.; Zheng, S.-S. Gut microbial dysbiosis associates hepatocellular carcinoma via the gut-liver axis. Hepatobiliary Pancreat. Dis. Int. 2019, 18, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Xie, G.; Jia, W. Bile acid–microbiota cross-talk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 111–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallim, T.Q.D.A.; Tarling, E.J.; Edwards, P.A. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013, 17, 657–669. [Google Scholar]
- McGlone, E.R.; Bloom, S.R. Bile acids and the metabolic syndrome. Ann. Clin. Biochem. Int. J. Lab. Med. 2019, 56, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K.M.; Albers, S.; Trautwein, C. Role of bile acids in the gut-liver axis. J. Hepatol. 2018, 68, 1083–1085. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Wang, X.; Huang, F.; Zhao, A.; Chen, W.; Yan, J.; Zhang, Y.; Lei, S.; Ge, K.; Zheng, X.; et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. Int. J. Cancer 2016, 139, 1764–1775. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Deuschle, U.; Taira, S.; Nishida, T.; Fujimoto, M.; Hijikata, T.; Tsuneyama, K. Tsumura-Suzuki obese diabetic mice-derived hepatic tumors closely resemble human hepatocellular carcinomas in metabolism-related genes expression and bile acid accumulation. Hepatol. Int. 2018, 12, 254–261. [Google Scholar] [CrossRef]
- Sun, L.; Beggs, K.; Borude, P.; Edwards, G.; Bhushan, B.; Walesky, C.; Roy, N.; Manley, M.W.; Gunewardena, S.; O’Neil, M.; et al. Bile acids promote diethylnitrosamine-induced hepatocellular carcinoma via increased inflammatory signaling. Am. J. Physiol. Liver Physiol. 2016, 311, G91–G104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, P.; Yin, P.; Hua, R.; Tan, Y.; Li, Z.; Qiu, G.; Yin, Z.; Xie, X.; Wang, X.; Chen, W.; et al. A Large-scale, multicenter serum metabolite biomarker identification study for the early detection of hepatocellular carcinoma. Hepatology 2018, 67, 662–675. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, S.; Loo, T.M.; Atarashi, K.; Kanda, H.; Sato, S.; Oyadomari, S.; Iwakura, Y.; Oshima, K.; Morita, H.; Hattori, M.; et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013, 499, 97–101. [Google Scholar] [CrossRef]
- Petrick, J.L.; Florio, A.A.; Koshiol, J.; Pfeiffer, R.M.; Yang, B.; Yu, K.; Chen, C.; Yang, H.; Lee, M.; McGlynn, K.A. Prediagnostic concentrations of circulating bile acids and hepatocellular carcinoma risk: REVEAL-HBV and HCV studies. Int. J. Cancer 2020, 147, 2743–2753. [Google Scholar] [CrossRef]
- Loftfield, E.; A Rothwell, J.; Sinha, R.; Keski-Rahkonen, P.; Robinot, N.; Albanes, D.; Weinstein, S.J.; Derkach, A.; Sampson, J.; Scalbert, A.; et al. Prospective Investigation of Serum Metabolites, Coffee Drinking, Liver Cancer Incidence, and Liver Disease Mortality. J. Natl. Cancer Inst. 2020, 112, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Jee, S.H.; Kim, M.; Kim, M.; Yoo, H.J.; Kim, H.; Jung, K.J.; Hong, S.; Lee, J.H. Metabolomics Profiles of Hepatocellular Carcinoma in a Korean Prospective Cohort: The Korean Cancer Prevention Study-II. Cancer Prev. Res. 2018, 11, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Shang, X.; Wan, X.; Xiang, X.; Mao, Q.; Deng, G.; Wu, Y. Increased hepatocellular carcinoma risk in chronic hepatitis B patients with persistently elevated serum total bile acid: A retrospective cohort study. Sci. Rep. 2016, 6, 38180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Zhou, L.; Yin, P.; Wang, J.; Lu, X.; Wang, X.; Chen, J.; Lin, X.; Xu, G. A weighted relative difference accumulation algorithm for dynamic metabolomics data: Long-term elevated bile acids are risk factors for hepatocellular carcinoma. Sci. Rep. 2015, 5, 8984. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hong, Z.; Tan, G.; Dong, X.; Yang, G.; Zhao, L.; Chen, X.; Zhu, Z.; Lou, Z.; Qian, B.; et al. NMR and LC/MS-based global metabolomics to identify serum biomarkers differentiating hepatocellular carcinoma from liver cirrhosis. Int. J. Cancer 2014, 135, 658–668. [Google Scholar] [CrossRef]
- Ressom, H.W.; Xiao, J.F.; Tuli, L.; Varghese, R.S.; Zhou, B.; Tsai, T.-H.; Ranjbar, M.R.N.; Zhao, Y.; Wang, J.; Di Poto, C.; et al. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis. Anal. Chim. Acta 2012, 743, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Xie, G.; Wang, X.; Fan, J.; Qiu, Y.; Zheng, X.; Qi, X.; Cao, Y.; Su, M.; Wang, X.; et al. Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma. Mol. Cell. Proteomics 2011, 10, M110.004945. [Google Scholar] [PubMed] [Green Version]
- Thomas, C.E.; Luu, H.N.; Wang, R.; Adams-Haduch, J.; Jin, A.; Koh, W.-P.; Yuan, J.-M. Association between Dietary Tomato Intake and the Risk of Hepatocellular Carcinoma: The Singapore Chinese Health Study. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1430–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hankin, J.H.; Stram, D.O.; Arakawa, K.; Park, S.; Low, S.-H.; Lee, H.-P.; Yu, M.C. Singapore Chinese Health Study: Development, Validation, and Calibration of the Quantitative Food Frequency Questionnaire. Nutr. Cancer 2001, 39, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Parkin, D.; Whelan, S.; Ferlay, J.; Teppo, L.; Thomas, D. Cancer Incidence in Five Continents; International Agency for Research on Cancer: Lyon, France, 2002; Volume 8. [Google Scholar]
- Ferslew, B.C.; Xie, G.; Johnston, C.K.; Su, M.; Stewart, P.W.; Jia, W.; Brouwer, K.L.R.; Barritt, A.S. Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis. Dig. Dis. Sci. 2015, 60, 3318–3328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, G.; Wang, Y.; Wang, X.; Zhao, A.; Chen, T.; Xiaoning, W.; Wong, L.; Zhang, H.; Zhang, J.; Liu, C.; et al. Profiling of Serum Bile Acids in a Healthy Chinese Population Using UPLC–MS/MS. J. Proteome Res. 2015, 14, 850–859. [Google Scholar] [CrossRef]
- Yu, H.; Ni, Y.; Bao, Y.; Zhang, P.; Zhao, A.; Chen, T.; Xie, G.; Tu, Y.; Zhang, L.; Su, M.; et al. Chenodeoxycholic Acid as a Potential Prognostic Marker for Roux-en-Y Gastric Bypass in Chinese Obese Patients. J. Clin. Endocrinol. Metab. 2015, 100, 4222–4230. [Google Scholar] [CrossRef] [Green Version]
- Koh, W.-P.; Robien, K.; Wang, R.; Govindarajan, S.; Yuan, J.-M.; Yu, M.C. Smoking as an independent risk factor for hepatocellular carcinoma: The Singapore Chinese Health Study. Br. J. Cancer 2011, 105, 1430–1435. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.-M.; Ross, R.K.; Stanczyk, F.Z.; Govindarajan, S.; Gao, Y.-T.; Henderson, B.E.; Yu, M.C. A cohort study of serum testosterone and hepatocellular carcinoma in Shanghai, China. Int. J. Cancer 1995, 63, 491–493. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, A.; Sjövall, J.; Kurz, G.; Radominska, A.; Schteingart, C.; Tint, G.; Vlahcevic, Z.; Setchell, K. A proposed nomenclature for bile acids. J. Lipid Res. 1992, 33, 599–604. [Google Scholar] [CrossRef]
- Mikó, E.; Vida, A.; Kovács, T.; Ujlaki, G.; Trencsényi, G.; Márton, J.; Sári, Z.; Kovács, P.; Boratkó, A.; Hujber, Z.; et al. Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochim. Biophys. Acta Bioenerg. 2018, 1859, 958–974. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.A.; Beach, A.; Davies, G.F.; Harkness, T.; Leblanc, A.; Titorenko, V.I. Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells. Oncotarget 2011, 2, 761–782. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, A.A.; Titorenko, V.I.; Beach, A.; Sanderson, J.T. Bile acids induce apoptosis selectively in androgen-dependent and independent prostate cancer cells. PeerJ 2013, 1, e122. [Google Scholar] [CrossRef] [PubMed]
- Agha, S.; Zuberi, S.J. Comparison of serum bile acids with standard liver function tests in the diagnosis of liver disease. Indian J. Gastroenterol. 1989, 8, 41–42. [Google Scholar] [PubMed]
- Kim, M.J.; Suh, D.J. Profiles of Serum Bile Acids in Liver Diseases. Korean J. Intern. Med. 1986, 1, 37–42. [Google Scholar] [CrossRef]
- Caussy, C.; Hsu, C.; Singh, S.; Bassirian, S.; Kolar, J.; Faulkner, C.; Sinha, N.; Bettencourt, R.; Gara, N.; Valasek, M.A.; et al. Serum bile acid patterns are associated with the presence of NAFLD in twins, and dose-dependent changes with increase in fibrosis stage in patients with biopsy-proven NAFLD. Aliment. Pharmacol. Ther. 2019, 49, 183–193. [Google Scholar] [CrossRef]
- Puri, P.; Daita, K.; Joyce, A.; Mirshahi, F.; Santhekadur, P.K.; Cazanave, S.; A Luketic, V.; Siddiqui, M.S.; Boyett, S.; Min, H.; et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology 2018, 67, 534–548. [Google Scholar] [CrossRef] [PubMed]
- Kwan, S.Y.; Jiao, J.; Qi, J.; Wang, Y.; Wei, P.; McCormick, J.B.; Fisher-Hoch, S.P.; Beretta, L. Bile Acid Changes Associated with Liver Fibrosis and Steatosis in the Mexican-American Population of South Texas. Hepatol. Commun. 2020, 4, 555–568. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Apte, U. Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer. Adv. Pharmacol. 2015, 74, 263–302. [Google Scholar] [PubMed] [Green Version]
- Wang, Y.-D.; Chen, W.-D.; Wang, M.; Yu, D.; Forman, B.M.; Huang, W. Farnesoid X receptor antagonizes nuclear factor κB in hepatic inflammatory response. Hepatology 2008, 48, 1632–1643. [Google Scholar] [CrossRef] [Green Version]
- Mencarelli, A.; Renga, B.; Distrutti, E.; Fiorucci, S. Antiatherosclerotic effect of farnesoid X receptor. Am. J. Physiol. Circ. Physiol. 2009, 296, H272–H281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duboc, H.; Taché, Y.; Hofmann, A.F. The bile acid TGR5 membrane receptor: From basic research to clinical application. Dig. Liver Dis. 2014, 46, 302–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Zhang, Z.; Huang, M.; Sun, X.; Liu, B.; Guo, Q.; Chang, Q.; Duan, Z. Taurocholic acid is an active promoting factor, not just a biomarker of progression of liver cirrhosis: Evidence from a human metabolomic study and in vitro experiments. BMC Gastroenterol. 2018, 18, 112. [Google Scholar] [CrossRef] [PubMed]
- Natividad, J.M.; Lamas, B.; Pham, H.P.; Michel, M.-L.; Rainteau, D.; Bridonneau, C.; DA Costa, G.; Vlieg, J.V.H.; Sovran, B.; Chamignon, C.; et al. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat. Commun. 2018, 9, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devkota, S.; Wang, Y.; Musch, M.W.; Leone, V.; Fehlner-Peach, H.; Nadimpalli, A.; Antonopoulos, D.A.; Jabri, B.; Chang, E.B. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 2012, 487, 104–108. [Google Scholar] [CrossRef] [Green Version]
Characteristics | HCC Cases | Controls | p |
---|---|---|---|
N | 100 | 100 | |
Age (years), mean (SD) | 66.4 (7.1) | 66.3 (6.9) | 0.936 |
Female sex, N (%) | 25 (25%) | 25 (25%) | 1.000 |
BMI (kg/m2), mean (SD) | 24.2 (3.8) | 23.8 (3.5) | 0.461 |
Hours between last meal and blood draw, mean (SD) | 4.8 (4.6) | 5.3 (5.4) | 0.555 |
Alcoholic drinks/week, N (%) | |||
Zero | 75 (75%) | 79 (79%) | 0.192 |
1– <7 | 13 (13%) | 16 (16%) | |
7+ | 12 (12%) | 5 (5%) | |
Smoking Status, N (%) | |||
Never | 44 (44%) | 49 (49%) | 0.553 |
Former | 33 (33%) | 34 (34%) | |
Current | 23 (23%) | 17 (17%) | |
HBsAg Status, N (%) | |||
Negative | 60 (60%) | 92 (92%) | <0.001 |
Positive | 40 (40%) | 8 (8%) | |
History of diabetes, N (%) | |||
Yes | 30 (30%) | 12 (12%) | 0.002 |
No | 70 (70%) | 88 (88%) | |
Anti-HCV Status, N (%) a | |||
Negative | 59 (98%) | 58 (98%) | 1.00 |
Positive | 1 (2%) | 1 (2%) |
Geometric Mean (95%CI) b | |||
---|---|---|---|
Major Bile Acid Species a | HCC Cases | Controls | p |
Number of subjects | 100 | 100 | |
Primary Bile Acids | |||
CA species (nM) | 1678 (1367, 2061) | 648 (527, 796) | <0.001 |
CDCA species (nM) | 9644 (8031, 11580) | 3499 (2914, 4202) | <0.001 |
Summed major primary bile acids (nM) c | 11612 (9722, 13871) | 4329 (3624, 5171) | <0.001 |
Secondary Bile Acids | |||
DCA species (nM) | 2026 (1676, 2448) | 1649 (1365, 1993) | 0.134 |
LCA species (nM) | 1014 (845, 1217) | 828 (690, 993) | 0.125 |
UDCA species (nM) | 518 (429, 625) | 375 (311, 453) | 0.018 |
Summed major secondary bile acids (nM) d | 4589 (4029, 5226) | 3356 (2946, 3822) | 0.001 |
Molar ratio of secondary over primary bile acids | |||
DCA species/CA species ratio | 1.21 (0.96, 1.51) | 2.55 (2.03, 3.19) | <0.001 |
LCA species/CDCA species ratio | 0.11 (0.08, 0.14) | 0.24 (0.18, 0.31) | <0.001 |
UDCA species/CDCA species ratio | 0.05 (0.04, 0.07) | 0.11 (0.09, 0.13) | <0.001 |
Major Bile Acid Species a | Odds Ratio (95% CI) b by Bile Acid in Tertile | |||
---|---|---|---|---|
1st | 2nd | 3rd | Ptrend | |
Primary Bile Acids | ||||
CA species | 1 | 1.14 (0.34, 3.81) | 6.09 (1.75, 21.21) | 0.001 |
CDCA species | 1 | 3.41 (0.76, 15.28) | 30.11 (5.88, 154.31) | <0.001 |
Summed major primary bile acids c | 1 | 5.68 (1.35, 23.92) | 32.59 (6.04, 175.84) | <0.001 |
Secondary Bile Acids | ||||
DCA species | 1 | 0.49 (0.18, 1.35) | 2.02 (0.83, 4.93) | 0.105 |
LCA species | 1 | 0.64 (0.24, 1.74) | 1.22 (0.52, 2.83) | 0.575 |
UDCA species | 1 | 1.17 (0.39, 3.5) | 3.63 (1.26, 10.43) | 0.013 |
Summed major secondary bile acids d | 1 | 1.67 (0.66, 4.24) | 2.5 (0.98, 6.39) | 0.055 |
Molar ratio of secondary over primary bile acids | ||||
DCA species/CA species ratio | 1 | 0.58 (0.26, 1.30) | 0.37 (0.14, 1.00) | 0.042 |
LCA species/CDCA species ratio | 1 | 0.74 (0.31, 1.77) | 0.27 (0.09, 0.81) | 0.027 |
UDCA species/CDCA species ratio | 1 | 0.41 (0.17, 0.99) | 0.29 (0.10, 0.82) | 0.013 |
Geometric Mean (95% CI) b | |||
---|---|---|---|
Bile acid a | HCC Cases | Controls | p |
Number of subjects | 100 | 100 | |
Primary Bile Acids | |||
CA (nM) | 100 (72, 140) | 95 (68, 132) | 0.807 |
GCA (nM) | 796 (580, 1094) | 211 (153, 289) | <0.001 |
TCA (nM) | 169 (118, 243) | 36 (25, 52) | <0.001 |
TCA/GCA ratio | 0.21 (0.15, 0.30) | 0.17 (0.12, 0.24) | 0.375 |
CDCA (nM) | 920 (751, 1127) | 825 (673, 1010) | 0.454 |
GCDCA (nM) | 6234 (5018, 7743) | 1883 (1516, 2339) | <0.001 |
TCDCA (nM) | 675 (489, 932) | 110 (80, 152) | <0.001 |
TCDCA/GCDCA ratio | 0.11 (0.09, 0.14) | 0.06 (0.05, 0.07) | <0.001 |
Secondary Bile Acids | |||
DCA (nM) | 629 (518, 763) | 773 (637, 937) | 0.14 |
GDCA (nM) | 839 (638, 1105) | 566 (430, 745) | 0.048 |
TDCA (nM) | 124 (89, 171) | 45 (32, 62) | <0.001 |
TDCA/GDCA ratio | 0.15 (0.12, 0.19) | 0.08 (0.06, 0.1) | <0.001 |
UDCA (nM) | 243 (184, 319) | 145 (110, 190) | 0.010 |
GUDCA (nM) | 15 (12.3, 18.2) | 11.8 (9.7, 14.3) | 0.088 |
TUDCA (nM) | 23.2 (18.8, 28.6) | 14.2 (11.5, 17.6) | 0.002 |
TUDCA/GUDCA ratio | 1.55 (1.23, 1.94) | 1.21 (0.97, 1.52) | 0.135 |
Odds Ratio (95% CI) b by Bile Acid in Tertile | ||||
---|---|---|---|---|
Bile Acid a | 1st | 2nd | 3rd | Ptrend |
Primary Bile Acids | ||||
CA | 1 | 0.61 (0.18, 2.08) | 1.14 (0.38, 3.42) | 0.481 |
GCA | 1 | 1.31 (0.35, 4.97) | 6.76 (2.04, 22.41) | <0.001 |
TCA | 1 | 1.93 (0.48, 7.82) | 14.94 (3.43, 65.05) | <0.001 |
TCA/GCA ratio | 1 | 3.09 (1.12, 8.53) | 2.97 (0.91, 9.72) | 0.091 |
CDCA | 1 | 1.40 (0.56, 3.51) | 1.41 (0.57, 3.46) | 0.476 |
GCDCA | 1 | 5.56 (0.95, 32.65) | 57.22 (7.47, 438.35) | <0.001 |
TCDCA | 1 | 3.75 (0.66, 21.3) | 16.69 (3.11, 89.48) | <0.001 |
TCDCA/GCDCA ratio | 1 | 1.60 (0.47, 5.50) | 4.34 (1.38, 13.71) | 0.006 |
Secondary Bile Acids | ||||
DCA | 1 | 1.05 (0.46, 2.37) | 0.64 (0.27, 1.52) | 0.341 |
GDCA | 1 | 0.94 (0.36, 2.48) | 3.86 (1.46, 10.23) | 0.009 |
TDCA | 1 | 0.4 (0.1, 1.52) | 2.52 (0.91, 6.98) | 0.008 |
TDCA/GDCA ratio | 1 | 2.43 (0.78, 7.60) | 3.01 (1.10, 8.20) | 0.039 |
UDCA | 1 | 1.47 (0.5, 4.27) | 3.81 (1.46, 9.95) | 0.006 |
GUDCA | 1 | 0.76 (0.29, 1.97) | 2.36 (0.92, 6.05) | 0.084 |
TUDCA | 1 | 1.41 (0.52, 3.83) | 1.74 (0.68, 4.46) | 0.256 |
TUDCA/GUDCA ratio | 1 | 0.95 (0.39, 2.31) | 0.82 (0.29, 2.30) | 0.709 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, C.E.; Luu, H.N.; Wang, R.; Xie, G.; Adams-Haduch, J.; Jin, A.; Koh, W.-P.; Jia, W.; Behari, J.; Yuan, J.-M. Association between Pre-Diagnostic Serum Bile Acids and Hepatocellular Carcinoma: The Singapore Chinese Health Study. Cancers 2021, 13, 2648. https://doi.org/10.3390/cancers13112648
Thomas CE, Luu HN, Wang R, Xie G, Adams-Haduch J, Jin A, Koh W-P, Jia W, Behari J, Yuan J-M. Association between Pre-Diagnostic Serum Bile Acids and Hepatocellular Carcinoma: The Singapore Chinese Health Study. Cancers. 2021; 13(11):2648. https://doi.org/10.3390/cancers13112648
Chicago/Turabian StyleThomas, Claire E., Hung N. Luu, Renwei Wang, Guoxiang Xie, Jennifer Adams-Haduch, Aizhen Jin, Woon-Puay Koh, Wei Jia, Jaideep Behari, and Jian-Min Yuan. 2021. "Association between Pre-Diagnostic Serum Bile Acids and Hepatocellular Carcinoma: The Singapore Chinese Health Study" Cancers 13, no. 11: 2648. https://doi.org/10.3390/cancers13112648
APA StyleThomas, C. E., Luu, H. N., Wang, R., Xie, G., Adams-Haduch, J., Jin, A., Koh, W.-P., Jia, W., Behari, J., & Yuan, J.-M. (2021). Association between Pre-Diagnostic Serum Bile Acids and Hepatocellular Carcinoma: The Singapore Chinese Health Study. Cancers, 13(11), 2648. https://doi.org/10.3390/cancers13112648