Cancer Chemotherapy Related Cognitive Impairment and the Impact of the Alzheimer’s Disease Risk Factor APOE
Abstract
:Simple Summary
Abstract
1. Introduction—Cancer Related Cognitive Impairment after Chemotherapy
Involvement of APOE in CRCI
2. Molecular Mechanisms of CNS Damages in CRCI
2.1. Blood Brain Barrier
APOE Genotype and the Blood Brain Barrier
2.2. Oxidative Stress
APOE Genotype and Oxidative Stress
2.3. Inflammation
2.3.1. Inflammatory Cytokines
2.3.2. Gliosis
2.3.3. APOE Genotype and Neuroinflammation
2.4. Impaired Neurogenesis
APOE Genotype and Hippocampal Neurogenesis
3. Interventions to Reduce the Severity of CRCI
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weiss, H.D.; Walker, M.D.; Wiernik, P.H. Neurotoxicity of Commonly Used Antineoplastic Agents (first of two parts). New Engl. J. Med. 1974, 291, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Weiss, H.D.; Walker, M.D.; Wiernik, P.H. Neurotoxicity of Commonly Used Antineoplastic Agents (second of two parts). New Engl. J. Med. 1974, 291, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Silberfarb, P.M.; Philibert, D.; Levine, P.M. Psychosocial aspects of neoplastic disease: II. Affective and cognitive effects of chemotherapy in cancer patients. Am. J. Psychiatry 1980, 137, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Silberfarb, P.M. Chemotherapy and Cognitive Defects in Cancer Patients. Annu. Rev. Med. 1983, 34, 35–46. [Google Scholar] [CrossRef]
- Mandelblatt, J.S.; Small, B.J.; Luta, G.; Hurria, A.; Jim, H.; McDonald, B.C.; Graham, D.; Zhou, X.; Clapp, J.; Zhai, W.; et al. Cancer-Related Cognitive Outcomes Among Older Breast Cancer Survivors in the Thinking and Living with Cancer Study. J. Clin. Oncol. 2018, 36, 3211–3222. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.D.; Ehrlich, B.E. Cellular mechanisms and treatments for chemobrain: Insight from aging and neurodegenerative diseases. EMBO Mol. Med. 2020, 12, e12075. [Google Scholar] [CrossRef]
- Bray, V.J.; Dhillon, H.; Vardy, J. Systematic review of self-reported cognitive function in cancer patients following chemotherapy treatment. J. Cancer Surviv. 2018, 12, 537–559. [Google Scholar] [CrossRef]
- Dhillon, H.; Bell, M.L.; Dhillon, H.M.; Vardy, J.L. Baseline quality of life is associated with survival among people with advanced lung cancer. J. Psychosoc. Oncol. 2020, 38, 635–641. [Google Scholar] [CrossRef]
- Movsas, B.; Hu, C.; Sloan, J.; Bradley, J.; Komaki, R.; A Masters, G.; Kavadi, V.S.; Narayan, S.; Michalski, J.M.; Johnson, D.W.; et al. Quality of Life Analysis of a Radiation Dose–Escalation Study of Patients with Non–Small-Cell Lung Cancer. JAMA Oncol. 2016, 2, 359–367. [Google Scholar] [CrossRef]
- Movsas, B.; Moughan, J.; Sarna, L.; Langer, C.; Werner-Wasik, M.; Nicolaou, N.; Komaki, R.; Machtay, M.; Wasserman, T.; Bruner, D.W. Quality of Life Supersedes the Classic Prognosticators for Long-Term Survival in Locally Advanced Non–Small-Cell Lung Cancer: An Analysis of RTOG 9801. J. Clin. Oncol. 2009, 27, 5816–5822. [Google Scholar] [CrossRef]
- Noll, K.R.; Sullaway, C.M.; Wefel, J.S. Depressive symptoms and executive function in relation to survival in patients with glioblastoma. J. Neuro-Oncol. 2019, 142, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.A.; Wefel, J.S. Neurocognitive Function in Adult Cancer Patients. Neurol. Clin. 2018, 36, 653–674. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Caeyenberghs, K. Longitudinal assessment of chemotherapy-induced changes in brain and cognitive functioning: A systematic review. Neurosci. Biobehav. Rev. 2018, 92, 304–317. [Google Scholar] [CrossRef] [PubMed]
- McDonald, B.C.; Conroy, S.K.; Ahles, T.A.; West, J.D.; Saykin, A.J. Gray matter reduction associated with systemic chemotherapy for breast cancer: A prospective MRI study. Breast Canc. Res. Treat 2010, 123, 819–828. [Google Scholar] [CrossRef] [PubMed]
- McDonald, B.C.; Conroy, S.K.; Smith, D.J.; West, J.D.; Saykin, A.J. Frontal gray matter reduction after breast cancer chemotherapy and association with executive symptoms: A replication and extension study. Brain Behav. Immun. 2013, 30, S117–S125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walczak, P.; Janowski, M. Chemobrain as a Product of Growing Success in Chemotherapy—Focus on Glia as Both A Victim and A Cure. Neuropsychiatry 2019, 9, 2207–2216. [Google Scholar] [CrossRef] [Green Version]
- Ahles, T.A.; Saykin, A.J.; Furstenberg, C.T.; Cole, B.; Mott, L.A.; Skalla, K.; Whedon, M.B.; Bivens, S.; Mitchell, T.; Greenberg, E.R.; et al. Neuropsychologic Impact of Standard-Dose Systemic Chemotherapy in Long-Term Survivors of Breast Cancer and Lymphoma. J. Clin. Oncol. 2002, 20, 485–493. [Google Scholar] [CrossRef]
- Castellon, S.A.; Ganz, P.A.; Bower, J.E.; Petersen, L.; Abraham, L.; Greendale, G.A. Neurocognitive Performance in Breast Cancer Survivors Exposed to Adjuvant Chemotherapy and Tamoxifen. J. Clin. Exp. Neuropsychol. 2004, 26, 955–969. [Google Scholar] [CrossRef]
- Silverman, D.H.; Dy, C.J.; Castellon, S.A.; Lai, J.; Pio, B.S.; Abraham, L.; Waddell, K.; Petersen, L.; Phelps, M.E.; Ganz, P.A. Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res. Treat. 2007, 103, 303–311. [Google Scholar] [CrossRef]
- Deprez, S.; Amant, F.; Smeets, A.; Peeters, R.; Leemans, A.; van Hecke, W.; Verhoeven, J.S.; Christiaens, M.-R.; Vandenberghe, J.; Vandenbulcke, M.; et al. Longitudinal Assessment of Chemotherapy-Induced Structural Changes in Cerebral White Matter and Its Correlation with Impaired Cognitive Functioning. J. Clin. Oncol. 2012, 30, 274–281. [Google Scholar] [CrossRef] [Green Version]
- da Ruiter, M.B.; Reneman, L.; Boogerd, W.; Veltman, D.J.; Caan, M.; Douaud, G.; Lavini, C.; Linn, S.C.; Boven, E.; van Dam, F.S.A.M.; et al. Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: Converging results from multimodal magnetic resonance imaging. Hum. Brain Mapp. 2011, 33, 2971–2983. [Google Scholar] [CrossRef] [PubMed]
- Koppelmans, V.; de Ruiter, M.B.; van der Lijn, F.; Boogerd, W.; Seynaeve, C.; van der Lugt, A.; Vrooman, H.; Niessen, W.J.; Breteler, M.M.; Schagen, S.B. Global and focal brain volume in long-term breast cancer survivors exposed to adjuvant chemotherapy. Breast Cancer Res. Treat. 2011, 132, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Ahles, T.A.; Saykin, A.J.; Noll, W.W.; Furstenberg, C.T.; Guerin, S.; Cole, B.; Mott, L.A. The relationship of APOE genotype to neuropsychological performance in long-term cancer survivors treated with standard dose chemotherapy. Psycho-Oncology 2003, 12, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Ahles, T.A.; Li, Y.; McDonald, B.C.; Schwartz, G.N.; Kaufman, P.A.; Tsongalis, G.J.; Moore, J.H.; Saykin, A.J. Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: The impact of APOE and smoking. Psycho-Oncology 2014, 23, 1382–1390. [Google Scholar] [CrossRef] [Green Version]
- Amidi, A.; Agerbæk, M.; Wu, L.M.; Pedersen, A.D.; Mehlsen, M.; Clausen, C.R.; Demontis, D.; Børglum, A.D.; Harbøll, A.; Zachariae, R. Changes in cognitive functions and cerebral grey matter and their associations with inflammatory markers, endocrine markers, and APOE genotypes in testicular cancer patients undergoing treatment. Brain Imaging Behav. 2016, 11, 769–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, J.C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; DeStafano, A.L.; Bis, J.C.; Beecham, G.W.; Grenier-Boley, B.; et al. Meta-Analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 2013, 45, 1452–1458. [Google Scholar] [CrossRef] [Green Version]
- Jansen, I.E.; Savage, J.E.; Watanabe, K.; Bryois, J.; Williams, D.M.; Steinberg, S.; Sealock, J.; Karlsson, I.K.; Hägg, S.; Athanasiu, L.; et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 2019, 51, 404–413. [Google Scholar] [CrossRef]
- Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Boland, A.; Vronskaya, M.; van der Lee, S.J.; Amlie-Wolf, A.; et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 2019, 51, 414–430. [Google Scholar] [CrossRef] [Green Version]
- Flowers, S.A.; Grant, O.C.; Woods, R.J.; Rebeck, G.W. O-glycosylation on cerebrospinal fluid and plasma apolipoprotein E differs in the lipid-binding domain. Glycobiology 2019, 30, 74–85. [Google Scholar] [CrossRef]
- Dose, J.; Huebbe, P.; Nebel, A.; Rimbach, G. APOE genotype and stress response—A mini review. Lipids Heal. Dis. 2016, 15, 121. [Google Scholar] [CrossRef] [Green Version]
- Rebeck, G.W. The role of APOE on lipid homeostasis and inflammation in normal brains. J. Lipid Res. 2017, 58, 1493–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flowers, S.A.; Rebeck, G.W. APOE in the normal brain. Neurobiol. Dis. 2020, 136, 104724. [Google Scholar] [CrossRef] [PubMed]
- Tai, L.; Thomas, R.; Marottoli, F.M.; Koster, K.P.; Kanekiyo, T.; Morris, A.W.J.; Bu, G. The role of APOE in cerebrovascular dysfunction. Acta Neuropathol. 2016, 131, 709–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiman, E.M.; Arboleda-Velasquez, J.F.; Quiroz, Y.T.; Huentelman, M.J.; Beach, T.G.; Caselli, R.J.; Chen, Y.; Su, Y.; Myers, A.J. Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.; Verhey, F.R.J.; Visser, P.J.; Aalten, P.; Aarsland, D.; Alcolea, D.; et al. Prevalence of Cerebral Amyloid Pathology in Persons Without Dementia. JAMA 2015, 313, 1924–1938. [Google Scholar] [CrossRef]
- Eisenberg, D.T.; Kuzawa, C.W.; Hayes, M.G. Worldwide allele frequencies of the human apolipoprotein E gene: Climate, local adaptations, and evolutionary history. Am. J. Phys. Anthr. 2010, 143, 100–111. [Google Scholar] [CrossRef]
- Logue, M.W. A Comprehensive Genetic Association Study of Alzheimer Disease in African Americans. Arch. Neurol. 2011, 68, 1569–1579. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Tateno, M.; Park, T.W.; Utsumi, K.; Sohma, H.; Ito, Y.M.; Kokai, Y.; Saito, T. Apolipoprotein E4 Frequencies in a Japanese Population with Alzheimer’s Disease and Dementia with Lewy Bodies. PLoS ONE 2011, 6, e18569. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, A.; Nonomura, H.; Tanaka, S.; Yoshida, M.; Maruyama, Y.; Aritomi, Y.; Saunders, A.M.; Burns, D.K.; Lutz, M.W.; Runyan, G.; et al. Characterization ofAPOEandTOMM40allele frequencies in the Japanese population. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2017, 3, 524–530. [Google Scholar] [CrossRef]
- Eggertsen, G.; Tegelman, R.; Ericsson, S.; Angelin, B.; Berglund, L. Apolipoprotein E polymorphism in a healthy Swedish population: Variation of allele frequency with age and relation to serum lipid concentrations. Clin. Chem. 1993, 39, 2125–2129. [Google Scholar] [CrossRef]
- Speidell, A.P.; Demby, T.; Lee, Y.; Rodriguez, O.; Albanese, C.; Mandelblatt, J.; Rebeck, G.W. Development of a Human APOE Knock-in Mouse Model for Study of Cognitive Function After Cancer Chemotherapy. Neurotox. Res. 2019, 35, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Demby, T.C.; Rodriguez, O.; McCarthy, C.W.; Lee, Y.-C.; Albanese, C.; Mandelblatt, J.; Rebeck, G.W. A mouse model of chemotherapy-related cognitive impairments integrating the risk factors of aging and APOE4 genotype. Behav. Brain Res. 2020, 384, 112534. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C.; Mapunda, J.A.; Vladymyrov, M.; Engelhardt, B. Structure and Junctional Complexes of Endothelial, Epithelial and Glial Brain Barriers. Int. J. Mol. Sci. 2019, 20, 5372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, K.H.; Harrington, S.; Purcell, W.M.; Hurst, R.D. Peroxynitrite Mediates Nitric Oxide–Induced Blood–Brain Barrier Damage. Neurochem. Res. 2004, 29, 579–587. [Google Scholar] [CrossRef]
- Pun, P.B.L.; Lu, J.; Moochhala, S. Involvement of ROS in BBB dysfunction. Free. Radic. Res. 2009, 43, 348–364. [Google Scholar] [CrossRef]
- Haorah, J.; Ramirez, S.H.; Schall, K.; Smith, D.; Pandya, R.; Persidsky, Y. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood? Brain barrier dysfunction. J. Neurochem. 2007, 101, 566–576. [Google Scholar] [CrossRef]
- Parathath, S.; Tsirka, S.E. Nitric oxide mediates neurodegeneration and breakdown of the blood-brain barrier in tPA-dependent excitotoxic injury in mice. J. Cell Sci. 2006, 119, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Branca, J.J.V.; Maresca, M.; Morucci, G.; Becatti, M.; Paternostro, F.; Gulisano, M.; Ghelardini, C.; Salvemini, D.; Mannelli, L.D.C.; Pacini, A. Oxaliplatin-induced blood brain barrier loosening: A new point of view on chemotherapy-induced neurotoxicity. Oncotarget 2018, 9, 23426–23438. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Muneer, P.M.; Schuetz, H.; Wang, F.; Skotak, M.; Jones, J.; Gorantla, S.; Zimmerman, M.C.; Chandra, N.; Haorah, J. Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free. Radic. Biol. Med. 2013, 60, 282–291. [Google Scholar] [CrossRef]
- Candelario-Jalil, E.; Taheri, S.; Yang, Y.; Sood, R.; Grossetete, M.; Estrada, E.Y.; Fiebich, B.L.; Rosenberg, G.A. Cyclooxygenase Inhibition Limits Blood-Brain Barrier Disruption following Intracerebral Injection of Tumor Necrosis Factor-α in the Rat. J. Pharmacol. Exp. Ther. 2007, 323, 488–498. [Google Scholar] [CrossRef]
- Banks, W.A.; Erickson, M.A. The blood–brain barrier and immune function and dysfunction. Neurobiol. Dis. 2010, 37, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Fullerton, S.M.; Shirman, G.A.; Strittmatter, W.J.; Matthew, W.D. Impairment of the Blood–Nerve and Blood–Brain Barriers in Apolipoprotein E Knockout Mice. Exp. Neurol. 2001, 169, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.M.; Mace, B.; Maeda, N.; Schmechel, D. Marked regional differences of brain human apolipoprotein e expression in targeted replacement mice. Neuroscience 2004, 124, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Riddell, D.R.; Zhou, H.; Atchison, K.; Warwick, H.K.; Atkinson, P.J.; Jefferson, J.; Xu, L.; Aschmies, S.; Kirksey, Y.; Hu, Y.; et al. Impact of Apolipoprotein E (ApoE) Polymorphism on Brain ApoE Levels. J. Neurosci. 2008, 28, 11445–11453. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, K.; Hattori, Y.; Ahn, S.J.; Buendia, I.; Ciacciarelli, A.; Uekawa, K.; Wang, G.; Hiller, A.; Zhao, L.; Voss, H.U.; et al. Apoε4 disrupts neurovascular regulation and undermines white matter integrity and cognitive function. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, Y.; Shinohara, M.; Yamazaki, A.; Ren, Y.; Asmann, Y.W.; Kanekiyo, T.; Bu, G. ApoE (Apolipoprotein E) in Brain Pericytes Regulates Endothelial Function in an Isoform-Dependent Manner by Modulating Basement Membrane Components. Arter. Thromb. Vasc. Biol. 2020, 40, 128–144. [Google Scholar] [CrossRef]
- Bell, R.D.; Winkler, E.A.; Singh, I.; Sagare, A.P.; Deane, R.; Wu, Z.; Holtzman, D.M.; Betsholtz, C.; Armulik, A.; Sallstrom, J.; et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nat. Cell Biol. 2012, 485, 512–516. [Google Scholar] [CrossRef]
- Ringland, C.; Schweig, J.E.; Paris, D.; Shackleton, B.; Lynch, C.E.; Eisenbaum, M.; Mullan, M.; Crawford, F.; Abdullah, L.; Bachmeier, C. Apolipoprotein E isoforms differentially regulate matrix metallopeptidase 9 function in Alzheimer’s disease. Neurobiol. Aging 2020, 95, 56–68. [Google Scholar] [CrossRef]
- Halliday, M.R.; Rege, S.V.; Ma, Q.; Zhao, Z.; A Miller, C.; A Winkler, E.; Zlokovic, B.V. Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. Br. J. Pharmacol. 2016, 36, 216–227. [Google Scholar] [CrossRef]
- Marottoli, F.M.; Katsumata, Y.; Koster, K.P.; Thomas, R.; Fardo, D.W.; Tai, L. Peripheral Inflammation, Apolipoprotein E4, and Amyloid-β Interact to Induce Cognitive and Cerebrovascular Dysfunction. ASN Neuro 2017, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Nishitsuji, K.; Hosono, T.; Nakamura, T.; Bu, G.; Michikawa, M. Apolipoprotein E Regulates the Integrity of Tight Junctions in an Isoform-dependent Manner in an in Vitro Blood-Brain Barrier Model. J. Biol. Chem. 2011, 286, 17536–17542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montagne, A.; Barnes, S.R.; Sweeney, M.D.; Halliday, M.R.; Sagare, A.P.; Zhao, Z.; Toga, A.W.; Jacobs, R.E.; Liu, C.Y.; Amezcua, L.; et al. Blood-Brain Barrier Breakdown in the Aging Human Hippocampus. Neuron 2015, 85, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowman, G.L.; Dayon, L.; Kirkland, R.; Wojcik, J.; Peyratout, G.; Severin, I.C.; Henry, H.; Oikonomidi, A.; Migliavacca, E.; Bacher, M.; et al. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimer’s Dement. 2018, 14, 1640–1650. [Google Scholar] [CrossRef] [PubMed]
- Nation, D.A.; Sweeney, M.; Montagne, A.; Sagare, A.P.; D’Orazio, L.M.; Pachicano, M.; Sepehrband, F.; Nelson, A.R.; Buennagel, D.P.; Harrington, M.G.; et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 2019, 25, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Salloway, S.; Gur, T.; Berzin, T.; Zipser, B.; Correia, S.; Hovanesian, V.; Fallon, J.; Kuo-Leblanc, V.; Glass, D.; Hulette, C.; et al. Effect of APOE genotype on microvascular basement membrane in Alzheimer’s disease. J. Neurol. Sci. 2002, 203, 183–187. [Google Scholar] [CrossRef]
- Zipser, B.; Johanson, C.; Gonzalez, L.; Berzin, T.; Tavares, R.; Hulette, C.; Vitek, M.; Hovanesian, V.; Stopa, E. Microvascular injury and blood–brain barrier leakage in Alzheimer’s disease. Neurobiol. Aging 2007, 28, 977–986. [Google Scholar] [CrossRef]
- Thambisetty, M.; Beasonheld, L.L.; An, Y.; Kraut, M.A.; Resnick, S.M. APOE ε4 Genotype and Longitudinal Changes in Cerebral Blood Flow in Normal Aging. Arch. Neurol. 2010, 67, 93–98. [Google Scholar] [CrossRef]
- Montagne, A.; Nation, D.A.; Sagare, A.P.; Barisano, G.; Sweeney, M.D.; Chakhoyan, A.; Pachicano, M.; Joe, E.; Nelson, A.R.; D’Orazio, L.M.; et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nat. Cell Biol. 2020, 581, 71–76. [Google Scholar] [CrossRef]
- Shen, J.; Xu, G.; Zhu, R.; Yuan, J.; Ishii, Y.; Hamashima, T.; Matsushima, T.; Yamamoto, S.; Takatsuru, Y.; Nabekura, J.; et al. PDGFR-β restores blood-brain barrier functions in a mouse model of focal cerebral ischemia. Br. J. Pharmacol. 2019, 39, 1501–1515. [Google Scholar] [CrossRef]
- Sagare, A.P.; Sweeney, M.; Makshanoff, J.; Zlokovic, B.V. Shedding of soluble platelet-derived growth factor receptor-β from human brain pericytes. Neurosci. Lett. 2015, 607, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Ahles, T.A.; Saykin, A.J. Candidate mechanisms for chemotherapy-induced cognitive changes. Nat. Rev. Cancer 2007, 7, 192–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oboh, G.; Ogunruku, O.O. Cyclophosphamide-induced oxidative stress in brain: Protective effect of hot short pepper (Capsicum frutescens L. var. abbreviatum). Exp. Toxicol. Pathol. 2010, 62, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Joshi, G.; Sultana, R.; Tangpong, J.; Cole, M.P.; Clair, D.K.S.; Vore, M.; Estus, S.; Butterfield, D.A. Free radical mediated oxidative stress and toxic side effects in brain induced by the anti-cancer drug adriamycin: Insight into chemobrain. Free. Radic. Res. 2005, 39, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Rajamani, R.; Muthuvel, A.; Senthilvelan, M.; Devi, R.S. Oxidative stress induced by methotrexate alone and in the presence of methanol in discrete regions of the rodent brain, retina and optic nerve. Toxicol. Lett. 2006, 165, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, A.L.; Manda, K.; Patni, S.; Sharma, A.L. Prophylactic Action of Linseed (Linum usitatissimum) Oil Against Cyclophosphamide-Induced Oxidative Stress in Mouse Brain. J. Med. Food 2006, 9, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Bagnall-Moreau, C.; Chaudhry, S.; Salas-Ramirez, K.; Ahles, T.; Hubbard, K. Chemotherapy-Induced Cognitive Impairment Is Associated with Increased Inflammation and Oxidative Damage in the Hippocampus. Mol. Neurobiol. 2019, 56, 7159–7172. [Google Scholar] [CrossRef] [PubMed]
- Konat, G.W.; Kraszpulski, M.; James, I.; Zhang, H.-T.; Abraham, J. Cognitive dysfunction induced by chronic administration of common cancer chemotherapeutics in rats. Metab. Brain Dis. 2008, 23, 325–333. [Google Scholar] [CrossRef]
- Alhowail, A.; Chigurupati, S.; Sajid, S.; Mani, V. Ameliorative effect of metformin on cyclophosphamide-induced memory impairment in mice. Eur. Rev. Med. Pharmacol Sci. 2019, 23, 9660–9666. [Google Scholar]
- Singh, S. Protective Effect of Edaravone on Cyclophosphamide Induced Oxidative Stress and Neurotoxicity in Rats. Curr. Drug Saf. 2019, 14, 209–216. [Google Scholar] [CrossRef]
- McElroy, T.; Brown, T.; Kiffer, F.; Wang, J.; Byrum, S.D.; Oberley-Deegan, R.E.; Allen, A.R. Assessing the Effects of Redox Modifier MnTnBuOE-2-PyP 5+ on Cognition and Hippocampal Physiology Following Doxorubicin, Cyclophosphamide, and Paclitaxel Treatment. Int. J. Mol. Sci. 2020, 21, 1867. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-C.; Sheen, J.-M.; Hsu, M.-H.; Hsiao, C.-C.; Wang, S.-C.; Huang, L.-T. Melatonin rescued methotrexate-induced spatial deficit and hyperhomocysteinemia and increased asymmetric dimethylarginine in plasma and dorsal hippocampus in developing rats. Life Sci. 2019, 242, 116931. [Google Scholar] [CrossRef] [PubMed]
- Ramalingayya, G.V.; Sonawane, V.; Cheruku, S.P.; Kishore, A.; Nayak, P.G.; Kumar, N.; Shenoy, R.R.; Nandakumar, K. Insulin Protects against Brain Oxidative Stress with an Apparent Effect on Episodic Memory in Doxorubicin-Induced Cognitive Dysfunction in Wistar Rats. J. Environ. Pathol. Toxicol. Oncol. 2017, 36, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, S.; Santos, R.X.; Carvalho, C.; Correia, S.; Pereira, G.C.; Pereira, S.S.; Oliveira, P.J.; Santos, M.S.; Proença, T.; Moreira, P.I. Doxorubicin increases the susceptibility of brain mitochondria to Ca2+-induced permeability transition and oxidative damage. Free. Radic. Biol. Med. 2008, 45, 1395–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzar, E.; Koyuncuoglu, H.R.; Uz, E.; Yilmaz, H.R.; Kutluhan, S.; Kilbas, S.; Gultekin, F. The Activities of Antioxidant Enzymes and the Level of Malondialdehyde in Cerebellum of Rats Subjected to Methotrexate: Protective Effect of Caffeic Acid Phenethyl Ester. Mol. Cell. Biochem. 2006, 291, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Tangpong, J.; Cole, M.P.; Sultana, R.; Joshi, G.; Estus, S.; Vore, M.; Clair, W.S.; Ratanachaiyavong, S.; Clair, D.K.S.; Butterfield, D.A. Adriamycin-induced, TNF-α-mediated central nervous system toxicity. Neurobiol. Dis. 2006, 23, 127–139. [Google Scholar] [CrossRef]
- Joshi, G.; Aluise, C.D.; Cole, M.P.; Sultana, R.; Pierce, W.; Vore, M.; Clair, D.K.S.; Butterfield, D.A. Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: Implications for oxidative stress-mediated chemobrain. Neuroscience 2010, 166, 796–807. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Keeney, J.T.; Miriyala, S.; Noel, T.; Powell, D.K.; Chaiswing, L.; Bondada, S.; Clair, D.K.S.; Butterfield, D.A. The triangle of death of neurons: Oxidative damage, mitochondrial dysfunction, and loss of choline-containing biomolecules in brains of mice treated with doxorubicin. Advanced insights into mechanisms of chemotherapy induced cognitive impairment (“chemobrain”) involving TNF-α. Free. Radic. Biol. Med. 2019, 134, 1–8. [Google Scholar] [CrossRef]
- Aluise, C.D.; Miriyala, S.; Noel, T.; Sultana, R.; Jungsuwadee, P.; Taylor, T.J.; Cai, J.; Pierce, W.M.; Vore, M.; Moscow, J.A.; et al. 2-Mercaptoethane sulfonate prevents doxorubicin-induced plasma protein oxidation and TNF-α release: Implications for the reactive oxygen species-mediated mechanisms of chemobrain. Free. Radic. Biol. Med. 2011, 50, 1630–1638. [Google Scholar] [CrossRef]
- Moore, I.M.; Gundy, P.; Pasvogel, A.; Montgomery, D.W.; Taylor, O.A.; Koerner, K.M.; McCarthy, K.; Hockenberry, M.J. Increase in Oxidative Stress as Measured by Cerebrospinal Fluid Lipid Peroxidation During Treatment for Childhood Acute Lymphoblastic Leukemia. J. Pediatr. Hematol. 2015, 37, e86–e93. [Google Scholar] [CrossRef] [Green Version]
- Cole, P.D.; Finkelstein, Y.; Stevenson, K.E.; Blonquist, T.M.; Vijayanathan, V.; Silverman, L.B.; Neuberg, D.S.; Sallan, S.E.; Robaey, P.; Waber, D.P. Polymorphisms in Genes Related to Oxidative Stress Are Associated with Inferior Cognitive Function After Therapy for Childhood Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2015, 33, 2205–2211. [Google Scholar] [CrossRef]
- Fernandes, M.A.; Proença, M.T.; Nogueira, A.J.; Grazina, M.; Oliveira, L.M.; I Fernandes, A.; Santiago, B.; Santana, I.; Oliveira, C.R. Influence of apolipoprotein E genotype on blood redox status of Alzheimer’s disease patients. Int. J. Mol. Med. 1999, 4, 179–265. [Google Scholar] [CrossRef] [PubMed]
- Ramassamy, C.; Averill, D.; Beffert, U.; Théroux, L.; Lussier-Cacan, S.; Cohn, J.S.; Christen, Y.; Schoofs, A.; Davignon, J.; Poirier, J. Oxidative Insults Are Associated with Apolipoprotein E Genotype in Alzheimer’s Disease Brain. Neurobiol. Dis. 2000, 7, 23–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamaoka, A.; Miyatake, F.; Matsuno, S.; Ishii, K.; Nagase, S.; Sahara, N.; Ono, S.; Mori, H.; Wakabayashi, K.; Tsuji, S.; et al. Apolipoprotein E allele-dependent antioxidant activity in brains with Alzheimer’s disease. Neurology 2000, 54, 2319–2321. [Google Scholar] [CrossRef] [PubMed]
- Ihara, Y.; Hayabara, T.; Sasaki, K.; Kawada, R.; Nakashima, Y.; Kuroda, S. Relationship between oxidative stress and apoE phenotype in Alzheimer’s disease. Acta Neurol. Scand. 2000, 102, 346–349. [Google Scholar] [CrossRef]
- Ferguson, S.; Mouzon, B.; Kayihan, G.; Wood, M.; Poon, F.; Doore, S.M.; Mathura, V.; Humphrey, J.; O’Steen, B.; Hayes, R.; et al. Apolipoprotein E genotype and oxidative stress response to traumatic brain injury. Neuroscience 2010, 168, 811–819. [Google Scholar] [CrossRef]
- Lauderback, C.M.; Kanski, J.; Hackett, J.M.; Maeda, N.; Kindy, M.S.; Butterfield, D. Apolipoprotein E modulates Alzheimer’s Aβ(1–42)-induced oxidative damage to synaptosomes in an allele-specific manner. Brain Res. 2002, 924, 90–97. [Google Scholar] [CrossRef]
- Shi, L.; Du, X.; Zhou, H.; Tao, C.-L.; Liu, Y.; Meng, F.; Wu, G.; Xiong, Y.; Xia, C.; Wang, Y.; et al. Cumulative effects of the ApoE genotype and gender on the synaptic proteome and oxidative stress in the mouse brain. Int. J. Neuropsychopharmacol. 2014, 17, 1863–1879. [Google Scholar] [CrossRef] [Green Version]
- Miyata, M.; Smith, J.D. Apolipoprotein E allele–specific antioxidant activity and effects on cytotoxicity by oxidative insults and β–amyloid peptides. Nat. Genet. 1996, 14, 55–61. [Google Scholar] [CrossRef]
- Xu, D.; Peng, Y. Apolipoprotein E 4 triggers multiple pathway mediated Ca2+ overload, causes CaMK II phosphorylation abnormity and aggravates oxidative stress caused cerebral cortical neuron damage. Eur. Rev. Med Pharmacol. Sci. 2017, 21, 5717–5728. [Google Scholar]
- Butterfield, D.A.; Mattson, M.P. Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer’s disease. Neurobiol. Dis. 2020, 138, 104795. [Google Scholar] [CrossRef]
- Guzman-Martinez, L.; Maccioni, R.B.; Andrade, V.; Navarrete, L.P.; Pastor, M.G.; Ramos-Escobar, N. Neuroinflammation as a Common Feature of Neurodegenerative Disorders. Front. Pharmacol. 2019, 10, 1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, X.; Clair, D.K.S.; Butterfield, D.A. Dysregulation of cytokine mediated chemotherapy induced cognitive impairment. Pharmacol. Res. 2017, 117, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Janelsins, M.C.; Mustian, K.M.; Palesh, O.G.; Mohile, S.G.; Peppone, L.J.; Sprod, L.K.; Heckler, C.E.; Roscoe, J.A.; Katz, A.W.; Williams, J.P.; et al. Differential expression of cytokines in breast cancer patients receiving different chemotherapies: Implications for cognitive impairment research. Support. Care Cancer 2011, 20, 831–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganz, P.A.; Bower, J.; Kwan, L.; Castellon, S.; Silverman, D.; Geist, C.; Breen, E.; Irwin, M.; Cole, S. Does tumor necrosis factor-alpha (TNF-α) play a role in post-chemotherapy cerebral dysfunction? Brain Behav. Immun. 2013, 30, S99–S108. [Google Scholar] [CrossRef] [Green Version]
- Kesler, S.R.; Janelsins, M.C.; Koovakkattu, D.; Palesh, O.; Mustian, K.M.; Morrow, G.R.; Dhabhar, F.S. Reduced hippocampal volume and verbal memory performance associated with interleukin-6 and tumor necrosis factor-alpha levels in chemotherapy-treated breast cancer survivors. Brain Behav. Immun. 2013, 30, S109–S116. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.M.; Shah, R.; Shayne, M.; Huston, A.J.; Krebs, M.; Murray, N.; Thompson, B.D.; Doyle, K.; Korotkin, J.; van Wijngaarden, E.; et al. Associations between inflammatory markers and cognitive function in breast cancer patients receiving chemotherapy. J. Neuroimmunol. 2018, 314, 17–23. [Google Scholar] [CrossRef]
- Zimmer, P.; Mierau, A.; Bloch, W.; Strüder, H.K.; Hülsdünker, T.; Schenk, A.; Fiebig, L.; Baumann, F.T.; Hahn, M.; Reinart, N.; et al. Post-chemotherapy cognitive impairment in patients with B-cell non-Hodgkin lymphoma: A first comprehensive approach to determine cognitive impairments after treatment with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone or rituximab and bendamustine. Leuk. Lymphoma 2014, 56, 347–352. [Google Scholar] [CrossRef]
- Cheung, Y.T.; Khan, R.B.; Liu, W.; Brinkman, T.M.; Edelmann, M.N.; Reddick, W.E.; Pei, D.; Panoskaltsis-Mortari, A.; Srivastava, D.K.; Cheng, C.; et al. Association of Cerebrospinal Fluid Biomarkers of Central Nervous System Injury with Neurocognitive and Brain Imaging Outcomes in Children Receiving Chemotherapy for Acute Lymphoblastic Leukemia. JAMA Oncol. 2018, 4, e180089. [Google Scholar] [CrossRef]
- Shi, D.-D.; Huang, Y.-H.; Lai, C.S.W.; Dong, C.M.; Ho, L.C.; Wu, E.X.; Li, Q.; Wang, X.-M.; Chung, S.K.; Sham, P.C.; et al. Chemotherapy-Induced Cognitive Impairment Is Associated with Cytokine Dysregulation and Disruptions in Neuroplasticity. Mol. Neurobiol. 2019, 56, 2234–2243. [Google Scholar] [CrossRef]
- El-Agamy, S.E.; Abdel-Aziz, A.K.; Wahdan, S.; Esmat, A.; Azab, S.S. Astaxanthin Ameliorates Doxorubicin-Induced Cognitive Impairment (Chemobrain) in Experimental Rat Model: Impact on Oxidative, Inflammatory, and Apoptotic Machineries. Mol. Neurobiol. 2017, 55, 5727–5740. [Google Scholar] [CrossRef]
- Briones, T.L.; Woods, J. Dysregulation in myelination mediated by persistent neuroinflammation: Possible mechanisms in chemotherapy-related cognitive impairment. Brain Behav. Immun. 2013, 35, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, Y.; Wang, K.; Sheng, S.; Cui, J. Polydatin ameliorates chemotherapy-induced cognitive impairment (chemobrain) by inhibiting oxidative stress, inflammatory response, and apoptosis in rats. Biosci. Biotechnol. Biochem. 2020, 84, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Panoz-Brown, D.; Carey, L.M.; Smith, A.E.; Gentry, M.; Sluka, C.M.; Corbin, H.E.; Wu, J.-E.; Hohmann, A.G.; Crystal, J.D. The chemotherapeutic agent paclitaxel selectively impairs reversal learning while sparing prior learning, new learning and episodic memory. Neurobiol. Learn. Mem. 2017, 144, 259–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Zhao, S.; Zhang, H.-L.; Liu, P.; Liu, F.-F.; Guo, Y.-X.; Wang, X.-L. Proinflammatory Factors Mediate Paclitaxel-Induced Impairment of Learning and Memory. Mediat. Inflamm. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kloske, C.M.; Wilcock, D.M. The Important Interface Between Apolipoprotein E and Neuroinflammation in Alzheimer’s Disease. Front. Immunol. 2020, 11, 754. [Google Scholar] [CrossRef]
- Cardoso, C.V.; de Barros, M.P.; Bachi, A.L.L.; Bernardi, M.M.; Kirsten, T.B.; Martins, M.D.F.M.; Rocha, P.R.D.; Rodrigues, P.D.S.; Bondan, E.F.; Vieira, C. Chemobrain in rats: Behavioral, morphological, oxidative and inflammatory effects of doxorubicin administration. Behav. Brain Res. 2020, 378, 112233. [Google Scholar] [CrossRef]
- Allen, B.D.; Apodaca, L.A.; Syage, A.R.; Markarian, M.; Baddour, A.A.D.; Minasyan, H.; Alikhani, L.; Lu, C.; West, B.L.; Giedzinski, E.; et al. Attenuation of neuroinflammation reverses Adriamycin-induced cognitive impairments. Acta Neuropathol. Commun. 2019, 7, 1–15. [Google Scholar] [CrossRef]
- Gibson, E.M.; Nagaraja, S.; Ocampo, A.; Tam, L.T.; Wood, L.S.; Pallegar, P.N.; Greene, J.J.; Geraghty, A.C.; Goldstein, A.K.; Ni, L.; et al. Methotrexate Chemotherapy Induces Persistent Tri-glial Dysregulation that Underlies Chemotherapy-Related Cognitive Impairment. Cell 2019, 176, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Malik, M.; Parikh, I.; Vasquez, J.B.; Smith, C.; Tai, L.; Bu, G.; Ladu, M.J.; Fardo, D.W.; Rebeck, G.W.; Estus, S. Genetics ignite focus on microglial inflammation in Alzheimer’s disease. Mol. Neurodegener. 2015, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Egensperger, R.; Kösel, S.; Eitzen, U.; Graeber, M.B. Microglial Activation in Alzheimer Disease: Association with APOE Genotype. Brain Pathol. 2006, 8, 439–447. [Google Scholar] [CrossRef]
- Overmyer, M.; Helisalmi, S.; Soininen, H.; Laakso, M.; Sr, P.R.; Alafuzoff, I. Astrogliosis and the ApoE Genotype. Dement. Geriatr. Cogn. Disord. 1999, 10, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Minett, T.; Cfas, M.; Classey, J.; Matthews, F.E.; Fahrenhold, M.; Taga, M.; Brayne, C.; Ince, P.G.; Nicoll, J.A.R.; Boche, D. Microglial immunophenotype in dementia with Alzheimer’s pathology. J. Neuroinflamm. 2016, 13, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ringman, J.M.; Elashoff, D.; Geschwind, D.H.; Welsh, B.T.; Gylys, K.H.; Lee, C.; Cummings, J.L.; Cole, G.M. Plasma Signaling Proteins in Persons at Genetic Risk for Alzheimer Disease. Arch. Neurol. 2012, 69, 757–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.-Y.; Cai, Q.-L.; Gao, Z.-Y.; Lin, X.; Huang, Q.; Tang, W.; Liu, J.-H. APOE ε4 allele elevates the expressions of inflammatory factors and promotes Alzheimer’s disease progression: A comparative study based on Han and She populations in the Wenzhou area. Brain Res. Bull. 2017, 132, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Gale, S.C.; Gao, L.; Mikacenic, C.; Coyle, S.M.; Rafaels, N.; Dudenkov, T.M.; Madenspacher, J.H.; Draper, D.W.; Ge, W.; Aloor, J.J.; et al. APOε4 is associated with enhanced in vivo innate immune responses in human subjects. J. Allergy Clin. Immunol. 2014, 134, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simats, A.; García-Berrocoso, T.; Penalba, A.; Giralt, D.; Llovera, G.; Jiang, Y.; Ramiro, L.; Bustamante, A.; Martinez-Saez, E.; Canals, F.; et al. CCL23: A newCCchemokine involved in human brain damage. J. Intern. Med. 2018, 283, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Faura, J.; Bustamante, A.; Penalba, A.; Giralt, D.; Simats, A.; Martínez-Sáez, E.; Alcolea, D.; Fortea, J.; Lleó, A.; Teunissen, C.E.; et al. CCL23: A Chemokine Associated with Progression from Mild Cognitive Impairment to Alzheimer’s Disease. J. Alzheimer’s Dis. 2020, 73, 1585–1595. [Google Scholar] [CrossRef]
- Motta, C.; Finardi, A.; Toniolo, S.; di Lorenzo, F.; Scaricamazza, E.; Loizzo, S.; Mercuri, N.B.; Furlan, R.; Koch, G.; Martorana, A. Protective Role of Cerebrospinal Fluid Inflammatory Cytokines in Patients with Amnestic Mild Cognitive Impairment and Early Alzheimer’s Disease Carrying Apolipoprotein E4 Genotype. J. Alzheimer’s Dis. 2020, 1–9. [Google Scholar] [CrossRef]
- Dai, J.; Johnson, E.C.B.; Dammer, E.B.; Duong, D.M.; Gearing, M.; Lah, J.J.; Levey, A.I.; Wingo, T.S.; Seyfried, N.T. Effects of APOE Genotype on Brain Proteomic Network and Cell Type Changes in Alzheimer’s Disease. Front. Mol. Neurosci. 2018, 11, 454. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-T.; Seo, J.; Gao, F.; Feldman, H.M.; Wen, H.-L.; Penney, J.; Cam, H.P.; Gjoneska, E.; Raja, W.K.; Cheng, J.; et al. APOE4 Causes Widespread Molecular and Cellular Alterations Associated with Alzheimer’s Disease Phenotypes in Human iPSC-Derived Brain Cell Types. Neuron 2018, 98, 1294. [Google Scholar] [CrossRef] [Green Version]
- Ophir, G.; Amariglio, N.; Jacob-Hirsch, J.; Elkon, R.; Rechavi, G.; Michaelson, D.M. Apolipoprotein E4 enhances brain inflammation by modulation of the NF-κB signaling cascade. Neurobiol. Dis. 2005, 20, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Nwabuisi-Heath, E.; Dumanis, S.B.; Tai, L.M.; Yu, C.; Rebeck, G.W.; Ladu, M.J. APOE genotype alters glial activation and loss of synaptic markers in mice. Glia 2012, 60, 559–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belinson, H.; Michaelson, D.M. ApoE4-dependent Aβ-mediated neurodegeneration is associated with inflammatory activation in the hippocampus but not the septum. J. Neural Transm. 2009, 116, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Maezawa, I.; Nivison, M.; Montine, K.S.; Maeda, N.; Montine, T.J. Neurotoxicity from innate immune response is greatest with targeted replacement of ε4 allele of apolipoprotein E gene and is mediated by microglial p38MAPK. FASEB J. 2006, 20, 797–799. [Google Scholar] [CrossRef] [PubMed]
- Vitek, M.; Brown, C.M.; Colton, C.A. APOE genotype-specific differences in the innate immune response. Neurobiol. Aging 2009, 30, 1350–1360. [Google Scholar] [CrossRef] [Green Version]
- Ben-Moshe, H.; Luz, I.; Liraz, O.; Boehm-Cagan, A.; Salomon-Zimri, S.; Michaelson, D.M. ApoE4 Exacerbates Hippocampal Pathology Following Acute Brain Penetration Injury in Female Mice. J. Mol. Neurosci. 2019, 70, 32–44. [Google Scholar] [CrossRef]
- Dumanis, S.B.; Tesoriero, J.A.; Babus, L.W.; Nguyen, M.T.; Trotter, J.H.; Ladu, M.J.; Weeber, E.J.; Turner, R.S.; Xu, B.; Rebeck, G.W.; et al. ApoE4 Decreases Spine Density and Dendritic Complexity in Cortical Neurons In Vivo. J. Neurosci. 2009, 29, 15317–15322. [Google Scholar] [CrossRef]
- Rodriguez, G.A.; Burns, M.P.; Weeber, E.J.; Rebeck, G.W. Young APOE4 targeted replacement mice exhibit poor spatial learning and memory, with reduced dendritic spine density in the medial entorhinal cortex. Learn. Mem. 2013, 20, 256–266. [Google Scholar] [CrossRef] [Green Version]
- Dibattista, A.M.; Dumanis, S.B.; Newman, J.; Rebeck, G.W. Identification and modification of amyloid-independent phenotypes of APOE4 mice. Exp. Neurol. 2016, 280, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, G.A.; Tai, L.; Ladu, M.J.; Rebeck, G.W. Human APOE4 increases microglia reactivity at Aβ plaques in a mouse model of Aβ deposition. J. Neuroinflamm. 2014, 11, 111. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Initiative, A.D.N.; Yamada, K.; Liddelow, S.A.; Ferguson-Smith, A.C.; Zhao, L.; Luo, W.; Tsai, R.M.; Spina, S.; Grinberg, L.T.; et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nat. Cell Biol. 2017, 549, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Dias, G.P.; Hollywood, R.; Bevilaqua, M.C.D.N.; Luz, A.C.D.D.S.D.; Hindges, R.; Nardi, A.E.; Thuret, S. Consequences of cancer treatments on adult hippocampal neurogenesis: Implications for cognitive function and depressive symptoms. Neuro-Oncology 2014, 16, 476–492. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, J.; Wanchang, C.; Yang, Y.; Mayer-Pröschel, M.; Noble, M. CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J. Biol. 2006, 5, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Kim, J.-S.; Song, M.-S.; Kim, S.-H.; Kang, S.S.; Bae, C.-S.; Kim, J.-C.; Wang, H.; Shin, T.; Moon, C. Cyclophosphamide impairs hippocampus-dependent learning and memory in adult mice: Possible involvement of hippocampal neurogenesis in chemotherapy-induced memory deficits. Neurobiol. Learn. Mem. 2010, 93, 487–494. [Google Scholar] [CrossRef]
- Wu, L.; Guo, D.; Liu, Q.; Gao, F.; Wang, X.; Song, X.; Wang, F.; Zhan, R.-Z. Abnormal Development of Dendrites in Adult-Born Rat Hippocampal Granule Cells Induced by Cyclophosphamide. Front. Cell. Neurosci. 2017, 11, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, L.; Elbeltagy, M.; Bennett, G.; Wigmore, P. The Effects of Cyclophosphamide on Hippocampal Cell Proliferation and Spatial Working Memory in Rat. PLoS ONE 2011, 6, e21445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christie, L.-A.; Acharya, M.M.; Parihar, V.K.; Nguyen, A.; Martirosian, V.; Limoli, C.L. Impaired Cognitive Function and Hippocampal Neurogenesis following Cancer Chemotherapy. Clin. Cancer Res. 2012, 18, 1954–1965. [Google Scholar] [CrossRef] [Green Version]
- Rendeiro, C.; Sheriff, A.; Bhattacharya, T.K.; Gogola, J.V.; Baxter, J.H.; Chen, H.; Helferich, W.G.; Roy, E.J.; Rhodes, J.S. Long-lasting impairments in adult neurogenesis, spatial learning and memory from a standard chemotherapy regimen used to treat breast cancer. Behav. Brain Res. 2016, 315, 10–22. [Google Scholar] [CrossRef]
- Briones, T.L.; Woods, J. Chemotherapy-induced cognitive impairment is associated with decreases in cell proliferation and histone modifications. BMC Neurosci. 2011, 12, 124. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, S.; Walker, A.J.; Bennett, G.; Wigmore, P. 5-Fluorouracil chemotherapy affects spatial working memory and newborn neurons in the adult rat hippocampus. Eur. J. Neurosci. 2008, 28, 323–330. [Google Scholar] [CrossRef]
- Elbeltagy, M.; Mustafa, S.; Umka, J.; Lyons, L.; Salman, A.; Dormon, K.; Allcock, C.; Bennett, G.; Wigmore, P. The effect of 5-fluorouracil on the long term survival and proliferation of cells in the rat hippocampus. Brain Res. Bull. 2012, 88, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Seigers, R.; Schagen, S.B.; Coppens, C.M.; van der Most, P.J.; van Dam, F.S.A.M.; Koolhaas, J.M.; Buwalda, B. Methotrexate decreases hippocampal cell proliferation and induces memory deficits in rats. Behav. Brain Res. 2009, 201, 279–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winocur, G.; Berman, H.; Nguyen, M.; Binns, M.A.; Henkelman, M.; van Eede, M.; Piquette-Miller, M.; Sekeres, M.J.; Wojtowicz, J.M.; Yu, J.; et al. Neurobiological Mechanisms of Chemotherapy-induced Cognitive Impairment in a Transgenic Model of Breast Cancer. Neuroscience 2018, 369, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Nokia, M.S.; Anderson, M.L.; Shors, T.J. Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain. Eur. J. Neurosci. 2012, 36, 3521–3530. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Jiménez, E.P.; Flor-García, M.; Terreros-Roncal, J.; Rábano, A.; Cafini, F.; Pallas-Bazarra, N.; Ávila, J.; Llorens-Martin, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 2019, 25, 554–560. [Google Scholar] [CrossRef]
- Scopa, C.; Marrocco, F.; Latina, V.; Ruggeri, F.; Corvaglia, V.; la Regina, F.; Ammassari-Teule, M.; Middei, S.; Amadoro, G.; Meli, G.; et al. Impaired adult neurogenesis is an early event in Alzheimer’s disease neurodegeneration, mediated by intracellular Aβ oligomers. Cell Death Differ. 2020, 27, 934–948. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-P.; Gilley, J.A.; Zhang, G.; Kernie, S.G. ApoE is required for maintenance of the dentate gyrus neural progenitor pool. Development 2011, 138, 4351–4362. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Bien-Ly, N.; Andrews-Zwilling, Y.; Xu, Q.; Bernardo, A.; Ring, K.; Halabisky, B.; Deng, C.; Mahley, R.W.; Huang, Y. GABAergic Interneuron Dysfunction Impairs Hippocampal Neurogenesis in Adult Apolipoprotein E4 Knockin Mice. Cell Stem Cell 2009, 5, 634–645. [Google Scholar] [CrossRef] [Green Version]
- Andrews-Zwilling, Y.; Bien-Ly, N.; Xu, Q.; Li, G.; Bernardo, A.; Yoon, S.Y.; Zwilling, D.; Yan, T.X.; Chen, L.; Huang, Y. Apolipoprotein E4 Causes Age- and Tau-Dependent Impairment of GABAergic Interneurons, Leading to Learning and Memory Deficits in Mice. J. Neurosci. 2010, 30, 13707–13717. [Google Scholar] [CrossRef]
- Levi, O.; Michaelson, D.M. Environmental enrichment stimulates neurogenesis in apolipoprotein E3 and neuronal apoptosis in apolipoprotein E4 transgenic mice. J. Neurochem. 2007, 100, 202–210. [Google Scholar] [CrossRef]
- Koutseff, A.; Mittelhaeuser, C.; Essabri, K.; Auwerx, J.; Meziane, H. Impact of the apolipoprotein E polymorphism, age and sex on neurogenesis in mice: Pathophysiological relevance for Alzheimer’s disease? Brain Res. 2014, 1542, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Washington, P.M.; Kim, A.; Yang, C.-P.; Yu, T.-S.; Kernie, S.G. Apolipoprotein E Regulates Injury-Induced Activation of Hippocampal Neural Stem and Progenitor Cells. J. Neurotrauma 2016, 33, 362–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tensaouti, Y.; Yu, T.-S.; Kernie, S.G. Apolipoprotein E regulates the maturation of injury-induced adult-born hippocampal neurons following traumatic brain injury. PLoS ONE 2020, 15, e0229240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joly, F.; Lange, M.; Msc, M.D.S.; Vaz-Luis, I.; di Meglio, A. Long-Term Fatigue and Cognitive Disorders in Breast Cancer Survivors. Cancers 2019, 11, 1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najm, R.; Jones, E.A.; Huang, Y. Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer’s disease. Mol. Neurodegener. 2019, 14, 24. [Google Scholar] [CrossRef]
- Scheff, S.W.; Price, D.A.; Schmitt, F.A.; Mufson, E.J. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 2006, 27, 1372–1384. [Google Scholar] [CrossRef]
- Scheff, S.W.; Price, D.A.; Schmitt, F.A.; DeKosky, S.T.; Mufson, E.J. Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 2007, 68, 1501–1508. [Google Scholar] [CrossRef]
- Guptill, J.T.; Raja, S.M.; Boakye-Agyeman, F.; Noveck, R.; Ramey, S.; Tu, T.M.; Laskowitz, D.T. Phase 1 Randomized, Double-Blind, Placebo-Controlled Study to Determine the Safety, Tolerability, and Pharmacokinetics of a Single Escalating Dose and Repeated Doses of CN-105 in Healthy Adult Subjects. J. Clin. Pharmacol. 2017, 57, 770–776. [Google Scholar] [CrossRef]
- Dunbar, R.L.; Movva, R.; Bloedon, L.T.; Duffy, D.; Norris, R.B.; Navab, M.; Fogelman, A.M.; Rader, D.J. Oral Apolipoprotein A-I Mimetic D-4F Lowers HDL-Inflammatory Index in High-Risk Patients: A First-in-Human Multiple-Dose, Randomized Controlled Trial. Clin. Transl. Sci. 2017, 10, 455–469. [Google Scholar] [CrossRef]
- Williams, T.; Borchelt, D.R.; Chakrabarty, P. Therapeutic approaches targeting Apolipoprotein E function in Alzheimer’s disease. Mol. Neurodegener. 2020, 15, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Lanfranco, M.F.; Ng, C.A.; Rebeck, G.W. ApoE Lipidation as a Therapeutic Target in Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 6336. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.-P.V.; Liao, F.; Francis, C.M.; Robinson, G.O.; Serrano, J.R.; Jiang, H.; Roh, J.; Finn, M.B.; Sullivan, P.M.; Esparza, T.J.; et al. Age-Dependent Effects of apoE Reduction Using Antisense Oligonucleotides in a Model of β-amyloidosis. Neuron 2017, 96, 1013–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhou, G.; Kolls, B.J.; Tan, Y.; Fang, C.; Wang, H.; Laskowitz, D.T. Apolipoprotein E mimetic peptide CN-105 improves outcome in a murine model of SAH. Stroke Vasc. Neurol. 2018, 3, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Laskowitz, D.T.; Wang, H.; Chen, T.; Lubkin, D.T.; Cantillana, V.; Tu, T.M.; Kernagis, D.; Zhou, G.; Macy, G.; Kolls, B.J.; et al. Neuroprotective pentapeptide CN-105 is associated with reduced sterile inflammation and improved functional outcomes in a traumatic brain injury murine model. Sci. Rep. 2017, 7, srep46461. [Google Scholar] [CrossRef]
- Pang, J.; Chen, Y.; Kuai, L.; Yang, P.; Peng, J.; Wu, Y.; Chen, Y.; Vitek, M.P.; Chen, L.; Sun, X.; et al. Inhibition of Blood-Brain Barrier Disruption by an Apolipoprotein E-Mimetic Peptide Ameliorates Early Brain Injury in Experimental Subarachnoid Hemorrhage. Transl. Stroke Res. 2016, 8, 257–272. [Google Scholar] [CrossRef]
- Boehm-Cagan, A.; Bar, R.; Liraz, O.; Bielicki, J.K.; Johansson, J.O.; Michaelson, D.M. ABCA1 Agonist Reverses the ApoE4-Driven Cognitive and Brain Pathologies. J. Alzheimer’s Dis. 2016, 54, 1219–1233. [Google Scholar] [CrossRef]
- Chernick, D.; Ortiz-Valle, S.; Jeong, A.; Swaminathan, S.K.; Kandimalla, K.K.; Rebeck, G.W.; Li, L. High-density lipoprotein mimetic peptide 4F mitigates amyloid-β-induced inhibition of apolipoprotein E secretion and lipidation in primary astrocytes and microglia. J. Neurochem. 2018, 147, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Bloedon, L.T.; Dunbar, R.; Duffy, D.; Pinell-Salles, P.; Norris, R.; DeGroot, B.J.; Movva, R.; Navab, M.; Fogelman, A.M.; Rader, D.J. Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients. J. Lipid Res. 2008, 49, 1344–1352. [Google Scholar] [CrossRef] [Green Version]
- Cramer, P.E.; Cirrito, J.R.; Wesson, D.W.; Lee, C.Y.D.; Karlo, J.C.; Zinn, A.E.; Casali, B.T.; Restivo, J.L.; Goebel, W.D.; James, M.J.; et al. ApoE-Directed Therapeutics Rapidly Clear -Amyloid and Reverse Deficits in AD Mouse Models. Science 2012, 335, 1503–1506. [Google Scholar] [CrossRef] [Green Version]
- Fitz, N.F.; Cronican, A.A.; Lefterov, I.; Koldamova, R. Comment on “ApoE-Directed Therapeutics Rapidly Clear -Amyloid and Reverse Deficits in AD Mouse Models”. Science 2013, 340, 924-c. [Google Scholar] [CrossRef] [Green Version]
- Tesseur, I.; Lo, A.C.; Roberfroid, A.; Dietvorst, S.; van Broeck, B.; Borgers, M.; Gijsen, H.; Moechars, D.; Mercken, M.; Kemp, J.; et al. Comment on “ApoE-Directed Therapeutics Rapidly Clear -Amyloid and Reverse Deficits in AD Mouse Models”. Science 2013, 340, 924-e. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, D.; Yu, X.; Wu, Y.; Chen, Y.; Li, G.; Cheng, F.; Xia, L. Emerging roles of bexarotene in the prevention, treatment and anti-drug resistance of cancers. Expert Rev. Anticancer. Ther. 2018, 18, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-K.; Ji, Z.-S.; Dodson, S.E.; Miranda, R.D.; Rosenblum, C.I.; Reynolds, I.J.; Freedman, S.B.; Weisgraber, K.H.; Huang, Y.; Mahley, R.W. Apolipoprotein E4 Domain Interaction Mediates Detrimental Effects on Mitochondria and Is a Potential Therapeutic Target for Alzheimer Disease. J. Biol. Chem. 2010, 286, 5215–5221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.-K.; Liu, Z.; Meyer-Franke, A.; Brodbeck, J.; Miranda, R.D.; McGuire, J.G.; Pleiss, M.A.; Ji, Z.-S.; Balestra, M.E.; Walker, D.W.; et al. Small Molecule Structure Correctors Abolish Detrimental Effects of Apolipoprotein E4 in Cultured Neurons. J. Biol. Chem. 2011, 287, 5253–5266. [Google Scholar] [CrossRef] [Green Version]
- Brodbeck, J.; McGuire, J.; Liu, Z.; Meyer-Franke, A.; Balestra, M.E.; Jeong, D.-E.; Pleiss, M.; McComas, C.; Hess, F.; Witter, D.; et al. Structure-dependent Impairment of Intracellular Apolipoprotein E4 Trafficking and Its Detrimental Effects Are Rescued by Small-molecule Structure Correctors. J. Biol. Chem. 2011, 286, 17217–17226. [Google Scholar] [CrossRef] [Green Version]
- Al Mamun, A.; Uddin, S.; Bin Bashar, F.; Zaman, S.; Begum, Y.; Bulbul, I.J.; Islam, S.; Sarwar, S.; Mathew, B.; Amran, S.; et al. Molecular Insight into the Therapeutic Promise of Targeting APOE4 for Alzheimer’s Disease. Oxidative Med. Cell. Longev. 2020, 2020, 1–16. [Google Scholar] [CrossRef]
- Jensen, C.S.; Simonsen, A.H.; Siersma, V.; Beyer, N.; Frederiksen, K.S.; Gottrup, H.; Hoffman, K.; Høgh, P.; Frikke-Schmidt, R.; Sobol, N.A.; et al. Patients with Alzheimer’s disease who carry the APOE ε4 allele benefit more from physical exercise. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2019, 5, 99–106. [Google Scholar] [CrossRef]
- Sawmiller, D.; Habib, A.; Hou, H.; Mori, T.; Fan, A.; Tan, J.; Zeng, J.; Giunta, B.; Sanberg, P.R.; Mattson, M.P. A Novel Apolipoprotein E Antagonist Functionally Blocks Apolipoprotein E Interaction With N-terminal Amyloid Precursor Protein, reduces β-Amyloid-Associated Pathology, and Improves Cognition. Biol. Psychiatry 2019, 86, 208–220. [Google Scholar] [CrossRef]
- Potter, H.; Chial, H.J. Targeting the Interaction Between Apolipoprotein E and Amyloid Precursor Protein: A Novel Alzheimer’s Disease Therapy. Biol. Psychiatry 2019, 86, 169–170. [Google Scholar] [CrossRef]
- Wang, C.; Najm, R.; Xu, Q.; Jeong, D.-E.; Walker, D.; Balestra, M.E.; Yoon, S.Y.; Yuan, H.; Li, G.; Miller, Z.; et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat. Med. 2018, 24, 647–657. [Google Scholar] [CrossRef]
- Arboleda-Velasquez, J.F.; Lopera, F.; O’Hare, M.; Delgado-Tirado, S.; Marino, C.; Chmielewska, N.; Saez-Torres, K.L.; Amarnani, D.; Schultz, A.P.; Sperling, R.A.; et al. Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: A case report. Nat. Med. 2019, 25, 1680–1683. [Google Scholar] [CrossRef] [PubMed]
Study | Study Design | Results |
---|---|---|
CLINICAL | ||
Ahles et al., 2003 [23]. Long term survivors of breast cancer (8.8 years +/− 4.3 years post treatment) or lymphoma who had been treated with chemotherapy were given tests of cognition and stratified by the presence of at least one APOE4 allele. | Breast cancer survivors (n = 51, age 55.9 +/− 8.8 years old), lymphoma survivors (n = 29 age 55.8 +/− 11.6). Together, 21% (n = 17) were APOE4 carriers. A neuropsychological battery of tests assessed cognition, including verbal and spatial ability, verbal and visual memory, psychomotor function, and attention. | APOE4 carriers scored significantly lower in visual memory and spatial ability, with a trend toward lower psychomotor function. |
Ahles et al., 2014 [24]. Breast cancer patients treated with chemotherapy were assessed with cognitive tests prior to treatment at 1, 6 and 18 months post-chemotherapy, and were compared to breast cancer patients not treated with chemotherapy as well as healthy controls. Smoking history was also evaluated. | Chemotherapy treated breast cancer patients (n = 55, age 51.9 +/- 7.1; APOE carriers n = 14, 25%, had smoked n = 31, 56%). Non-chemotherapy treated breast cancer patients (n = 68, age 56.8+/− 8.3; APOE4 n = 18, 26%; smoked n = 43, 63%). Healthy controls (n = 43, age 53.0+/10.1; APOE4 n = 7, 16%; smoked n = 26, 60%). Individuals were evaluated for verbal ability and memory, visual and working memory, and processing speed. | Breast cancer patients who were APOE4 carriers without a smoking history had significantly lower performance on processing speed and working memory compared to smokers and healthy controls. APOE4 carriers without a smoking history who received chemotherapy had lower processing speed compared to those with a smoking history. |
Mandleblatt et al., 2018 [5]. Newly diagnosed non-metastatic breast cancer survivors aged 60 years and older were matched controls without cancer. Cognitive measurements were collected before treatment at 12 and 24 months after treatment. | Breast cancer survivors: Chemotherapy +/− hormone therapy n = 80; APOE4 n = 12 (15%). Hormonal Therapy alone n = 201; APOE4 n = 41 (20%). Healthy controls n = 322; APOE4 carriers n = 81 (25%). Individuals were tested for learning and memory (LM) and attention, processing speed and executive function (APE). | Hormonal Therapy alone: APOE3 patients had no change in LM; APOE4 patients had a short term decrease. There was no change in APE with APOE genotype. Chemotherapy: There was no change in APE in APOE3 patients, but significant reduction in APOE4 carriers. |
Amidi et al., 2017 [25]. Testicular cancer patients were assessed for cognition and grey matter (GM) morphology after surgery but prior to further treatment, and 6 months later. | 65 patients total, 22 received chemotherapy (age 31.9 +/− 9.4 years) and 43 did not (age 39.6 +/− 10.7). 20 of 61 (33%) patients with known APOE genotype were APOE4 positive. There were 25 healthy controls (age 32.8 +/− 11.1) tested for attention and working memory, processing speed, auditory learning and memory, verbal fluency and executive functions. | Testicular cancer patients had greater cognitive decline than healthy controls (p < 0.05). APOE4 carriers in cancer patients had significantly worse performance and had lower global composite score (p < 0.03) but did not have significant GM density changes. |
PRECLINICAL | ||
Speidell et al., 2018 [41]. Female homozygous APOE3 and APOE4 mice at 4–6 months were treated with doxorubicin or saline, and subjected to cognitive tests involving mazes that measure spatial learning and memory, as well as MRI scans to measure structural brain changes. | APOE3 (n = 18) and APOE4 (n = 21) knock-in female C57BL/6J mice were used, most commonly used in studies of cognition based on good learning skills. Mice were treated with doxorubicin or saline, and spatial learning tests (Barnes maze) were performed 6 weeks post exposure, at 21 to 25 weeks of age. | APOE4 mice treated with doxorubicin had significantly reduced spatial and learning memory compared to APOE3 mice, which showed no impairment. There were significant MRI changes in the cortex and hippocampus after treatment, with similar patterns in both APOE genotypes, more pronounced in APOE4. |
Demby et al., 2020 [42]. Female aged (12 months old) homozygous APOE3 or APOE4 mice were treated with doxorubicin or saline, and then subjected to cognitive and behavioral assays, and MRI scans were performed to detect regional brain volume differences. | APOE3 (n = 30) and APOE4 (n = 31) knock-in female C57BL/6J mice were used, and measures taken at 31–35 weeks post-exposure. Spatial and memory tests were analyzed via the Barnes maze, and tissue sections stained for markers of AD pathogenesis. | APOE3 mice were unaffected but APOE4 mice had significant impairment in spatial learning after doxorubicin treatment. Doxorubicin impaired spatial memory in both genotypes. There were no changes in AD marker expression. |
Treatment | Mechanism | Experimental Stage | Reference |
---|---|---|---|
APOE mimetics | Bind APOE receptors | Pre-clinical: alleviated CNS damage induced by ischemic stroke in wildtype mice | [173] |
Pre-clinical: reduced inflammation and oxidative stress, improved cognition in wildtype mice | [174] | ||
Phase I human trials: completed as treatment for spontaneous intracranial hemorrhage | [168] | ||
Pre-clinical: inhibited BBB impairment following subarachnoid hemorrhage (SAH), reduced inflammation and improved cognition in wildtype mice | [175] | ||
ABCA1 agonists | Increase ABCA1 activity and hence APOE4 lipidation. Increase APOE levels | Pre-clinical: alleviated synaptic impairment and improved cognition in APOE4 mice | [176] |
In vitro: mitigated inhibition of APOE secretion by AD pathogenic protein Aβ in vitro | [177] | ||
Clinical Trials: showed HDL inflammatory index reduced in high risk cardiovascular patients | [169,178] | ||
Retanoic X receptor agonists | Increase APOE levels and lipidation to increase activity | Pre-clinical: effective in reducing cognitive decline in wildtype mice | [179,180,181] |
Clinical: Approved for use in humans as a cancer treatment | [182] | ||
APOE4 structure correctors | Alleviate pathological intramolecular domain interactions | In vitro: increased neurite outgrowth in neurons and improved mitochondrial activity in APOE4 cells to resemble APOE3 cells | [183,184,185] |
Cyclosporin A | Inhibits pro-inflammatory cyclophilin A to reduce BBB breakdown | Pre-clinical: reduced BBB leakage in APOE4 mice | [57] |
Clinical: used to prevent organ rejection in humans | [186] | ||
Exercise | Reduce rate of cognitive decline by unknown mechanism | Post hoc analysis: more beneficial for APOE4 carriers | [187] |
APOE peptide antagonist | Disrupts interaction between APOE and Aβ and reduces inflammation and AD pathology | Pre-clinical: reduces inflammation and AD pathology induced by APOE-Aβ binding in AD mouse model | [188,189] |
Antisense oligonucleotides | Reduce APOE levels | Pre-clinical: reduced AD pathology in an AD mouse model | [172] |
Anti-inflammatory-NSAIDs | Reduces inflammation, increases neuronal complexity | Pre-clinical: causes APOE4 mice to more closely resemble APOE3 mice in AD model | [139] |
CRISPR/Cas9 | Editing APOE4 to either APOE2 or APOE3, or editing APOE3 to the protective Christchurch mutation | In vitro: corrects APOE4-dependent dysfunction in neurons, astrocytes, and microglia | [130,190,191] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez, H.R.; Varma, A.; Flowers, S.A.; Rebeck, G.W. Cancer Chemotherapy Related Cognitive Impairment and the Impact of the Alzheimer’s Disease Risk Factor APOE. Cancers 2020, 12, 3842. https://doi.org/10.3390/cancers12123842
Fernandez HR, Varma A, Flowers SA, Rebeck GW. Cancer Chemotherapy Related Cognitive Impairment and the Impact of the Alzheimer’s Disease Risk Factor APOE. Cancers. 2020; 12(12):3842. https://doi.org/10.3390/cancers12123842
Chicago/Turabian StyleFernandez, Harvey R., Ashima Varma, Sarah A. Flowers, and George William Rebeck. 2020. "Cancer Chemotherapy Related Cognitive Impairment and the Impact of the Alzheimer’s Disease Risk Factor APOE" Cancers 12, no. 12: 3842. https://doi.org/10.3390/cancers12123842
APA StyleFernandez, H. R., Varma, A., Flowers, S. A., & Rebeck, G. W. (2020). Cancer Chemotherapy Related Cognitive Impairment and the Impact of the Alzheimer’s Disease Risk Factor APOE. Cancers, 12(12), 3842. https://doi.org/10.3390/cancers12123842