Honokiol: A Review of Its Anticancer Potential and Mechanisms
Abstract
1. Introduction
2. Research Methodology
3. Structure Activity Relationship and Its Derivatives
4. Anticancer Properties of Honokiol
4.1. In Vitro Studies
Cell Lines | Mechanism of Action | Concentration Used | Efficacy/IC50 (Exposure Time) | References | |
---|---|---|---|---|---|
Colorectal cancer | RKO | Inhibit cell proliferation Induce G1 phase cell cycle arrest Induce apoptosis ↓ Bcl-xL; ↑ Caspase-3 & caspase-9 | 0–150 μM | 46.76 μM (68 h) | [33] |
HCT116, HCT116-CH2, HCT116-CH3 | Inhibit cell proliferation Induce G0/G1 & G2/M phase cell cycle arrest: ↓ cyclin D1 & A1; ↑ p53 phosphorylation Induce apoptosis: ↓ Caspase-3; ↓ Bcl-2; ↑ Bax protein | 25 μM Honokiol with 2.5 or 5.0 Gy IR | N/A | [34] | |
HT-29 | Inhibit cell growth & proliferation Induce G1 phase cell cycle arrest: ↓ Cdk1 & cyclin B1 | 0–50 μM followed by 0–5 Gy IR | 23.05 μM (24 h) 13.24 μM (72 h) | [24] | |
HCT116 & SW480 | Inhibit cell proliferation via Inhibition of Notch signalling: ↓ Notch1 & Jagged-1; ↓ Hey-1 & Hes1; ↓ γ-secretase complex; ↓ Skip1 Induce apoptosis: ↑ caspase-3/-7 activity; ↓ Bcl-2 & Bcl-xL; ↑ Bax protein; ↓ cyclin D1 & c-Myc; ↑ p21WAF1 protein Inhibit primary and secondary colonosphere formation | 0–50 μM | N/A | [35] | |
RKO & HCT116 | Inhibit cell viability Induce apoptosis: ↑ caspase-3, caspase-8 & caspase-9 activation; ↑ DR5 & cleaved PARP proteins; ↑ survivin protein; ↑ phosphorylated p53 & p53 proteins; ↓ PUMA protein | 0–60 μM | RKO: 38.25 μM (24 h) HCT116: 39.64 μM (24 h) | [36] | |
Blood cancer | B-CLL | Inhibit cell viability Induce apoptosis: ↑ caspase-3 activity; ↑ caspase-8 & caspase-9 activation; ↓ caspase-9; ↑ Bax protein; ↓ Mcl-1 protein | 0–100 μM | 49 μM (6 h) 38 μM (24 h) | [37] |
Raji, Molt-4 | Inhibit cell growth: ↓ p65; ↓ NF-κB Induce apoptosis: ↑ JNK activation Increase ROS activity: ↑ Nrf2 & c-Jun protein activation | 0–2.5 μM | Raji: 3.500 μM (24 h) 0.092 μM (72 h) Molt-4: 0.521 μM (24 h) | [38] | |
Breast cancer | MCF-7, MDA-MB-231, SKBR-3, ZR-75-1, BT-474 | Inhibit cell viability and growth: ↓ EFGR; ↓ MAPK/PI3K pathway activity Induce apoptosis: ↑ PARP protein degradation; ↓ caspase-8; ↑ Bax proteins Induce G1 phase cell cycle arrest: ↓ cyclin D1; ↑ p21 & p27 | 0–100 μM | MCF-7: 40 μM (24 h) MDA-MB-231: 33 μM (24 h) SKBR-3: 29 μM (24 h) ZR-75-1: 39 μM (24 h) BT-474: 50 μM (24 h) | [39] |
MCF-7, MDA-MB-231 | Inhibit cell clonogenicity Inhibit cell anchorage-dependent colony formation Inhibit cell growth, migration & invasion: ↓ pS6K & 4EBP1 phosphorylation; ↑ AMPK activation; ↓ mTORC1 function; ↑ LKB1 & cytosolic localisation | 1–25 μM | N/A | [40] | |
MCF-7, MDA-MB-231, SUM149, SUM159 | Inhibit cell migration & invasion: ↑ AMPK phosphorylation; ↑ LKB1 Inhibit stem-like characteristics: ↓ Oct4, Nanog & Sox4 protein; ↓ STAT3; ↓ iPSC inducer mRNA | 5 μM | N/A | [41] | |
MCF-7, MDA-MB-231, T47D, SKBR-3, Zr-75, BT-474 | Inhibit cell growth: ↓ PI3K/Akt/mTOR signalling Inhibit cell invasion Induce G0/G1 phase cell cycle arrest: ↓ cyclin D1 & cyclin E; ↓ Cdk2 & c-myc; ↑ PTEN Induce apoptosis: ↑ caspase-3, caspase-6 & caspase-9 activation | 0–40 μM | MCF7: 34.9 μM (24 h) 13.7 μM (48 h) 13.5 μM (72 h) 10.5 μM (96 h) MDA-MB-231: 56.9 μM (24 h) 44.4 μM (48 h) 16.0 μM (72 h) 12.0 μM (96 h) T47D: 47.7 μM (24 h) 41.6 μM (48 h) 17.6 μM (72 h) 7.1 μM (96 h) SKBR-3: 76.1 μM (24 h) 68.1 μM (48 h) 62.7 μM (72 h) 15.7 μM (96 h) ZR-75: 71.1 μM (24 h) 58.1 μM (48 h) 28.7 μM (72 h) 14.5 μM (96 h) BT-474: 80.2 μM (24 h) 65.6 μM (48 h) 39.5 μM (72 h) 15.1 μM (96 h) | [42] | |
MDA-MB-231 | Inhibit cell proliferation: ↓ c-Src/EGFR-mediated signalling pathway; ↓ c-Myc protein Induce G0/G1 phase cell cycle arrest: ↓ cyclin A, cyclin D1 & cyclin E; ↓ Cdk2, Cdk4 & p-pRbSer780; ↑ p27Kip−1 Induce apoptosis: ↑ caspase-3, caspase-8 & caspase-9 cascade; ↓ Bcl-2 & Bid protein; ↑ PARP cleavage | 0–100 μM | 59.5 μM (72 h) | [43] | |
Lung cancer | A549 | Inhibit cell growth & proliferation Induce G0/G1 phase cell cycle arrest: ↓ Cdk1 & cyclin B1 | 0–50 μM | 12.51 μM (24 h) 7.75 μM (72 h) | [24] |
A549, H460, H226, H1299 | Reduce invasive potential Inhibit PGE2-induced cell migration: ↓ PGE2 production ↓ COX-2 ↑ β-catenin degradation ↓ NF-κB/p65 activity ↓ IKKα | 0–20 μM | N/A | [44] | |
A549, H1299 | Inhibit cell viability and growth: ↓ class I HDAC proteins; ↓ HDAC activity; ↑ histone acetyltransferase (HAT) activity; ↑ histone H3 & H4 Induce G1 phase cell cycle arrest: ↓ cyclin D1 & cyclin D2; ↓ Cdk2, Cdk4 & Cdk6 | 0–60 μM | N/A | [45] | |
H460 & A549 | Inhibit cell proliferation Induce apoptosis: ↑ cathepsin D; ↑ cleaved PARP; ↑ caspase-3 Inhibit autophagy: ↑ p62; ↑ LC3-II | 0–60 μM | H460: ~30 μM (48 h) A549: ~40 μM (48 h) | [46] | |
Pc9-BrM3 & H2030-BrM3 (brain metastatic) | Inhibit cell proliferation and cell invasion: ↓ STAT3 protein phosphorylation; ↓ STAT-3 mediated mitochondrial respiratory function | 0–50 μM | PC9-BrM3: 28.4 μM (48 h) H2030-BrM3: 25.7 μM (48 h) | [47] | |
H23, A549 & HCC827 | Inhibit cell growth Induce G1 phase cell cycle arrest: ↓EGFR; ↓ class I HDAC; ↓ class IIb HDAC6 activity; ↑ Hsp90 acetylation & EGFR degradation | 0–40 μM | A549: 23.55 μM (24h) | [48] | |
H460, A549, H358 | Inhibit cell growth: ↓ c-RAF, ERK & AKT phosphorylation Inhibit colony formation capacity Induce apoptosis: ↑ Bax protein; ↓ Bcl-2 protein; ↑ PARP cleavage Induce G1 phase cell cycle arrest: ↓ cyclin D1; ↑ p21 & p27; ↓ P70S6k kinase activity Induce autophagy: ↑ LC3-I conversion to LC3-II; ↑ Sirt3 mRNA & protein; ↓ Hif-1α protein | 0–80 μM | H460: 30.42 μM (72 h) A549: 50.58 μM (72 h) H358: 59.38 μM (72 h) | [49] | |
A549 & 95-D | Inhibit cell viability Induce apoptosis: ↑ ER stress signalling pathway activation; ↑ GRP78, phosphorylation PERK & phosphorylated IRE1α; ↑ cleaved caspase-9 & CHOP; ↓ Bcl-2 protein; ↑ Bax, caspase-3 & caspase-9 Inhibit cell migration | 0–60 μM | N/A | [50] | |
CH27, H460 & H1299 | Inhibit cell growth Induce apoptosis: ↓ Bcl-XL; ↑ mitochondrial cytochrome c release; ↑ BAD protein; ↑ caspase-1, caspase-2, caspase-3, caspase-6, caspase-8 & caspase-9 activity; ↑ PARP cleavage | 0–100 μM | CH27: 40.9 μM (24 h) H460: 41.4 μM (24 h) H1299: 34.7 μM (24 h) | [25] | |
MSTO-211H | Inhibit cell viability Induce apoptosis: ↑ PARP cleavage; ↑ caspase-3 activation; ↓ Bid & Bcl-xL protein; ↑ Bax protein; ↓ Mcl-1 & survivin protein; ↓ Sp1 Induce G1 phase cell cycle arrest: ↓ cyclin D1 | 0–22.5 μM | N/A | [51] | |
Skin cancer | SK-MEL2 & MeWo | Inhibit cell growth & cell proliferation Induce apoptosis via DNA degradation Induce cell death via mitochondrial depolarization | 0–100 μM | N/A | [52] |
A431 | Inhibit cell viability & proliferation Induce G0/G1 phase cell cycle arrest: ↓ cyclin A, cyclin D1, cyclin D2 & cyclin E; ↓ Cdk2, Cdk4 & Cdk6; ↑ p21 & p27 Induce cell apoptosis: ↑ PARP | 0–75 μM | N/A | [53] | |
B16-F10 | Inhibit cell proliferation Induce cell death: ↑ Autophagosome (vacuoles) formation; ↓ cyclin D1; ↓ AKT/mTOR & Notch signalling | 0–50 μM | N/A | [54] | |
B16/F-10 & SKMEL-28 | Inhibit cell proliferation & viability: ↓ Notch signalling; ↓ TACE & γ-secretase complex proteins Inhibit clonogenicity Induce G0/G1 phase cell cycle arrest Induce autophagy: ↑ autophagosome formation; ↑ LC3B cleavage Inhibit cell stemness: ↓ CD271, CD166, Jarid1B & ABCB5 | 0–60 μM | N/A | [55] | |
UACC903 | Inhibit cell growth & proliferation | 0–50 μM | 7.45 μM (24 h) 5.10 μM (72 h) | [24] | |
SKMEL-2 | Inhibit cell proliferation & viability Induce apoptotic death: ↑ caspase-3, caspase-6, caspase-8 & caspase-9; ↑ PARP cleavage; ↓ procaspase-3, procaspase-8 & procaspase-9 Induce G2/M phase cell cycle arrest: ↓ cyclin B1, cyclin D1, cyclin D2 & PCNA; ↓ Cdk2 & Cdk4; ↑ p21 & p53 | 0–100 μM | N/A | [56] | |
UACC-62 | Inhibit cell proliferation & viability Induce apoptotic death: ↑ caspase-3, caspase-6, caspase-8 & caspase-9; ↑ cleaved PARP; ↓ procaspase-3, procaspase-8 & procaspase-9 Induce G0/G1 phase cell cycle arrest: ↓ cyclin B1, cyclin D1 & cyclin D2; ↓ Cdk2, Cdk4 & Cdc2p34; ↓ p21 & p27 | 0–100 μM | N/A | [56] | |
Renal cancer | A498 | Inhibit cell proliferation Inhibit colony formation capability Inhibit cell migration and invasion: ↓ Epithelial-mesenchymal transition (EMT); ↓ cancer stem cells (CSC) properties; ↑ miR-141; ↓ ZEB2 Inhibit tumoursphere formation | 0–80 μM | ~12 μM (72 h) | [57] |
Cervix cancer | KB-3-1, KB-8-5, KB-C1, KB-V1 | Inhibit cell viability: ↓ EGFR-STAT3 signalling Induce mitochondria-dependent & death receptor-dependent apoptosis: ↓ Bcl-2, Mcl-1 & survivin; ↑ PARP & caspase-3 cleavage; ↑ mitochondrial release of cytochrome c; ↑ DR5 Enhances in vitro cytotoxicity of Paclitaxel | 0–75 μM | KB-3-1: 12.56 μM (72 h) KB-8-5: 12.08 μM (72 h) KB-C1: 11.40 μM (72 h) KB-V1: 10.39 μM (72 h) | [31] |
Pancreatic cancer | MiaPaCa & Colo-357 | Suppress plating efficiency of cells Reduce anchorage-independent clonogenicity growth Suppress migration and invasion ability | 0–5 μM | N/A | [58] |
MiaPaCa & Panc1 | Inhibit cell growth Induce G1 phase cell cycle arrest: ↓ cyclin D1 & cyclin E; ↓ Cdk2 & Cdk4; ↑ p21 & p27 Induce apoptosis: ↓ Bcl-2 & Bcl-xL proteins; ↑ Bax protein; ↓ IKB-α phosphorylation; ↓ NF-κB constitutive activation | 0–60 μM | MiaPaCa: 43.25 μM (24 h) 31.08 μM (48 h) 18.54 μM (72 h) Panc1: 47.44 μM (24 h) 34.17 μM (48 h) 21.86 μM (72 h) | [59] | |
Thyroid cancer | ARO, WRO | Inhibit cell growth & proliferation: ↓ ERK, JNK & p37 activation and expression; ↓ mTOR & p70S6K Inhibit colony formation Induce apoptosis: ↑ PARP cleavage; ↑ caspase-3, caspase-8 & PARP activation; ↓ PI3K/AKT & MAPK pathways Induce G0/G1 cell cycle arrest: ↓ cyclin D1; ↓ Cdk2 & Cdk4; ↑ p21 & p27 Induce autophagy & autophagy flux: ↑ LC3-II | ARO & WRO: 0–60 μM SW579: 0–40 μM | ARO: 36.3 μM (24 h) 40.1 μM (48 h) 44.8 μM (72 h) WRO: 37.7 μM (24 h) 31.8 μM (48 h) 30.7 μM (72 h) SW579: 19.9 μM (24 h) 10.5 μM (48 h) 8.8 μM (72 h) | [60] |
Nasopharyngeal cancer | HNE-1 | Inhibit cell growth Induce apoptosis Induce G1 phase cell cycle arrest | 0–150 μM (Honokiol & ATNH—Active targeting nanoparticles-loaded honokiol) | Honokiol: 144.71 μM (24 h) ATNH: 69.04 μM (24 h) | [30] |
Brain cancer | U251 | Inhibit cell growth Inhibit cell proliferation Induce apoptosis | 0–120 μM | 61.43 μM (24 h) | [61] |
T98G | Inhibit cell viability Inhibit cell invasion Induce cell apoptosis: ↑ Bax protein; ↓ Bcl-2; ↑ Bax/Bcl-2 ratio | 0–50 μM | N/A | [62] | |
GBM8401 (Parental) & GBM8401 SP | Inhibit cell proliferation & viability Induce sub-G1 phase cell cycle arrest Induce apoptosis: ↓ Notch3/Hes1 pathway | 0–20 μM | GBM8401 (Parental): 5.30 μM (48 h) GBM8401 SP: 11.20 μM (48 h) | [36] | |
U251 & U-87 MG | Inhibit cell viability & proliferation: ↓ PI3K/Akt & MAPK/Erk signalling pathways Inhibit cell invasion & migration: ↓ MMP2 & MMP9; ↓ NF-κB-mediated E-cadherin pathway Inhibit colony formation Induce apoptosis: ↓ Bcl-2, p-AKT & p-ERK; ↑ Bax protein; ↑ caspase-3 cleavage; ↓ EGFR-STAT3 signalling Reduce spheroid formation: ↓ CD133 & Nestin protein | 0–60 μM | U251: 54.00 μM (24 h) U-87 MG: 62.50 μM (24 h) | [63] | |
DBTRG-05MG | Inhibit cell growth Induce apoptosis: ↓ Rb protein; ↑ PARP & Bcl-x(S/L) cleavage Induce autophagy: ↑ Beclin-1 & LC3-II | 0–50 μM | ~30 μM | [64] | |
U87 MG (Human) BMEC (Mouse) | Inhibit cell viability Inhibit epithelial-mesenchymal transition (EMT): ↓ Snail, β-catenin & N-cadherin; ↑ E-cadherin Inhibit cell adhesion & invasion: ↓ VCAM-1; ↓ phosphor-VE-cadherin-mediated BMEC permeability | 0–20 μM | U87MG: 22.66 μM (24 h) BMEC: 13.09 μM (24 h) | [65] | |
U87 MG | Inhibit cell viability Induce G1 phase cell cycle arrest: ↑ p21 & p53; ↓ cyclin D1; ↓ Cdk4 & Cdk6; ↓ p-Rb protein; ↓ E2F1 Induce apoptosis: ↓ procaspase-3; ↑ caspase-8 & caspase-9 activity | 0–100 μM | 52.70 μM | [66] | |
Bone cancer | HOS & U20S | Inhibit cell proliferation Inhibit colony formation Induce G0/G1 phase cell cycle arrest: ↓ cyclin D1 & cyclin E; ↓ Cdk4 Induce mitochondria-mediated apoptosis: ↑ caspase-3 & caspase-9 activation; ↑ PARP cleavage; ↓ Bcl-2, Bcl-xL & survivin; ↑ ERK activation; ↓ proteasome activity; ↑ ER stress and subsequent ROS overgeneration; ↑ GRP78 Induce autophagy: ↑ Atg7 protein activation; ↑ Atg5; ↑ LC3B-II | 0–30 μM | HOS: 17.70 μM (24 h) U20S: 21.50 μM (24 h) | [67] |
SAOS-2, HOS, 143B, MG-63 M8, HU09, HU09 M132 Dunn, LM5, LM8 & LM8-LacZ (Mouse) | Inhibit cell metabolic activity Inhibit cell proliferation Inhibit cell migration Induce rapid cell death via Honokiol-provoked vacuolation | 0–150 μM | (72 h) SAOS-2: 48.38 μM HOS: 51.38 μM 143B: 41.63 μM MG-63M8: 34.88 μM HU09: 59.25 μM HU09M132: 31.88 μM (72 h) Dunn: 36.00 μM LM5: 30.00 μM LM8: 31.13 μM | [68] | |
Saos-2 & MG-63 | Inhibit cell viability Induce apoptosis: ↑ caspase-3 & PARP cleavage; ↑ Bax protein; ↓ Bcl-2; ↓ PI3K/AKT signalling pathway; ↓ miR-21 | 0–100 μM | Saos-2: 37.85 μM (24 h) MG-63: 38.24 μM (24h) | [69] | |
Oral cancer | OC2 & OCSL | Inhibit cell growth Induce G0/G1 phase cell cycle arrest: ↑ cyclin E accumulation; ↑ p21 & p27; ↓ cyclin D1, ↓ Cdk2 & Cdk4 Induce apoptosis: ↓ caspase-8 & caspase-9; ↑ caspase-3 cleavage; ↓ Bid protein Induce autophagy and autophagic flux: ↑ LC3-II; ↓ Akt/mTORC1 pathway; ↑ AMPK signalling pathway; ↑ p62 | 0–60 μM | OC2: 35.00 μM (24 h) 22.00 μM (48 h) OCSL: 33 μM (24 h) 13 μM (48 h) | [26] |
HN-22 & HSC-4 | Inhibit cell viability Induce apoptosis: ↓ Sp1 protein; ↑ p21 & p27; ↑ PARP & caspase-3 activation; ↓ Mcl-1 & survivin protein Induce G1 phase cell cycle arrest: ↓ cyclin D1 | 0–37.5 μM | HN-22: 26.63 μM (48 h) HSC-4: 30.00 μM (48 h) | [70] | |
Liver cancer | HepG2 | Inhibit cell growth & proliferation: ↓ β-catenin protein Induce apoptosis: ↑ BAD protein; ↓ Bcl-2 protein Upregulation of BAD protein expression Downregulation of Bcl-2 protein level | 0–2 μM | N/A | [71] |
SMMC-7721 | Inhibit cell growth Induce G0/G1 phase cell cycle arrest Induce apoptosis: ↓ mitochondrial potential; ↑ ROS production; ↓ Bcl-2 protein; ↑ Bax protein | 0–37.5 μM | N/A | [72] | |
HepG2, HUH7, PLC/PRF5, Hep3B | Inhibit cell proliferation: ↓ STAT3 activation; ↓ IL-induced Akt phosphorylation; ↓ c-Src activation; ↓ JAK1 & JAK2; ↑ SHP-1 protein Induce sub-G1 phase cell cycle arrest: ↓ cyclin D1 Downregulation of cyclin D1 level Induce apoptosis: ↓ Bcl-2 & Bcl-xL; ↓ survivin & Mcl-1 protein; ↑ caspase-3 activation; ↑ PARP cleavage Enhance apoptotic effect of doxorubicin & paclitaxel | 0–100 μM | N/A | [32] | |
Ovarian cancer | A2780s & A2780cp | Inhibit cell growth Induce apoptosis | 0–100 μM | A2780s: 36.00 μM (48 h) A2780cp: 34.70 μM (48 h) | [73] |
SKOV3 & Caov-3 | Inhibit cell proliferation and growth Inhibit colony formation Induce apoptosis: ↑ AMPK pathway activation; ↑ caspase-3, caspase-7 & caspase-9 activation; ↑ PARP cleavage Induce G0/G1 phase cell cycle arrest Inhibit cell migration and invasion | 0–100 μM | SKOV: 48.71 μM (24 h) Caov-3: 46.42 μM (24 h) | [28] | |
SKOV3, COC1, Angelen & A2780 | Inhibit cell proliferation Induce cell apoptosis: ↓ Bcl-xL; ↑ BAD protein; ↑ caspase-3 activation Induce G1 phase cell cycle arrest | 0–93.75 μM | SKOV3: 62.63 μM (24 h) COC1: 73.50 μM (24 h) Angelen: 61.50 μM (24 h) A2780: 55.85 μM (24 h) | [74] | |
Prostate cancer | PC-3 & LNCaP | Inhibit cell viability Induce G0/G1 phase cell cycle arrest: ↓ cyclin D1 & cyclin E; ↓ Cdk2, Cdk4 & Cdk6; ↑ p21 & p53; ↓ Rb & E2F1 proteins; ↓ Rb phosphorylation at Ser807/811; ↑ ROS generation | 0–60 μM | N/A | [75] |
PC-3, LNCaP & C4-2 | Inhibit cell growth Induce apoptosis: ↑ caspase-3, caspase-8 & caspase-9 activation; ↑ PARP cleavage Induce apoptosis via DNA fragmentation: ↑ Bax & Bak proteins; ↓ Mcl-1 protein | 0–75 μM | 18.75–37.50 μM (24 h) | [76] | |
PC-3, LNCaP | Inhibit cell viability Induce autophagy: ↑ LC3-BII protein; ↓ mTOR pathway Induce apoptosis via DNA fragmentation: ↑ ROS generation | 0–40 μM | N/A | [77] | |
Head & neck squamous cancer | Cal-33 & MD-1483 | Inhibit cell growth Induce cell apoptosis and cell cycle arrest: ↓ EGFR signalling pathway; ↓ STAT3 signalling pathway; ↓ Bcl-xL & cyclin D1; ↓ phosphorylation p42/p44 MAPK & phosphorylated Akt | 0–100 μM | Cal-33: 3.80 μM (72 h) 1483: 7.44 μM (72 h) | [78] |
Neuroblastoma | Neuro-2a | Induce apoptosis via DNA fragmentation: ↑ caspase-3, caspase-6 & caspase-9 activation; ↑ Bax protein; ↓ mitochondrial membrane potential; ↑ cytochrome c releaseInduce sub-G1 phase cell cycle arrest | 0–100 μM | 63.3 μM (72 h) | [79] |
Neuro-2a & NB41A3 | Inhibit cell viability Induce autophagy: ↑ LC3-II; ↑ PI3K/Akt/mTOR signalling pathway; ↑ Grp78; ↑ ROS generation; ↑ ERK1/2; ↑ p-ERK1Induce apoptosis via DNA fragmentation Inhibit cell migration | 0–100 μM | Neuro-2a: ~50 μM (72 h) | [80] | |
Bladder cancer | T24 & 5637 | Inhibit cell viability and induce apoptosis: ↑ Bax protein; ↑ PARP cleavage; ↓ Bcl-2 protein Inhibit clonogenicity Induce G1 phase cell cycle arrest: ↓ cyclin D1; ↑ p21 & p27 Inhibit sphere formation capacity Inhibit cell migration & invasion: ↓ EZH2 gene expression; ↓ MMP9 Inhibit cell stemness: ↓ EZH2 gene expression; ↓ CD44 & Sox2; ↑ miR-143 overexpression | 0–72 μM | N/A | [81] |
4.2. In Vivo Studies
Cancer Cell Line | Animal Model & Site of Tumour Xenograft | Dose, Duration & Route of Administration | Observation & Mechanism of Action | Efficacy on Tumour Inhibition | References |
---|---|---|---|---|---|
Breast cancer | |||||
MDA-MB-231 cells | Both flanks of athymic nude mice | 100 mg/kg/day 28 days IP | Induce tumour growth arrest | Complete arrest of tumour growth from week 2 onwards | [39] |
MDA-MB-231 cells | Right gluteal region of athymic nude mice | 3 mg/mouse/day Three times a week 28 days IP | Inhibit tumour progression: ↓ Ki-67; ↑ LKB1 & pAMPK; ↑ ACC phosphorylation, ↓ pS6K & 4EBP1 phosphorylation | Tumour weight of honokiol-treated group was 0.22 g compared to control group which was 1.58 g | [40] |
MDA-MB-231-pLKO.1 & MDA-MB-231-LKB1shRNA cells | Right gluteal region of athymic nude mice | 3 mg/mouse/day Three times a week 42 days Oral gavage | Inhibit cell stemness: ↓ Oct4, Nanog & Sox2; ↓ pSTAT3 & Ki-67 Inhibit mammosphere formation | Decreased expression of Oct4, Nanog, Sox2 Reduce number of tumour cells showing Ki-67 & pStat3 expression | [41] |
Colorectal cancer | |||||
RKO cells | Axilla of BALB/c nude mice | 80 mg/kg/day Treatment on days 8–11, 14–17, 21–24, 28–31 51 days IP | Inhibit tumour growth Prolong survival of mice | 709.9% increase in tumour growth rate in honokiol-treated group compared to 1627.6% and 1408.2% in control and vehicle groups respectively | [33] |
HCT116 cells | Flank of athymic nude mice | 200 μg/kg/day + 5 Gy irradiation Once a week 21 days IP | Inhibit tumour growth: ↓ CSC proteins → ↓ DCLK1, Sox-9, CD133 & CD44 | Significantly lower tumour weight (<800 mg) in honokiol-IR combination, (~1500 mg) in honokiol treatment group compared to (~3300 mg) in control group | [35] |
Cervical cancer | |||||
KB-8-5 cells | Athymic nu/nu nude mice (site of xenograft not stated) | 50 mg/kg Honokiol Three times a week + 20 mg/kg Paclitaxel Once a week 28 days IP (honokiol) Tail vein injection (paclitaxel) | Suppress tumour growth: ↓ Ki-67 tissue level Induce apoptosis | Significantly lower average tumour volume for honokiol-paclitaxel combination treatment (573.9 mm3) compared to control (2585.4 mm3) | [31] |
Lung cancer | |||||
H2030-BrM3 cells | Left ventricle of NOD/SCID mice | 2 or 10 mg/kg/day 28 days Oral gavage | Prevent metastasis of lung cancer cells to brain | 10 mg/kg: Decrease brain metastasis for >70% | [47] |
H2030-BrM3 cells | Left lung via left ribcage of athymic nude mice | 2 or 10 mg/kg/day Five days a week 28 days Oral gavage | Decrease lung tumour growth Inhibit metastasis to lymph node | 10 mg/kg: Significantly reduce incidence of mediastinal adenopathy, decrement of weight of mediastinal lymph node for >80%, only 2/6 mice have lymphatic metastasis | [47] |
Blood cancer | |||||
Raji cells | Back of BALB/c nude mice | 5 mg/20 g & 10 mg/20 g Treatment on days 8–12 & 15–19 20 days (Route of administration not specified) | Inhibit cell proliferation Inhibit tumour growth | Tumour growth of honokiol-treated mice was significantly lower (~90 cm3) compared to control mice (~270 cm3) | [38] |
HL60 cells | Inoculated intraperitoneally into SCID mice | 100 mg/kg/day Treatment on Day 1–6 47 days IP | Prolong survival of mice | Median survival time of honokiol-treated mice are longer (37.5 days) compared to vehicle-treated mice (24.5 days) | [85] |
Pancreatic cancer | |||||
MiaPaCa cells | Pancreas of immunocompromised mice | 150 mg/kg/day 28 days IP | Suppress tumour growth Inhibit metastasis: ↓ CXCR & SHH; ↓ NF-κB & downstream pathway Inhibit desmoplastic reaction: ↓ ECM protein; ↓ collagen I | Significant decrease in tumour growth for honokiol-treated mice (99.6 mm3) compared to vehicle-treated mice (1361.0 mm3) | [58] |
Skin cancer | |||||
SKMEL-2 or UACC-62 cells | Right flank of athymic nude mice | 50 mg/kg Three times a week 14–54 days IP | Decrease tumour growth | SKMEL-2: 40% reduction in tumour volume UACC-62: 50% reduction in tumour volume | [56] |
Thyroid cancer | |||||
ARO cells | BALB/cAnN.Cg-Foxn1nu/CrlNarl mice (site of xenograft not stated) | 5 or 15 mg/kg/mouse Every three days 21 days Oral gavage | Decrease tumour volume & tumour weight Induce apoptosis & autophagy | Control: ~1000 mm3; 700 mg 5 mg/kg Honokiol: ~600 mm3; 400 mg 15 mg/kg Honokiol: ~400 mm3; 200 mg | [60] |
Nasopharyngeal cancer | |||||
HNE-1 cells | Right dorsal aspect of right foot of BALB/c athymic nude mice | Active-targeting nanoparticles-loaded HK (ATNH), Non-active-targeting nanoparticles-loaded HK (NATNH), Free Honokiol (HK) 3 mg/mouse/day Every three days Euthanise 50% mice after 12 days, rest are left to observe tumour growth & survival time up to 60 days; IV | Inhibit tumour progression, Induce apoptosis Potential inhibitor of angiogenesis & proliferation | Efficiency in tumour delay: ATNH > NATNH > Free HK Median survival time: Control: 28.5 days Free HK: 34 days NATNH: 42.5 days ATNH: 57.5 days | [30] |
Brain cancer | |||||
U21 cells | Right flank of athymic nude mice | 20 mg/kg Twice a week 27 days Caudal vein injection | Inhibit tumour growth Inhibit angiogenesis | Honokiol-treated mice have significant inhibition of tumour volume by 50.21% compared to vehicle Significantly lower microvessel present in honokiol-treated cells | [61] |
U-87 MG cell suspension pre-treated with honokiol or vehicle for 48h | Yolk sac of Zebrafish larvae | (Concentration N/A) 3 days Injection of cells into zebrafish | Inhibit cell proliferation Inhibit cell migration | Reduced number of cell mass compared to vehicle-treated cells | [63] |
U-87 MG cells | Right flank near upper extremity of nude mice | 100 mg/kg/day Treatment at days 1–7 21 days IP | Reduce tumour growth: ↓ EGFR, pSTAT3, CD133 & Nestin | Increased number of apoptotic cells in honokiol-treated tissue, Significantly lower tumour volume & tumour weight in honokiol-treated mice | [63] |
Bone cancer | |||||
HOS cells | Dorsal area of BALB/c-nu mice | 40 mg/kg/day 7 days IP | Reduce tumour growth Induce apoptosis & autophagy: ↑ cleaved caspase-3; ↑ LC3B-II & phosphor-ERK (ROS/ERK1/2 signalling pathway) | Significant decrease in tumour volume & weight of honokiol-treated mice (200 mm3; 0.2 g) compared to control group (~500 mm3; 0.5 g) Increased number of TUNEL-positive cells | [26] |
LM8-LacZ cells | Left flank of C3H/HeNCrl mice | 150 mg/kg/day 25 days; IP | Inhibit metastasis | Mean number of micrometastases decreased significantly by 41.4% in honokiol-treated mice compared to control mice | [68] |
Oral cancer | |||||
SAS cells | Right flank of BALB/cAnN.Cg-Foxn1nu.CrlNarl nude mice | 5 mg/kg or 15 mg/kg Treatment on day 1, 4, 7, 10, 13, 16, 19, 22 35 days Oral | Reduce tumour growth & volume | Significantly reduction in tumour growth in honokiol-treated mice 29% reduction (5 mg/kg; 21 days), 40% reduction (15 mg/kg; 21 days) 41% reduction (5 mg/kg; 35 days), 56% reduction (15 mg/kg; 35 days) | [26] |
Prostate cancer | |||||
C4-2 cells | Bilateral tibia of BALB/c nu/nu athymic nude mice | 100 mg/kg/day 42 days IP | Inhibit cell proliferation: ↑ Ki-67 Induce apoptosis: ↑ M-31 Inhibit angiogenesis: ↑ CD-31 | Lower PSA value in honokiol-treated mice compared to control group | [76] |
PC-3 cells | Left & right flanks above hind limb of nude mice | 1 or 2 mg/mice Monday, Wednesday & Friday two weeks before tumour implantation and duration of experiment after implantation 77 days Oral gavage | Inhibit tumour growth Inhibit cell proliferation Inhibit neovascularisation Induce apoptosis | Tumour volume of honokiol-treated mice are significantly lower (~330 mm3; 1 mg), (~50 mm3; 2 mg) compared to control (~400 mm3) | [18] |
Gastric cancer | |||||
MKN45 cells | Dorsal side of BALB/c nude mice (nu/nu) | 0.5 mg/kg/day & 1.5 mg/kg/day 10 days Injection (route not stated) | Inhibit tumour growth: ↓ GRP94 overexpression | 30% reduction in tumour volume (0.5 mg/kg) 60% reduction in tumour volume (1.5 mg/kg) Decreased accumulation of GRP94 | [86] |
MKN45 & SCM-1 cells | Peritoneal cavity of BALB/c nude mice | 5 mg/kg Twice a week 28 days IP | Inhibit metastasis Inhibit angiogenesis | Honokiol inhibited STAT-3 signalling and VEGF signalling induced by calpain/SHP-1 | [87] |
Ovarian cancer | |||||
SKOV3 cells | Right axilla of BALB/c nude mice | 1 mg liposome-encapsulated honokiol/day 48 days IP | Inhibit tumour growth Inhibit angiogenesis | Reduction in tumour growth rate in liposome-encapsulated honokiol-treated mice by 67–70% compared to control | [73,88] |
A2780s cells | Right flank of athymic BALB/c nude mice | 10 mg/kg Lipo-Honokiol Twice a week 21 days IV | Inhibit cancer growth Prolong survival of mice Increase intra-tumoural apoptosis Inhibit intra-tumoural angiogenesis | Lipo-HNK treated mice have significantly smaller tumour volume (222 ± 71 mm3) compared to liposome-treated mice (1823 ± 606 mm3) and control mice (3921 ± 235 mm3) | [73] |
A2780cp cells | Right flank of athymic BALB/c nude mice | 10 mg/kg Lipo-Honokiol Twice a week 21 days IV | Inhibit cancer growth Prolong survival Increase intra-tumoural apoptosis Inhibit intra-tumoural angiogenesis | Lipo-HNK treated mice have significantly smaller tumour volume (408 ± 165 mm3) compared to liposome-treated mice (2575 ± 701 mm3) and control mice (2828 ± 796 mm3) | [73] |
5. Mechanism of Action of Honokiol
5.1. Dual Induction of Apoptotic and Necrotic Cell Death
5.2. Cell Cycle Arrest
5.3. Autophagy
5.4. Epithelial-Mesenchymal Transition (EMT)
5.5. Suppression of Migration, Invasion and Angiogenesis of Cancer Cells
6. Effect of Honokiol on Various Signalling Pathways
6.1. Nuclear Factor Kappa B (NF-κB)
6.2. Signal Transducers and Activators of Transcription (STATs)
6.3. Epidermal Growth Factor Receptor (EGFR)
6.4. Mammalian Target of Rapamycin (mTOR)
6.5. Hypoxia-Inducible-Factor (HIF) Pathway
6.6. Notch Signalling Pathway
6.7. Downregulation of P-Glycoprotein
7. Metabolism, Bioavailability, and Pharmacological Relevance of Honokiol
8. Potential Drug Delivery of Honokiol
9. Future Perspective
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Foster, I. Cancer: A cell cycle defect. Radiography 2008, 14, 144–149. [Google Scholar] [CrossRef]
- Cabral, C.; Efferth, T.; Pires, I.M.; Severino, P.; Lemos, M.F.L. Natural Products as a Source for New Leads in Cancer Research and Treatment. Evid.-Based Complement. Altern. Med. 2018, 2018, 8243680. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhu, W.; Thompson, P.; Hannun, Y.A. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat. Commun. 2018, 9, 3490. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- DeVita, V.T.; Canellos, G.P. New therapies and standard of care in oncology. Nat. Rev. Clin. Oncol. 2011, 8, 67–68. [Google Scholar] [CrossRef]
- Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci. 2017, 24, 21. [Google Scholar] [CrossRef]
- Mitra, S.; Dash, R. Natural Products for the Management and Prevention of Breast Cancer. Evid.-Based Complement. Altern. Med. 2018, 2018, 8324696. [Google Scholar] [CrossRef]
- Bayat Mokhtari, R.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget 2017, 8, 38022–38043. [Google Scholar] [CrossRef]
- Robinson, M.M.Z.; Zhang, X. The World Medicines Situation 2011. Traditional Medicines: Global Situation, Issues and Challenges; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Seelinger, M.; Popescu, R.; Giessrigl, B.; Jarukamjorn, K.; Unger, C.; Wallnöfer, B.; Fritzer-Szekeres, M.; Szekeres, T.; Diaz, R.; Jäger, W.; et al. Methanol extract of the ethnopharmaceutical remedy Smilax spinosa exhibits anti-neoplastic activity. Int. J. Oncol. 2012, 41, 1164–1172. [Google Scholar] [CrossRef]
- Amaral, R.G.; dos Santos, S.A.; Andrade, L.N.; Severino, P.; Carvalho, A.A. Natural Products as Treatment against Cancer: A Historical and Current Vision. Clin. Oncol. 2019, 4, 1562. [Google Scholar]
- Arora, S.; Singh, S.; Piazza, G.A.; Contreras, C.M.; Panyam, J.; Singh, A.P. Honokiol: A novel natural agent for cancer prevention and therapy. Curr. Mol. Med. 2012, 12, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Wu, C.L.; Liu, J.F.; Fong, Y.C.; Hsu, S.F.; Li, T.M.; Su, Y.C.; Liu, S.H.; Tang, C.H. Honokiol induces cell apoptosis in human chondrosarcoma cells through mitochondrial dysfunction and endoplasmic reticulum stress. Cancer Lett. 2010, 291, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.D.; Lee, J.Y.; Baek, B.J.; Lee, B.D.; Koh, Y.W.; Lee, W.-S.; Lee, Y.-J.; Kwon, B.-M. The inhibitory effect of honokiol, a natural plant product, on vestibular schwannoma cells. Laryngoscope 2012, 122, 162–166. [Google Scholar] [CrossRef]
- Amblard, F.; Delinsky, D.; Arbiser, J.L.; Schinazi, R.F. Facile purification of honokiol and its antiviral and cytotoxic properties. J. Med. Chem. 2006, 49, 3426–3427. [Google Scholar] [CrossRef]
- Woodbury, A.; Yu, S.P.; Wei, L.; García, P. Neuro-modulating effects of honokiol: A review. Front. Neurol. 2013, 4, 130. [Google Scholar] [CrossRef]
- Hahm, E.R.; Arlotti, J.A.; Marynowski, S.W.; Singh, S.V. Honokiol, a constituent of oriental medicinal herb magnolia officinalis, inhibits growth of PC-3 xenografts in vivo in association with apoptosis induction. Clin. Cancer Res. 2008, 14, 1248–1257. [Google Scholar] [CrossRef]
- Chen, L. Rapid purification and scale-up of honokiol and magnolol using high-capacity high-speed counter-current chromatography A. J. Chromatogr. 2007, 1142, 115–122. [Google Scholar] [CrossRef]
- Chen, C.-M.; Liu, Y.-C. ChemInform Abstract: A Concise Synthesis of Honokiol. Tetrahedron Lett. 2009, 50, 1151–1152. [Google Scholar] [CrossRef]
- Gupta, M. Pharmacological Properties and Traditional Therapeutic Uses of Important Indian Spices: A Review. Int. J. Food Prop. 2010, 13, 1092–1116. [Google Scholar] [CrossRef]
- Anand, K.W.; Wakode, S. Development of drugs based on Benzimidazole Heterocycle: Recent advancement and insights. Int. J. Chem. Stud. 2017, 5, 350–362. [Google Scholar]
- Bohmdorfer, M.; Maier-Salamon, A.; Taferner, B.; Reznicek, G.; Thalhammer, T.; Hering, S.; Hufner, A.; Schuhly, W.; Jager, W. In vitro metabolism and disposition of honokiol in rat and human livers. J. Pharm. Sci. 2011, 100, 3506–3516. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.M.; Prakasha Gowda, A.S.; Sharma, A.K.; Amin, S. In vitro growth inhibition of human cancer cells by novel honokiol analogs. Bioorg. Med. Chem. 2012, 20, 3202–3211. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.E.; Hsieh, M.T.; Tsai, T.H.; Hsu, S.L. Down-modulation of Bcl-XL, release of cytochrome c and sequential activation of caspases during honokiol-induced apoptosis in human squamous lung cancer CH27 cells. Biochem. Pharmacol. 2002, 63, 1641–1651. [Google Scholar] [CrossRef]
- Huang, K.J.; Kuo, C.H.; Chen, S.H.; Lin, C.Y.; Lee, Y.R. Honokiol inhibits in vitro and in vivo growth of oral squamous cell carcinoma through induction of apoptosis, cell cycle arrest and autophagy. J. Cell. Mol. Med. 2018, 22, 1894–1908. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, K.; Guo, Y.; Huang, F.; Yang, K.; Chen, L.; Huang, K.; Zhang, F.; Long, Q. Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts. Sci. Rep. 2017, 7, 11989. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Sul, J.Y.; Park, J.B.; Lee, M.S.; Cha, E.Y.; Ko, Y.B. Honokiol induces apoptosis and suppresses migration and invasion of ovarian carcinoma cells via AMPK/mTOR signaling pathway. Int. J. Mol. Med. 2019, 43, 1969–1978. [Google Scholar] [CrossRef]
- Olusanya, T.O.B.; Haj Ahmad, R.R.; Ibegbu, D.M.; Smith, J.R.; Elkordy, A.A. Liposomal Drug Delivery Systems and Anticancer Drugs. Molecules 2018, 23, 907. [Google Scholar] [CrossRef]
- Yang, B.; Ni, X.; Chen, L.; Zhang, H.; Ren, P.; Feng, Y.; Chen, Y.; Fu, S.; Wu, J. Honokiol-loaded polymeric nanoparticles: An active targeting drug delivery system for the treatment of nasopharyngeal carcinoma. Drug Deliv. 2017, 24, 660–669. [Google Scholar] [CrossRef]
- Wang, X.; Beitler, J.J.; Wang, H.; Lee, M.J.; Huang, W.; Koenig, L.; Nannapaneni, S.; Amin, A.R.M.R.; Bonner, M.; Shin, H.J.C.; et al. Honokiol Enhances Paclitaxel Efficacy in Multi-Drug Resistant Human Cancer Model through the Induction of Apoptosis. PLoS ONE 2014, 9, e86369. [Google Scholar] [CrossRef]
- Rajendran, P.; Li, F.; Shanmugam, M.K.; Vali, S.; Abbasi, T.; Kapoor, S.; Ahn, K.S.; Kumar, A.P.; Sethi, G. Honokiol inhibits signal transducer and activator of transcription-3 signaling, proliferation, and survival of hepatocellular carcinoma cells via the protein tyrosine phosphatase SHP-1. J. Cell. Physiol. 2012, 227, 2184–2195. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, T.; Wu, Y.-F.; Gu, Y.; Xu, X.-L.; Zheng, S.; Hu, X. Honokiol: A potent chemotherapy candidate for human colorectal carcinoma. World J. Gastroenterol. 2004, 10, 3459–3463. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Subramaniam, D.; Ramalingam, S.; Dhar, A.; Postier, R.G.; Umar, S.; Zhang, Y.; Anant, S. Honokiol radiosensitizes colorectal cancer cells: Enhanced activity in cells with mismatch repair defects. Am. J. Physiol.-Gastrointest. Liver Physiol. 2011, 301, G929–G937. [Google Scholar] [CrossRef] [PubMed]
- Ponnurangam, S.; Mammen, J.M.; Ramalingam, S.; He, Z.; Zhang, Y.; Umar, S.; Subramaniam, D.; Anant, S. Honokiol in combination with radiation targets notch signaling to inhibit colon cancer stem cells. Mol. Cancer Ther. 2012, 11, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Lai, I.C.; Shih, P.-H.; Yao, C.-J.; Yeh, C.-T.; Wang-Peng, J.; Lui, T.-N.; Chuang, S.-E.; Hu, T.-S.; Lai, T.-Y.; Lai, G.-M. Elimination of Cancer Stem-Like Cells and Potentiation of Temozolomide Sensitivity by Honokiol in Glioblastoma Multiforme Cells. PLoS ONE 2015, 10, e0114830. [Google Scholar] [CrossRef] [PubMed]
- Battle, T.E.; Arbiser, J.; Frank, D.A. The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells. Blood 2005, 106, 690–697. [Google Scholar] [CrossRef]
- Gao, D.Q.; Qian, S.; Ju, T. Anticancer activity of Honokiol against lymphoid malignant cells via activation of ROS-JNK and attenuation of Nrf2 and NF-kappaB. J. BUON 2016, 21, 673–679. [Google Scholar]
- Wolf, I.; O’Kelly, J.; Wakimoto, N.; Nguyen, A.; Amblard, F.; Karlan, B.Y.; Arbiser, J.L.; Koeffler, H.P. Honokiol, a natural biphenyl, inhibits in vitro and in vivo growth of breast cancer through induction of apoptosis and cell cycle arrest. Int. J. Oncol. 2007, 30, 1529–1537. [Google Scholar] [CrossRef]
- Nagalingam, A.; Arbiser, J.L.; Bonner, M.Y.; Saxena, N.K.; Sharma, D. Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogenesis. Breast Cancer Res. 2012, 14, R35. [Google Scholar] [CrossRef]
- Sengupta, S.; Nagalingam, A.; Muniraj, N.; Bonner, M.Y.; Mistriotis, P.; Afthinos, A.; Kuppusamy, P.; Lanoue, D.; Cho, S.; Korangath, P.; et al. Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3. Oncogene 2017, 36, 5709–5721. [Google Scholar] [CrossRef]
- Liu, H.; Zang, C.; Emde, A.; Planas-Silva, M.D.; Rosche, M.; Kuhnl, A.; Schulz, C.O.; Elstner, E.; Possinger, K.; Eucker, J. Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer. Eur. J. Pharmacol. 2008, 591, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Min, H.Y.; Chung, H.J.; Hong, J.Y.; Kang, Y.J.; Hung, T.M.; Youn, U.J.; Kim, Y.S.; Bae, K.; Kang, S.S.; et al. Down-regulation of c-Src/EGFR-mediated signaling activation is involved in the honokiol-induced cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells. Cancer Lett. 2009, 277, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Katiyar, S.K. Honokiol Inhibits Non-Small Cell Lung Cancer Cell Migration by Targeting PGE2-Mediated Activation of β-Catenin Signaling. PLoS ONE 2013, 8, e60749. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Prasad, R.; Katiyar, S.K. Inhibition of class I histone deacetylases in non-small cell lung cancer by honokiol leads to suppression of cancer cell growth and induction of cell death in vitro and in vivo. Epigenetics 2013, 8, 54–65. [Google Scholar] [CrossRef]
- Lv, X.; Liu, F.; Shang, Y.; Chen, S.Z. Honokiol exhibits enhanced antitumor effects with chloroquine by inducing cell death and inhibiting autophagy in human non-small cell lung cancer cells. Oncol. Rep. 2015, 34, 1289–1300. [Google Scholar] [CrossRef]
- Pan, J.; Lee, Y.; Zhang, Q.; Xiong, D.; Wan, T.C.; Wang, Y.; You, M. Honokiol Decreases Lung Cancer Metastasis through Inhibition of the STAT3 Signaling Pathway. Cancer Prev. Res. 2017, 10, 133–141. [Google Scholar] [CrossRef]
- Liou, S.-F.; Hua, K.-T.; Hsu, C.-Y.; Weng, M.-S. Honokiol from Magnolia spp. induces G1 arrest via disruption of EGFR stability through repressing HDAC6 deacetylated Hsp90 function in lung cancer cells. J. Funct. Foods 2015, 15, 84–96. [Google Scholar] [CrossRef]
- Luo, L.-X.; Li, Y.; Liu, Z.-Q.; Fan, X.-X.; Duan, F.-G.; Li, R.-Z.; Yao, X.-J.; Leung, E.L.-H.; Liu, L. Honokiol Induces Apoptosis, G1 Arrest, and Autophagy in KRAS Mutant Lung Cancer Cells. Front. Pharmacol. 2017, 8, 199. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, S.; Gao, W.; Feng, J.; Zhao, G. Honokiol induces endoplasmic reticulum stress-mediated apoptosis in human lung cancer cells. Life Sci. 2019, 221, 204–211. [Google Scholar] [CrossRef]
- Chae, J.I.; Jeon, Y.J.; Shim, J.H. Downregulation of Sp1 is involved in honokiol-induced cell cycle arrest and apoptosis in human malignant pleural mesothelioma cells. Oncol. Rep. 2013, 29, 2318–2324. [Google Scholar] [CrossRef]
- Mannal, P.W.; Schneider, J.; Tangada, A.; McDonald, D.; McFadden, D.W. Honokiol produces anti-neoplastic effects on melanoma cells in vitro. J. Surg. Oncol. 2011, 104, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Chilampalli, C.; Guillermo, R.; Kaushik, R.S.; Young, A.; Chandrasekher, G.; Fahmy, H.; Dwivedi, C. Honokiol, a chemopreventive agent against skin cancer, induces cell cycle arrest and apoptosis in human epidermoid A431 cells. Exp. Biol. Med. 2011, 236, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, G.; Ramalingam, S.; Subramaniam, D.; Rangarajan, P.; Protti, P.; Rammamoorthy, P.; Anant, S.; Mammen, J.M. Honokiol induces cytotoxic and cytostatic effects in malignant melanoma cancer cells. Am. J. Surg. 2012, 204, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, G.; Kwatra, D.; Subramaniam, D.; Jensen, R.A.; Anant, S.; Mammen, J.M.V. Honokiol affects melanoma cell growth by targeting the AMP-activated protein kinase signaling pathway. Am. J. Surg. 2014, 208, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Guillermo-Lagae, R.; Santha, S.; Thomas, M.; Zoelle, E.; Stevens, J.; Kaushik, R.S. Antineoplastic Effects of Honokiol on Melanoma. Biomed Res. Int. 2017, 2017, 5496398. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, Q.; Su, Q.; Ma, D.; An, C.; Ma, L.; Liang, H. Honokiol suppresses renal cancer cells’ metastasis via dual-blocking epithelial-mesenchymal transition and cancer stem cell properties through modulating miR-141/ZEB2 signaling. Mol. Cells 2014, 37, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Averett, C.; Bhardwaj, A.; Arora, S.; Srivastava, S.K.; Khan, M.A.; Ahmad, A.; Singh, S.; Carter, J.E.; Khushman, M.D.; Singh, A.P. Honokiol suppresses pancreatic tumor growth, metastasis and desmoplasia by interfering with tumor–stromal cross-talk. Carcinogenesis 2016, 37, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Bhardwaj, A.; Srivastava, S.K.; Singh, S.; McClellan, S.; Wang, B.; Singh, A.P. Honokiol arrests cell cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells. PLoS ONE 2011, 6, e21573. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.H.; Chen, S.H.; Chang, Y.S.; Liu, Y.W.; Wu, J.Y.; Lim, Y.P.; Yu, H.I.; Lee, Y.R. Honokiol, a potential therapeutic agent, induces cell cycle arrest and program cell death in vitro and in vivo in human thyroid cancer cells. Pharmacol. Res. 2017, 115, 288–298. [Google Scholar] [CrossRef]
- Wang, X.; Duan, X.; Yang, G.; Zhang, X.; Deng, L.; Zheng, H.; Deng, C.; Wen, J.; Wang, N.; Peng, C.; et al. Honokiol crosses BBB and BCSFB, and inhibits brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. PLoS ONE 2011, 6, e18490. [Google Scholar] [CrossRef]
- Jeong, J.J.; Lee, J.H.; Chang, K.C.; Kim, H.J. Honokiol exerts an anticancer effect in T98G human glioblastoma cells through the induction of apoptosis and the regulation of adhesion molecules. Int. J. Oncol. 2012, 41, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Xue, W.; Schachner, M.; Zhao, W. Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells Via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor. Cancers 2018, 11, 22. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.H.; Yan, M.D.; Yao, C.J.; Lin, P.C.; Lai, G.M. Honokiol-induced apoptosis and autophagy in glioblastoma multiforme cells. Oncol. Lett. 2013, 6, 1435–1438. [Google Scholar] [CrossRef] [PubMed]
- Joo, Y.N.; Eun, S.Y.; Park, S.W.; Lee, J.H.; Chang, K.C.; Kim, H.J. Honokiol inhibits U87MG human glioblastoma cell invasion through endothelial cells by regulating membrane permeability and the epithelial-mesenchymal transition. Int. J. Oncol. 2014, 44, 187–194. [Google Scholar] [CrossRef]
- Lin, C.J.; Chen, T.L.; Tseng, Y.Y.; Wu, G.J.; Hsieh, M.H.; Lin, Y.W.; Chen, R.M. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway. Toxicol. Appl. Pharmacol. 2016, 304, 59–69. [Google Scholar] [CrossRef]
- Huang, K.; Chen, Y.; Zhang, R.; Wu, Y.; Ma, Y.; Fang, X.; Shen, S. Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 2018, 9, 157. [Google Scholar] [CrossRef]
- Steinmann, P.; Walters, D.K.; Arlt, M.J.; Banke, I.J.; Ziegler, U.; Langsam, B.; Arbiser, J.; Muff, R.; Born, W.; Fuchs, B. Antimetastatic activity of honokiol in osteosarcoma. Cancer 2012, 118, 2117–2127. [Google Scholar] [CrossRef]
- Yang, J.; Zou, Y.; Jiang, D. Honokiol suppresses proliferation and induces apoptosis via regulation of the miR21/PTEN/PI3K/AKT signaling pathway in human osteosarcoma cells. Int. J. Mol. Med. 2018, 41, 1845–1854. [Google Scholar] [CrossRef]
- Kim, D.W.; Ko, S.M.; Jeon, Y.J.; Noh, Y.W.; Choi, N.J.; Cho, S.D.; Moon, H.S.; Cho, Y.S.; Shin, J.C.; Park, S.M.; et al. Anti-proliferative effect of honokiol in oral squamous cancer through the regulation of specificity protein 1. Int. J. Oncol. 2013, 43, 1103–1110. [Google Scholar] [CrossRef]
- Xu, Q.; Tong, F.; He, C.; Song, P.; Xu, Q.; Chen, Z. The inhibition effect of Honokiol in liver cancer. Int. J. Clin. Exp. Med. 2018, 11, 10673–10678. [Google Scholar]
- Han, L.L.; Xie, L.P.; Li, L.H.; Zhang, X.W.; Zhang, R.Q.; Wang, H.Z. Reactive oxygen species production and Bax/Bcl-2 regulation in honokiol-induced apoptosis in human hepatocellular carcinoma SMMC-7721 cells. Environ. Toxicol. Pharmacol. 2009, 28, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Zhong, Q.; Chen, L.J.; Qi, X.R.; Fu, A.F.; Yang, H.S.; Yang, F.; Lin, H.G.; Wei, Y.Q.; Zhao, X. Liposomal honokiol, a promising agent for treatment of cisplatin-resistant human ovarian cancer. J. Cancer Res. Clin. Oncol. 2008, 134, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Y.; Zhao, X.; Pan, X.; Yin, R.; Huang, C.; Chen, L.; Wei, Y. Honokiol, a natural therapeutic candidate, induces apoptosis and inhibits angiogenesis of ovarian tumor cells. Eur. J. Obstet. Gynecol. Reprod. Biol. 2008, 140, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Hahm, E.R.; Singh, S.V. Honokiol causes G0-G1 phase cell cycle arrest in human prostate cancer cells in association with suppression of retinoblastoma protein level/phosphorylation and inhibition of E2F1 transcriptional activity. Mol. Cancer Ther. 2007, 6, 2686–2695. [Google Scholar] [CrossRef] [PubMed]
- Shigemura, K.; Arbiser, J.L.; Sun, S.Y.; Zayzafoon, M.; Johnstone, P.A.; Fujisawa, M.; Gotoh, A.; Weksler, B.; Zhau, H.E.; Chung, L.W. Honokiol, a natural plant product, inhibits the bone metastatic growth of human prostate cancer cells. Cancer 2007, 109, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- Hahm, E.R.; Sakao, K.; Singh, S.V. Honokiol activates reactive oxygen species-mediated cytoprotective autophagy in human prostate cancer cells. Prostate 2014, 74, 1209–1221. [Google Scholar] [CrossRef]
- Leeman-Neill, R.J.; Cai, Q.; Joyce, S.C.; Thomas, S.M.; Bhola, N.E.; Neill, D.B.; Arbiser, J.L.; Grandis, J.R. Honokiol inhibits epidermal growth factor receptor signaling and enhances the antitumor effects of epidermal growth factor receptor inhibitors. Clin. Cancer Res. 2010, 16, 2571–2579. [Google Scholar] [CrossRef]
- Lin, J.W.; Chen, J.T.; Hong, C.Y.; Lin, Y.L.; Wang, K.T.; Yao, C.J.; Lai, G.M.; Chen, R.M. Honokiol traverses the blood-brain barrier and induces apoptosis of neuroblastoma cells via an intrinsic bax-mitochondrion-cytochrome c-caspase protease pathway. Neuro-Oncology 2012, 14, 302–314. [Google Scholar] [CrossRef]
- Yeh, P.S.; Wang, W.; Chang, Y.A.; Lin, C.J.; Wang, J.J.; Chen, R.M. Honokiol induces autophagy of neuroblastoma cells through activating the PI3K/Akt/mTOR and endoplasmic reticular stress/ERK1/2 signaling pathways and suppressing cell migration. Cancer Lett. 2016, 370, 66–77. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, W.; Ye, C.; Zhuang, J.; Chang, C.; Li, Y.; Huang, X.; Shen, L.; Li, Y.; Cui, Y.; et al. Honokiol inhibits bladder tumor growth by suppressing EZH2/miR-143 axis. Oncotarget 2015, 6, 37335–37348. [Google Scholar] [CrossRef]
- Bao, L.; Jaramillo, M.C.; Zhang, Z.; Zheng, Y.; Yao, M.; Zhang, D.D.; Yi, X. Induction of autophagy contributes to cisplatin resistance in human ovarian cancer cells. Mol. Med. Rep. 2015, 11, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Cheng, J.; Xin, Q. Effects of tetracycline on developmental toxicity and molecular responses in zebrafish (Danio rerio) embryos. Ecotoxicology 2015, 24, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.; Chen, L.; Snaar-Jagalska, E.; Chaudhry, B. Embryonic zebrafish xenograft assay of human cancer metastasis. F1000Research 2018, 7, 1682. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Han, W.; Gu, Y.; Qiu, S.; Lu, Q.; Jin, J.; Luo, J.; Hu, X. Honokiol Induces a Necrotic Cell Death through the Mitochondrial Permeability Transition Pore. Cancer Res. 2007, 67, 4894. [Google Scholar] [CrossRef] [PubMed]
- Sheu, M.L.; Liu, S.H.; Lan, K.H. Honokiol induces calpain-mediated glucose-regulated protein-94 cleavage and apoptosis in human gastric cancer cells and reduces tumor growth. PLoS ONE 2007, 2, e1096. [Google Scholar] [CrossRef]
- Liu, S.H.; Wang, K.B.; Lan, K.H.; Lee, W.J.; Pan, H.C.; Wu, S.M.; Peng, Y.C.; Chen, Y.C.; Shen, C.C.; Cheng, H.C.; et al. Calpain/SHP-1 Interaction by Honokiol Dampening Peritoneal Dissemination of Gastric Cancer in nu/nu Mice. PLoS ONE 2012, 7, e43711. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; He, X.; Fan, L.; Yang, G.; Chen, X.; Lin, X.; Du, L.; Li, Z.; Ye, H.; et al. Enhancement of therapeutic effectiveness by combining liposomal honokiol with cisplatin in ovarian carcinoma. Int. J. Gynecol. Cancer 2008, 18, 652–659. [Google Scholar] [CrossRef]
- Goldar, S.; Khaniani, M.S.; Derakhshan, S.M.; Baradaran, B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac. J. Cancer Prev. 2015, 16, 2129–2144. [Google Scholar] [CrossRef]
- Hassan, M.; Watari, H.; AbuAlmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. Biomed Res. Int. 2014, 2014, 150845. [Google Scholar] [CrossRef]
- Wong, R.S.Y. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [Google Scholar] [CrossRef]
- Gerl, R.; Vaux, D.L. Apoptosis in the development and treatment of cancer. Carcinogenesis 2005, 26, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Letai, A. Apoptosis and Cancer. Annu. Rev. Cancer Biol. 2017, 1, 275–294. [Google Scholar] [CrossRef]
- Jeong, Y.-H.; Hur, J.H.; Jeon, E.-J.; Park, S.-J.; Hwang, T.J.; Lee, S.A.; Lee, W.K.; Sung, J.M. Honokiol Improves Liver Steatosis in Ovariectomized Mice. Molecules 2018, 23, 194. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-S.; Yao, C.-J.; Chuang, S.-E.; Yeh, C.-T.; Lee, L.-M.; Chen, R.-M.; Chao, W.-J.; Whang-Peng, J.; Lai, G.-M. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer 2016, 16, 245. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Katiyar, S.K. Honokiol, an Active Compound of Magnolia Plant, Inhibits Growth, and Progression of Cancers of Different Organs. Adv. Exp. Med. Biol. 2016, 928, 245–265. [Google Scholar] [CrossRef] [PubMed]
- Banik, K.; Ranaware, A.M.; Deshpande, V.; Nalawade, S.P.; Padmavathi, G.; Bordoloi, D.; Sailo, B.L.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; et al. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol. Res. 2019, 144, 192–209. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Beitler, J.J.; Huang, W.; Chen, G.; Qian, G.; Magliocca, K.; Patel, M.R.; Chen, A.Y.; Zhang, J.; Nannapaneni, S.; et al. Honokiol Radiosensitizes Squamous Cell Carcinoma of the Head and Neck by Downregulation of Survivin. Clin. Cancer Res. 2018, 24, 858–869. [Google Scholar] [CrossRef]
- Garcia, A.; Zheng, Y.; Zhao, C.; Toschi, A.; Fan, J.; Shraibman, N.; Brown, H.A.; Bar-Sagi, D.; Foster, D.A.; Arbiser, J.L. Honokiol Suppresses Survival Signals Mediated by Ras-Dependent Phospholipase D Activity in Human Cancer Cells. Clin. Cancer Res. 2008, 14, 4267. [Google Scholar] [CrossRef]
- Fried, L.E.; Arbiser, J.L. Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid. Redox Signal. 2009, 11, 1139–1148. [Google Scholar] [CrossRef]
- Li, H.Y.; Ye, H.G.; Chen, C.Q.; Yin, L.H.; Wu, J.B.; He, L.C.; Gao, S.M. Honokiol induces cell cycle arrest and apoptosis via inhibiting class I histone deacetylases in acute myeloid leukemia. J. Cell. Biochem. 2015, 116, 287–298. [Google Scholar] [CrossRef]
- Deng, J.; Qian, Y.; Geng, L.; Chen, J.; Wang, X.; Xie, H.; Yan, S.; Jiang, G.; Zhou, L.; Zheng, S. Involvement of p38 mitogen-activated protein kinase pathway in honokiol-induced apoptosis in a human hepatoma cell line (hepG2). Liver Int. 2008, 28, 1458–1464. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, S.; Yonezawa, T.; Ahn, J.Y.; Cha, B.Y.; Teruya, T.; Takami, M.; Yagasaki, K.; Nagai, K.; Woo, J.T. Honokiol inhibits osteoclast differentiation and function in vitro. Biol. Pharm. Bull. 2010, 33, 487–492. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tse, A.K.; Wan, C.K.; Shen, X.L.; Yang, M.; Fong, W.F. Honokiol inhibits TNF-alpha-stimulated NF-kappaB activation and NF-kappaB-regulated gene expression through suppression of IKK activation. Biochem. Pharmacol. 2005, 70, 1443–1457. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shao, X.; Wu, L.; Feng, T.; Jin, C.; Fang, M.; Wu, N.; Yao, H. Honokiol: An effective inhibitor of tumor necrosis factor-alpha-induced up-regulation of inflammatory cytokine and chemokine production in human synovial fibroblasts. Acta Biochim. Biophys. Sin. 2011, 43, 380–386. [Google Scholar] [CrossRef]
- Xu, H.L.; Tang, W.; Du, G.H.; Kokudo, N. Targeting apoptosis pathways in cancer with magnolol and honokiol, bioactive constituents of the bark of Magnolia officinalis. Drug Discov. Ther. 2011, 5, 202–210. [Google Scholar] [CrossRef]
- Raja, S.M.; Chen, S.; Yue, P.; Acker, T.M.; Lefkove, B.; Arbiser, J.L.; Khuri, F.R.; Sun, S.Y. The natural product honokiol preferentially inhibits cellular FLICE-inhibitory protein and augments death receptor-induced apoptosis. Mol. Cancer Ther. 2008, 7, 2212–2223. [Google Scholar] [CrossRef]
- Rauf, A.; Patel, S.; Imran, M.; Maalik, A.; Arshad, M.U.; Saeed, F.; Mabkhot, Y.N.; Al-Showiman, S.S.; Ahmad, N.; Elsharkawy, E. Honokiol: An anticancer lignan. Biomed. Pharmacother. 2018, 107, 555–562. [Google Scholar] [CrossRef]
- Schroder, M.; Kaufman, R.J. ER stress and the unfolded protein response. Mutat. Res. 2005, 569, 29–63. [Google Scholar] [CrossRef]
- Cao, S.S.; Kaufman, R.J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal. 2014, 21, 396–413. [Google Scholar] [CrossRef]
- Ferri, K.F.; Kroemer, G. Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 2001, 3, E255–E263. [Google Scholar] [CrossRef]
- Chiu, C.-S.; Tsai, C.-H.; Hsieh, M.-S.; Tsai, S.-C.; Jan, Y.-J.; Lin, W.-Y.; Lai, D.-W.; Wu, S.-M.; Hsing, H.-Y.; Arbiser, J.L.; et al. Exploiting Honokiol-induced ER stress CHOP activation inhibits the growth and metastasis of melanoma by suppressing the MITF and β-catenin pathways. Cancer Lett. 2019, 442, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Shen, C.C.; Yi, Y.C.; Tsai, J.J.; Wang, C.C.; Chueh, J.T.; Lin, K.L.; Lee, T.C.; Pan, H.C.; Sheu, M.L. Honokiol inhibits gastric tumourigenesis by activation of 15-lipoxygenase-1 and consequent inhibition of peroxisome proliferator-activated receptor-γ and COX-2-dependent signals. Br. J. Pharmacol. 2010, 160, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Lee, W.J.; Lai, D.W.; Wu, S.M.; Liu, C.Y.; Tien, H.R.; Chiu, C.S.; Peng, Y.C.; Jan, Y.J.; Chao, T.H.; et al. Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition. Mol. Oncol. 2015, 9, 834–849. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Lamb, H.K.; Brady, C.; Lefkove, B.; Bonner, M.Y.; Thompson, P.; Lovat, P.E.; Arbiser, J.L.; Hawkins, A.R.; Redfern, C.P. Inducing apoptosis of cancer cells using small-molecule plant compounds that bind to GRP78. Br. J. Cancer 2013, 109, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Ju, M.K.; Jeon, H.M.; Jeong, E.K.; Lee, Y.J.; Kim, C.H.; Park, H.G.; Han, S.I.; Kang, H.S. Regulation of Tumor Progression by Programmed Necrosis. Oxidative Med. Cell. Longev. 2018, 2018, 3537471. [Google Scholar] [CrossRef]
- Tian, W.; Xu, D.; Deng, Y.-C. Honokiol, a multifunctional tumor cell death inducer. Die Pharm. Int. J. Pharm. Sci. 2012, 67, 811–816. [Google Scholar] [CrossRef]
- Chen, G.; Izzo, J.; Demizu, Y.; Wang, F.; Guha, S.; Wu, X.; Hung, M.-C.; Ajani, J.A.; Huang, P. Different redox states in malignant and nonmalignant esophageal epithelial cells and differential cytotoxic responses to bile acid and honokiol. Antioxid. Redox Signal. 2009, 11, 1083–1095. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, Q.; Zhang, H.Y.; Zhang, X.; Huo, X.; Cheng, E.; Wang, D.H.; Arbiser, J.L.; Spechler, S.J.; Souza, R.F. Targeting the intrinsic inflammatory pathway: Honokiol exerts proapoptotic effects through STAT3 inhibition in transformed Barrett’s cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G561–G569. [Google Scholar] [CrossRef]
- Meier, J.A.; Hyun, M. Stress-induced dynamic regulation of mitochondrial STAT3 and its association with cyclophilin D reduce mitochondrial ROS production. Sci. Signal. 2017, 10. [Google Scholar] [CrossRef]
- Cen, M.; Yao, Y.; Cui, L.; Yang, G.; Lu, G.; Fang, L.; Bao, Z.; Zhou, J. Honokiol induces apoptosis of lung squamous cell carcinoma by targeting FGF2-FGFR1 autocrine loop. Cancer Med. 2018, 7, 6205–6218. [Google Scholar] [CrossRef]
- Hahm, E.R.; Singh, K.B.; Singh, S.V. c-Myc is a novel target of cell cycle arrest by honokiol in prostate cancer cells. Cell Cycle 2016, 15, 2309–2320. [Google Scholar] [CrossRef] [PubMed]
- Vaid, M.; Sharma, S.D.; Katiyar, S.K. Honokiol, a phytochemical from the Magnolia plant, inhibits photocarcinogenesis by targeting UVB-induced inflammatory mediators and cell cycle regulators: Development of topical formulation. Carcinogenesis 2010, 31, 2004–2011. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Ma, L.; Zhao, Y.; Peng, A.; Cheng, B.; Zhou, Q.; Zheng, L.; Huang, K. Inhibitory effects of magnolol and honokiol on human calcitonin aggregation. Sci. Rep. 2015, 5, 13556. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Peng, Z.Y. Honokiol induces cell cycle arrest and apoptosis in human gastric carcinoma MGC-803 cell line. Int. J. Clin. Exp. Med. 2015, 8, 5454–5461. [Google Scholar] [PubMed]
- Grimmel, M.; Backhaus, C.; Proikas-Cezanne, T. WIPI-Mediated Autophagy and Longevity. Cells 2015, 4, 202–217. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.W.; Lee, S.H. The Roles of Autophagy in Cancer. Int. J. Mol. Sci. 2018, 19, 3466. [Google Scholar] [CrossRef]
- Galluzzi, L.; Pietrocola, F.; Bravo-San Pedro, J.M.; Amaravadi, R.K.; Baehrecke, E.H.; Cecconi, F.; Codogno, P.; Debnath, J.; Gewirtz, D.A.; Karantza, V.; et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015, 34, 856–880. [Google Scholar] [CrossRef]
- Lin, L.; Baehrecke, E.H. Autophagy, cell death, and cancer. Mol. Cell Oncol. 2015, 2, e985913. [Google Scholar] [CrossRef]
- Paquette, M.; El-Houjeiri, L.; Pause, A. mTOR Pathways in Cancer and Autophagy. Cancers 2018, 10, 18. [Google Scholar] [CrossRef]
- Murray, J.T.; Tee, A.R. Mechanistic Target of Rapamycin (mTOR) in the Cancer Setting. Cancers 2018, 10, 168. [Google Scholar] [CrossRef]
- Itakura, E.; Mizushima, N. Atg14 and UVRAG: Mutually exclusive subunits of mammalian Beclin 1-PI3K complexes. Autophagy 2009, 5, 534–536. [Google Scholar] [CrossRef] [PubMed]
- Torii, S.; Yoshida, T.; Arakawa, S.; Honda, S.; Nakanishi, A.; Shimizu, S. Identification of PPM1D as an essential Ulk1 phosphatase for genotoxic stress-induced autophagy. EMBO Rep. 2016, 17, 1552–1564. [Google Scholar] [CrossRef] [PubMed]
- Maiuri, M.C.; Criollo, A.; Kroemer, G. Crosstalk between apoptosis and autophagy within the Beclin 1 interactome. EMBO J. 2010, 29, 515–516. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, S.R.; Simonsen, A. Membrane dynamics in autophagosome biogenesis. J. Cell Sci. 2015, 128, 193. [Google Scholar] [CrossRef] [PubMed]
- Mochida, K.; Oikawa, Y.; Kimura, Y.; Kirisako, H.; Hirano, H.; Ohsumi, Y.; Nakatogawa, H. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 2015, 522, 359–362. [Google Scholar] [CrossRef]
- Wrighton, K.H. Selecting ER for eating. Nat. Rev. Mol. Cell Biol. 2015, 16, 389. [Google Scholar] [CrossRef]
- Chio, C.C.; Chen, K.Y.; Chang, C.K.; Chuang, J.Y.; Liu, C.C.; Liu, S.H.; Chen, R.M. Improved effects of honokiol on temozolomide-induced autophagy and apoptosis of drug-sensitive and -tolerant glioma cells. BMC Cancer 2018, 18, 379. [Google Scholar] [CrossRef]
- Nieto, M.A.; Huang, R.Y.; Jackson, R.A.; Thiery, J.P. EMT: 2016. Cell 2016, 166, 21–45. [Google Scholar] [CrossRef]
- Brabletz, T.; Kalluri, R.; Nieto, M.A.; Weinberg, R.A. EMT in cancer. Nat. Rev. Cancer 2018, 18, 128–134. [Google Scholar] [CrossRef]
- Roche, J. The Epithelial-to-Mesenchymal Transition in Cancer. Cancers 2018, 10, 52. [Google Scholar] [CrossRef]
- Røsland, G.V.; Dyrstad, S.E.; Tusubira, D.; Helwa, R.; Tan, T.Z.; Lotsberg, M.L.; Pettersen, I.K.N.; Berg, A.; Kindt, C.; Hoel, F.; et al. Epithelial to mesenchymal transition (EMT) is associated with attenuation of succinate dehydrogenase (SDH) in breast cancer through reduced expression of SDHC. Cancer Metab. 2019, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Zhang, F.; Huang, R.; Yan, J.; Shen, B. Honokiol inhibits bladder cancer cell invasion through repressing SRC-3 expression and epithelial-mesenchymal transition. Oncol. Lett. 2017, 14, 4294–4300. [Google Scholar] [CrossRef] [PubMed]
- Avtanski, D.B.; Nagalingam, A.; Bonner, M.Y.; Arbiser, J.L.; Saxena, N.K.; Sharma, D. Honokiol inhibits epithelial-mesenchymal transition in breast cancer cells by targeting signal transducer and activator of transcription 3/Zeb1/E-cadherin axis. Mol. Oncol. 2014, 8, 565–580. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.-Q.; Qiao, X.-R.; Su, L.; Chen, S.-Z. Honokiol inhibits EMT-mediated motility and migration of human non-small cell lung cancer cells in vitro by targeting c-FLIP. Acta Pharmacol. Sin. 2016, 37, 1574–1586. [Google Scholar] [CrossRef]
- Qin, L.; Liu, Z.; Chen, H.; Xu, J. The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Res. 2009, 69, 3819–3827. [Google Scholar] [CrossRef]
- Yao, C.-J.; Lai, G.-M.; Yeh, C.-T.; Lai, M.-T.; Shih, P.-H.; Chao, W.-J.; Whang-Peng, J.; Chuang, S.-E.; Lai, T.-Y. Honokiol Eliminates Human Oral Cancer Stem-Like Cells Accompanied with Suppression of Wnt/β-Catenin Signaling and Apoptosis Induction. Evid.-Based Complement. Altern. Med. 2013, 2013, 146136. [Google Scholar] [CrossRef]
- Wang, W.D.; Shang, Y.; Li, Y.; Chen, S.Z. Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation. Acta Pharm. Sin. 2019, 40, 1219–1227. [Google Scholar] [CrossRef]
- Galichon, P.; Hertig, A. Epithelial to mesenchymal transition as a biomarker in renal fibrosis: Are we ready for the bedside? Fibrogenesis Tissue Repair 2011, 4, 11. [Google Scholar] [CrossRef]
- Conacci-Sorrell, M.; Ngouenet, C.; Anderson, S.; Brabletz, T.; Eisenman, R.N. Stress-induced cleavage of Myc promotes cancer cell survival. Genes Dev. 2014, 28, 689–707. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Wyckoff, J.; Condeelis, J. Cell migration in tumors. Curr. Opin. Cell Biol. 2005, 17, 559–564. [Google Scholar] [CrossRef]
- Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog. 2013, 18, 43–73. [Google Scholar] [CrossRef] [PubMed]
- Tay, R.Y.; Fernández-Gutiérrez, F.; Foy, V.; Burns, K.; Pierce, J.; Morris, K.; Priest, L.; Tugwood, J.; Ashcroft, L.; Lindsay, C.R.; et al. Prognostic value of circulating tumour cells in limited-stage small-cell lung cancer: Analysis of the concurrent once-daily versus twice-daily radiotherapy (CONVERT) randomised controlled trial. Ann. Oncol. 2019, 30, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Katiyar, S.K. Honokiol, a phytochemical from Magnolia spp., inhibits breast cancer cell migration by targeting nitric oxide and cyclooxygenase-2. Int. J. Oncol. 2011, 38, 769–776. [Google Scholar] [CrossRef][Green Version]
- Zhang, J.; Zhang, Y.; Shen, W.; Fu, R.; Ding, Z.; Zhen, Y.; Wan, Y. Cytological effects of honokiol treatment and its potential mechanism of action in non-small cell lung cancer. Biomed. Pharmacother. 2019, 117, 109058. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Castillo, V.; Welty, M.; Eliaz, I.; Sliva, D. Honokiol inhibits migration of renal cell carcinoma through activation of RhoA/ROCK/MLC signaling pathway. Int. J. Oncol. 2016, 49, 1525–1530. [Google Scholar] [CrossRef]
- Balan, M.; Chakraborty, S.; Flynn, E.; Zurakowski, D.; Pal, S. Honokiol inhibits c-Met-HO-1 tumor-promoting pathway and its cross-talk with calcineurin inhibitor-mediated renal cancer growth. Sci. Rep. 2017, 7, 5900. [Google Scholar] [CrossRef]
- Alizadeh, A.M.; Shiri, S.; Farsinejad, S. Metastasis review: From bench to bedside. Tumor Biol. 2014, 35, 8483–8523. [Google Scholar] [CrossRef]
- Klein, C.A. Cancer. The metastasis cascade. Science 2008, 321, 1785–1787. [Google Scholar] [CrossRef]
- Bai, X.; Cerimele, F.; Ushio-Fukai, M.; Waqas, M.; Campbell, P.M.; Govindarajan, B.; Der, C.J.; Battle, T.; Frank, D.A.; Ye, K.; et al. Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J. Biol. Chem. 2003, 278, 35501–35507. [Google Scholar] [CrossRef]
- Kolligs, F.T.; Bommer, G.; Goke, B. Wnt/beta-catenin/tcf signaling: A critical pathway in gastrointestinal tumorigenesis. Digestion 2002, 66, 131–144. [Google Scholar] [CrossRef]
- Hlubek, F.; Spaderna, S.; Jung, A.; Kirchner, T.; Brabletz, T. Beta-catenin activates a coordinated expression of the proinvasive factors laminin-5 gamma2 chain and MT1-MMP in colorectal carcinomas. Int. J. Cancer 2004, 108, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Castillo, V.; Eliaz, I.; Sliva, D. Honokiol suppresses metastasis of renal cell carcinoma by targeting KISS1/KISS1R signaling. Int. J. Oncol. 2015, 46, 2293–2298. [Google Scholar] [CrossRef] [PubMed]
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2006, 2, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, M.; Mousa, S.A. The Role of Angiogenesis in Cancer Treatment. Biomedicines 2017, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Tonini, T.; Rossi, F.; Claudio, P.P. Molecular basis of angiogenesis and cancer. Oncogene 2003, 22, 6549–6556. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Basu, A.; Arbiser, J.L.; Pal, S. The natural product honokiol inhibits calcineurin inhibitor-induced and Ras-mediated tumor promoting pathways. Cancer Lett. 2013, 338, 292–299. [Google Scholar] [CrossRef]
- Vavilala, D.T.; Ponnaluri, V.K.C.; Kanjilal, D.; Mukherji, M. Evaluation of anti-HIF and anti-angiogenic properties of honokiol for the treatment of ocular neovascular diseases. PLoS ONE 2014, 9, e113717. [Google Scholar] [CrossRef]
- Vavilala, D.T.; O’Bryhim, B.E.; Ponnaluri, V.K.; White, R.S.; Radel, J.; Symons, R.C.; Mukherji, M. Honokiol inhibits pathological retinal neovascularization in oxygen-induced retinopathy mouse model. Biochem. Biophys. Res. Commun. 2013, 438, 697–702. [Google Scholar] [CrossRef]
- Wen, J.; Wang, X.; Pei, H.; Xie, C.; Qiu, N.; Li, S.; Wang, W.; Cheng, X.; Chen, L. Anti-psoriatic effects of Honokiol through the inhibition of NF-kappaB and VEGFR-2 in animal model of K14-VEGF transgenic mouse. J. Pharmacol. Sci. 2015, 128, 116–124. [Google Scholar] [CrossRef][Green Version]
- Hu, J.; Chen, L.J.; Liu, L.; Chen, X.; Chen, P.L.; Yang, G.; Hou, W.L.; Tang, M.H.; Zhang, F.; Wang, X.H.; et al. Liposomal honokiol, a potent anti-angiogenesis agent, in combination with radiotherapy produces a synergistic antitumor efficacy without increasing toxicity. Exp. Mol. Med. 2008, 40, 617–628. [Google Scholar] [CrossRef]
- Xia, Y.; Shen, S.; Verma, I.M. NF-κB, an active player in human cancers. Cancer Immunol. Res. 2014, 2, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Tan, S.; Zhou, Y.; Lin, J.; Wang, H.; Oyang, L.; Tian, Y.; Liu, L.; Su, M.; Wang, H.; et al. Role of the NFκB-signaling pathway in cancer. Onco Targets Ther. 2018, 11, 2063–2073. [Google Scholar] [CrossRef] [PubMed]
- Ahn, K.S.; Sethi, G.; Shishodia, S.; Sung, B.; Arbiser, J.L.; Aggarwal, B.B. Honokiol Potentiates Apoptosis, Suppresses Osteoclastogenesis, and Inhibits Invasion through Modulation of Nuclear Factor-κB Activation Pathway. Mol. Cancer Res. 2006, 4, 621. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, X. Chemopreventive Activity of Honokiol against 7, 12—Dimethylbenz[a]anthracene-Induced Mammary Cancer in Female Sprague Dawley Rats. Front. Pharmacol. 2017, 8, 320. [Google Scholar] [CrossRef]
- Katiyar, S.K. Emerging Phytochemicals for the Prevention and Treatment of Head and Neck Cancer. Molecules 2016, 21, 1610. [Google Scholar] [CrossRef]
- Hua, H.; Chen, W.; Shen, L.; Sheng, Q.; Teng, L. Honokiol augments the anti-cancer effects of oxaliplatin in colon cancer cells. Acta Biochim. Biophys. Sin. 2013, 45, 773–779. [Google Scholar] [CrossRef][Green Version]
- Nabekura, T.; Hiroi, T.; Kawasaki, T.; Uwai, Y. Effects of natural nuclear factor-kappa B inhibitors on anticancer drug efflux transporter human P-glycoprotein. Biomed. Pharmacother. 2015, 70, 140–145. [Google Scholar] [CrossRef]
- Furqan, M.; Akinleye, A.; Mukhi, N.; Mittal, V.; Chen, Y.; Liu, D. STAT inhibitors for cancer therapy. J. Hematol. Oncol. 2013, 6, 90. [Google Scholar] [CrossRef]
- Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer 2009, 9, 798–809. [Google Scholar] [CrossRef]
- Pan, J.; Lee, Y.; Cheng, G.; Zielonka, J.; Zhang, Q.; Bajzikova, M.; Xiong, D.; Tsaih, S.-W.; Hardy, M.; Flister, M.; et al. Mitochondria-Targeted Honokiol Confers a Striking Inhibitory Effect on Lung Cancer via Inhibiting Complex I Activity. iScience 2018, 3, 192–207. [Google Scholar] [CrossRef]
- He, Z.; Subramaniam, D.; Zhang, Z.; Zhang, Y.; Anant, S. Honokiol as a Radiosensitizing Agent for Colorectal cancers. Curr. Colorectal Cancer Rep. 2013, 9, 358–364. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bi, L.; Yu, Z.; Wu, J.; Yu, K.; Hong, G.; Lu, Z.; Gao, S. Honokiol Inhibits Constitutive and Inducible STAT3 Signaling via PU.1-Induced SHP1 Expression in Acute Myeloid Leukemia Cells. Tohoku J. Exp. Med. 2015, 237, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, C.; Arbiser, J.L.; Mori, N. Honokiol induces cell cycle arrest and apoptosis via inhibition of survival signals in adult T-cell leukemia. Biochim. Biophys. Acta 2012, 1820, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Hiroki, K.; Yamashita, Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. BioMed Res. Int. 2013, 2013, 546318. [Google Scholar] [CrossRef] [PubMed]
- Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006, 366, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Kari, C.; Chan, T.O.; Rocha de Quadros, M.; Rodeck, U. Targeting the Epidermal Growth Factor Receptor in Cancer. Cancer Res. 2003, 63, 1. [Google Scholar] [PubMed]
- Yewale, C.; Baradia, D.; Vhora, I.; Patil, S.; Misra, A. Epidermal growth factor receptor targeting in cancer: A review of trends and strategies. Biomaterials 2013, 34, 8690–8707. [Google Scholar] [CrossRef]
- Song, J.M.; Anandharaj, A.; Upadhyaya, P.; Kirtane, A.R.; Kim, J.-H.; Hong, K.H.; Panyam, J.; Kassie, F. Honokiol suppresses lung tumorigenesis by targeting EGFR and its downstream effectors. Oncotarget 2016, 7, 57752–57769. [Google Scholar] [CrossRef]
- Dai, X.; Li, R.-Z.; Jiang, Z.-B.; Wei, C.-L.; Luo, L.-X.; Yao, X.-J.; Li, G.-P.; Leung, E.L.-H. Honokiol Inhibits Proliferation, Invasion and Induces Apoptosis Through Targeting Lyn Kinase in Human Lung Adenocarcinoma Cells. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef]
- Biscardi, J.S.; Ishizawar, R.C.; Silva, C.M.; Parsons, S.J. Tyrosine kinase signalling in breast cancer: Epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res. 2000, 2, 203–210. [Google Scholar] [CrossRef]
- Singh, T.; Gupta, N.A.; Xu, S.; Prasad, R.; Velu, S.E.; Katiyar, S.K. Honokiol inhibits the growth of head and neck squamous cell carcinoma by targeting epidermal growth factor receptor. Oncotarget 2015, 6, 21268–21282. [Google Scholar] [CrossRef] [PubMed]
- Dufour, M.; Dormond-Meuwly, A.; Demartines, N.; Dormond, O. Targeting the Mammalian Target of Rapamycin (mTOR) in Cancer Therapy: Lessons from Past and Future Perspectives. Cancers 2011, 3, 2478–2500. [Google Scholar] [CrossRef] [PubMed]
- Hua, H.; Kong, Q.; Zhang, H.; Wang, J.; Luo, T.; Jiang, Y. Targeting mTOR for cancer therapy. J. Hematol. Oncol. 2019, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Dong, H.; Li, M.; Wu, Y.; Liu, Y.; Zhao, Y.; Chen, X.; Ma, M. Honokiol induces autophagy and apoptosis of osteosarcoma through PI3K/Akt/mTOR signaling pathway. Mol. Med. Rep. 2018, 17, 2719–2723. [Google Scholar] [CrossRef]
- Pezzuto, A.; Carico, E. Role of HIF-1 in Cancer Progression: Novel Insights. A Review. Curr. Mol. Med. 2018, 18, 343–351. [Google Scholar] [CrossRef]
- Masoud, G.N.; Li, W. HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B 2015, 5, 378–389. [Google Scholar] [CrossRef]
- Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 2003, 3, 721–732. [Google Scholar] [CrossRef]
- Soni, S.; Padwad, Y.S. HIF-1 in cancer therapy: Two decade long story of a transcription factor. Acta Oncol. 2017, 56, 503–515. [Google Scholar] [CrossRef]
- Aster, J.C.; Pear, W.S.; Blacklow, S.C. The Varied Roles of Notch in Cancer. Annu. Rev. Pathol. 2017, 12, 245–275. [Google Scholar] [CrossRef]
- Venkatesh, V.; Nataraj, R.; Thangaraj, G.S.; Karthikeyan, M.; Gnanasekaran, A.; Kaginelli, S.B.; Kuppanna, G.; Kallappa, C.G.; Basalingappa, K.M. Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig. 2018, 5, 5. [Google Scholar] [CrossRef]
- Nowell, C.S.; Radtke, F. Notch as a tumour suppressor. Nat. Rev. Cancer 2017, 17, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, G.; Venugopal, A.; Ramamoorthy, P.; Standing, D.; Subramaniam, D.; Umar, S.; Jensen, R.A.; Anant, S.; Mammen, J.M. Honokiol inhibits melanoma stem cells by targeting notch signaling. Mol. Carcinog. 2015, 54, 1710–1721. [Google Scholar] [CrossRef] [PubMed]
- Wynn, M.L.; Consul, N.; Merajver, S.D.; Schnell, S. Inferring the Effects of Honokiol on the Notch Signaling Pathway in SW480 Colon Cancer Cells. Cancer Inform. 2014, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, R.; Luk, F.; Bebawy, M. Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy? Drug Metab. Dispos. 2014, 42, 623–631. [Google Scholar] [CrossRef]
- Waghray, D.; Zhang, Q. Inhibit or Evade Multidrug Resistance P-Glycoprotein in Cancer Treatment. J. Med. Chem. 2018, 61, 5108–5121. [Google Scholar] [CrossRef]
- Nanayakkara, A.K.; Follit, C.A.; Chen, G.; Williams, N.S.; Vogel, P.D.; Wise, J.G. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci. Rep. 2018, 8, 967. [Google Scholar] [CrossRef]
- Han, H.K.; Van Anh, L.T. Modulation of P-glycoprotein expression by honokiol, magnolol and 4-O-methylhonokiol, the bioactive components of Magnolia officinalis. Anticancer Res. 2012, 32, 4445–4452. [Google Scholar]
- Wang, X.; Cho, K.; Chen, Z.; Arbiser, J.; Shin, D. Honokiol reduces drug resistance by inhibition of P-glycoprotein expression in multidrug resistant (MDR) squamous cell carcinoma of the head and neck (SCCHN). Cancer Res. 2007, 67, 2776. [Google Scholar]
- Xu, D.; Lu, Q.; Hu, X. Down-regulation of P-glycoprotein expression in MDR breast cancer cell MCF-7/ADR by honokiol. Cancer Lett. 2006, 243, 274–280. [Google Scholar] [CrossRef]
- Wang, H.; Liao, Z.; Sun, X.; Shi, Q.; Huo, G.; Xie, Y.; Tang, X.; Zhi, X.; Tang, Z. Intravenous administration of Honokiol provides neuroprotection and improves functional recovery after traumatic brain injury through cell cycle inhibition. Neuropharmacology 2014, 86, 9–21. [Google Scholar] [CrossRef]
- Godugu, C.; Doddapaneni, R.; Singh, M. Honokiol nanomicellar formulation produced increased oral bioavailability and anticancer effects in triple negative breast cancer (TNBC). Colloids Surf. B 2017, 153, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.H.; Chou, C.J.; Cheng, F.C.; Chen, C.F. Pharmacokinetics of honokiol after intravenous administration in rats assessed using high-performance liquid chromatography. J. Chromatogr. B 1994, 655, 41–45. [Google Scholar] [CrossRef]
- Liang, Y.; Cui, G.; Wang, X.; Zhang, W.; An, Q.; Lin, Z.; Wang, H.; Chen, S. Pharmacokinetics of honokiol after intravenous guttae in beagle dogs assessed using ultra-performance liquid chromatography-tandem mass spectrometry. Biomed. Chromatogr. 2014, 28, 1378–1383. [Google Scholar] [CrossRef] [PubMed]
- Su, W.J.; Huang, X.; Qin, E.; Jiang, L.; Ren, P. Pharmacokinetics of honokiol in rat after oral administration of Cortex of Magnolia officinalis and its compound preparation Houpu Sanwu Decoction. J. Chin. Med. Mater. 2008, 31, 255–258. [Google Scholar]
- Wang, J.; Miao, X.L.; Chen, J.Y.; Chen, Y. The Pharmacokinetics and Tissue Distribution of Honokiol and its Metabolites in Rats. Eur. J. Drug Metab. Pharmacokinet. 2016, 41, 587–594. [Google Scholar] [CrossRef]
- Sheng, Y.L.; Xu, J.H.; Shi, C.H.; Li, W.; Xu, H.Y.; Li, N.; Zhao, Y.Q.; Zhang, X.R. UPLC-MS/MS-ESI assay for simultaneous determination of magnolol and honokiol in rat plasma: Application to pharmacokinetic study after administration emulsion of the isomer. J. Ethnopharmacol. 2014, 155, 1568–1574. [Google Scholar] [CrossRef]
- Han, M.; Yu, X.; Guo, Y.; Wang, Y.; Kuang, H.; Wang, X. Honokiol nanosuspensions: Preparation, increased oral bioavailability and dramatically enhanced biodistribution in the cardio-cerebro-vascular system. Colloids Surf. B 2014, 116, 114–120. [Google Scholar] [CrossRef]
- Wu, X.; Chen, X.; Hu, Z. High-performance liquid chromatographic method for simultaneous determination of honokiol and magnolol in rat plasma. Talanta 2003, 59, 115–121. [Google Scholar] [CrossRef]
- Prasad, R.; Singh, T.; Katiyar, S.K. Honokiol inhibits ultraviolet radiation-induced immunosuppression through inhibition of ultraviolet-induced inflammation and DNA hypermethylation in mouse skin. Sci. Rep. 2017, 7, 1657. [Google Scholar] [CrossRef]
- Gao, X.; Patel, M.G.; Bakshi, P.; Sharma, D.; Banga, A.K. Enhancement in the Transdermal and Localized Delivery of Honokiol Through Breast Tissue. AAPS PharmSciTech 2018, 19, 3501–3511. [Google Scholar] [CrossRef]
- Wang, X.H.; Cai, L.L.; Zhang, X.Y.; Deng, L.Y.; Zheng, H.; Deng, C.Y.; Wen, J.L.; Zhao, X.; Wei, Y.Q.; Chen, L.J. Improved solubility and pharmacokinetics of PEGylated liposomal honokiol and human plasma protein binding ability of honokiol. Int. J. Pharm. 2011, 410, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.Q.; Fan, L.Y.; Yang, G.L.; Guo, W.H.; Hou, W.L.; Chen, L.J.; Wei, Y.Q. Improved therapeutic effectiveness by combining liposomal honokiol with cisplatin in lung cancer model. BMC Cancer 2008, 8, 242. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Sun, Q.; Yang, H.; Tang, B.; Pu, H.; Li, H. Honokiol nanoparticles based on epigallocatechin gallate functionalized chitin to enhance therapeutic effects against liver cancer. Int. J. Pharm. 2018, 545, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wang, L.; Wang, L.; Zu, Y.; Wang, S.; Liu, P.; Zhao, X. Preparation of honokiol nanoparticles by liquid antisolvent precipitation technique, characterization, pharmacokinetics, and evaluation of inhibitory effect on HepG2 cells. Int. J. Nanomed. 2018, 13, 5469–5483. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhao, Y.; Wang, T.; Zhao, S.; Qiu, H.; Han, M.; Wang, X. Honokiol nanoparticles stabilized by oligoethylene glycols codendrimer: In vitro and in vivo investigations. J. Mater. Chem. B 2017, 5, 697–706. [Google Scholar] [CrossRef]
- Li, X.; Hou, X.; Ding, W.; Cong, S.; Zhang, Y.; Chen, M.; Meng, Y.; Lei, J.; Liu, Y.; Li, G. Sirolimus-loaded polymeric micelles with honokiol for oral delivery. J. Pharm. Pharmacol. 2015, 67, 1663–1672. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, Z.; Nie, S.; Song, L.; He, T.; Yang, S.; Yang, X.; Yi, C.; Wu, Q.; Gong, C. Biodegradable polymeric micelles coencapsulating paclitaxel and honokiol: A strategy for breast cancer therapy in vitro and in vivo. Int. J. Nanomed. 2017, 12, 1499–1514. [Google Scholar] [CrossRef]
- Gong, C.; Wei, X.; Wang, X.; Wang, Y.; Guo, G.; Mao, Y.; Luo, F.; Qian, Z. Biodegradable self-assembled PEG–PCL–PEG micelles for hydrophobic honokiol delivery: I. Preparation and characterization. Nanotechnology 2010, 21, 215103. [Google Scholar] [CrossRef]
- Zheng, X.; Kan, B.; Gou, M.; Fu, S.; Zhang, J.; Men, K.; Chen, L.; Luo, F.; Zhao, Y.; Zhao, X.; et al. Preparation of MPEG–PLA nanoparticle for honokiol delivery in vitro. Int. J. Pharm. 2010, 386, 262–267. [Google Scholar] [CrossRef]
- Wang, B.; Gou, M.; Zheng, X.; Wei, X.; Gong, C.; Wang, X.; Zhao, Y.; Luo, F.; Chen, L.; Qian, Z.; et al. Co-delivery honokiol and doxorubicin in MPEG-PLA nanoparticles. J. Nanosci. Nanotechnol. 2010, 10, 4166–4172. [Google Scholar] [CrossRef]
- Yu, R.; Zou, Y.; Liu, B.; Guo, Y.; Wang, X.; Han, M. Surface modification of pH-sensitive honokiol nanoparticles based on dopamine coating for targeted therapy of breast cancer. Colloids Surf. B 2019, 177, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Shi, S.; Wang, X.; Wang, Y.; Fu, S.; Dong, P.; Chen, L.; Zhao, X.; Wei, Y.; Qian, Z. Novel composite drug delivery system for honokiol delivery: Self-assembled poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles in thermosensitive poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel. J. Phys. Chem. B 2009, 113, 10183–10188. [Google Scholar] [CrossRef] [PubMed]
- Qiu, N.; Cai, L.L.; Xie, D.; Wang, G.; Wu, W.; Zhang, Y.; Song, H.; Yin, H.; Chen, L. Synthesis, structural and in vitro studies of well-dispersed monomethoxy-poly(ethylene glycol)-honokiol conjugate micelles. Biomed. Mater. 2010, 5, 065006. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Wang, D.; Zou, Y.; Qu, X.; He, C.; Deng, Y.; Jin, Y.; Zhou, Y.; Zhou, Y.; et al. Concurrently suppressing multidrug resistance and metastasis of breast cancer by co-delivery of paclitaxel and honokiol with pH-sensitive polymeric micelles. Acta Biomater. 2017, 62, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, L.; Xie, H.-J.; Ju, R.-J.; Xiao, Y.; Fu, M.; Liu, J.-J.; Li, X.-T. Functional paclitaxel plus honokiol micelles destroying tumour metastasis in treatment of non-small-cell lung cancer. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1154–1169. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.; Xia, T.; Han, Y.; He, Q.J.; Zhao, R.; Ma, J.R. Synergistic antitumor effects of liposomal honokiol combined with cisplatin in colon cancer models. Oncol. Lett. 2011, 2, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Ju, R.J.; Cheng, L.; Qiu, X.; Liu, S.; Song, X.L.; Peng, X.M.; Wang, T.; Li, C.Q.; Li, X.T. Hyaluronic acid modified daunorubicin plus honokiol cationic liposomes for the treatment of breast cancer along with the elimination vasculogenic mimicry channels. J. Drug Target. 2018, 26, 793–805. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, C.P.; Lee, W.L.; Tang, Y.Q.; Yap, W.H. Honokiol: A Review of Its Anticancer Potential and Mechanisms. Cancers 2020, 12, 48. https://doi.org/10.3390/cancers12010048
Ong CP, Lee WL, Tang YQ, Yap WH. Honokiol: A Review of Its Anticancer Potential and Mechanisms. Cancers. 2020; 12(1):48. https://doi.org/10.3390/cancers12010048
Chicago/Turabian StyleOng, Chon Phin, Wai Leong Lee, Yin Quan Tang, and Wei Hsum Yap. 2020. "Honokiol: A Review of Its Anticancer Potential and Mechanisms" Cancers 12, no. 1: 48. https://doi.org/10.3390/cancers12010048
APA StyleOng, C. P., Lee, W. L., Tang, Y. Q., & Yap, W. H. (2020). Honokiol: A Review of Its Anticancer Potential and Mechanisms. Cancers, 12(1), 48. https://doi.org/10.3390/cancers12010048