Breast Cancer in Young Women: Status Quo and Advanced Disease Management by a Predictive, Preventive, and Personalized Approach
Abstract
:1. Introduction
2. Epidemiology
3. Risk Factors
4. Pathological Characteristics and Tumor Behavior
4.1. Pathology of BC in Adolescent and Young Adult Patients
4.2. Molecular Signatures of Early-Onset BC
5. Screening and Diagnostics
6. Therapy
7. The Advanced Approach by Predictive, Preventive, and Personalized Medicine in Overall BC Management
7.1. Risk Assessment: Phenotyping and Genotyping
7.1.1. Deficient Thermoregulation and Feeling Inappropriately Cold
7.1.2. Persistently Cold Extremities, Altered Endothelin-1 Blood Patterns, and Systemic Hypoxic Effects
7.1.3. Reduced Thirst and Body Dehydration
7.1.4. Altered Circadian and Sleep Patterns
7.2. Multi-Omic Diagnostic Approach
7.3. BC Prediction, Machine Learning, and Artificial Intelligence
8. Conclusions and Future Directions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Leclère, B.; Molinié, F.; Trétarre, B.; Stracci, F.; Daubisse-Marliac, L.; Colonna, M.; GRELL Working Group. Trends in incidence of breast cancer among women under 40 in seven European countries: A GRELL cooperative study. Cancer Epidemiol. 2013, 37, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, H.; Patjoshi, S.; Yeghiazaryan, K.; Kehrer, C.; Kuhn, W.; Golubnitschaja, O. Premenopausal breast cancer: Potential clinical utility of a multi-omics based machine learning approach for patient stratification. EPMA J. 2018, 9, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.R.; Brockton, N.T.; Kotsopoulos, J.; Cotterchio, M.; Boucher, B.A.; Courneya, K.S.; Knight, J.A.; Olivotto, I.A.; Quan, M.L.; Friedenreich, C.M. Breast cancer survival among young women: A review of the role of modifiable lifestyle factors. Cancer Causes Control. 2016, 27, 459–472. [Google Scholar] [CrossRef]
- Golubnitschaja, O. Feeling cold and other underestimated symptoms in breast cancer: Anecdotes or individual profiles for advanced patient stratification? EPMA J. 2017, 8, 17–22. [Google Scholar] [CrossRef]
- Bubnov, R.; Polivka, J.; Zubor, P.; Konieczka, K.; Golubnitschaja, O. “Pre-metastatic niches” in breast cancer: Are they created by or prior to the tumour onset? “Flammer Syndrome” relevance to address the question. EPMA J. 2017, 8, 141–157. [Google Scholar] [CrossRef]
- Golubnitschaja, O. Flammer Syndrome: From Phenotype to Associated Pathologies, Prediction, Prevention and Personalisation; Springer: Berlin, Germany, 2019; ISBN 978-3-030-13550-8. [Google Scholar]
- Seely, J.M.; Alhassan, T. Screening for breast cancer in 2018—What should we be doing today? Curr. Oncol. 2018, 25, S115–S124. [Google Scholar] [CrossRef]
- Springer Nature. Change the World—One Article at a Time. Available online: https://www.springernature.com/gp/researchers/campaigns/change-the-world?wt_mc=SocialMedia.Twitter.10.CON417.ctw2018_tw_shared_button&utm_medium=socialmedia&utm_source=twitter&utm_content=ctw2018_tw_shared_button&utm_campaign=10_dann_ctw2018_tw_shared_button (accessed on 12 July 2018).
- Change the World—Medicine and Public Health. Available online: https://www.springernature.com/gp/researchers/campaigns/change-the-world/medicine-public-health (accessed on 12 July 2018).
- Polivka, J.; Altun, I.; Golubnitschaja, O. Pregnancy-associated breast cancer: The risky status quo and new concepts of predictive medicine. EPMA J. 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Moreira, W.B.; Brandão, E.C.; Soares, A.N.; de Lucena, C.E.M.; Antunes, C.M.F. Prognosis for patients diagnosed with pregnancy-associated breast cancer: A paired case-control study. Sao Paulo Med. J. 2010, 128, 119–124. [Google Scholar] [CrossRef]
- Zubor, P.; Kubatka, P.; Kapustova, I.; Miloseva, L.; Dankova, Z.; Gondova, A.; Bielik, T.; Krivus, S.; Bujnak, J.; Laucekova, Z.; et al. Current approaches in the clinical management of pregnancy-associated breast cancer-pros and cons. EPMA J. 2018, 9, 257–270. [Google Scholar] [CrossRef]
- Kim, Y.G.; Jeon, Y.W.; Ko, B.K.; Sohn, G.; Kim, E.-K.; Moon, B.-I.; Youn, H.J.; Kim, H.-A.; Society, K.B.C. Clinicopathologic Characteristics of Pregnancy-Associated Breast Cancer: Results of Analysis of a Nationwide Breast Cancer Registry Database. J. Breast Cancer 2017, 20, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Golubnitschaja, O.; Debald, M.; Yeghiazaryan, K.; Kuhn, W.; Pešta, M.; Costigliola, V.; Grech, G. Breast cancer epidemic in the early twenty-first century: Evaluation of risk factors, cumulative questionnaires and recommendations for preventive measures. Tumour Biol. 2016, 37, 12941–12957. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; Loibl, S.; Pagani, O.; Graziottin, A.; Panizza, P.; Martincich, L.; Gentilini, O.; Peccatori, F.; Fourquet, A.; Delaloge, S.; et al. The European Society of Breast Cancer Specialists recommendations for the management of young women with breast cancer. Eur. J. Cancer 2012, 48, 3355–3377. [Google Scholar] [CrossRef] [PubMed]
- Cancer Research UK. Available online: https://www.cancerresearchuk.org/home (accessed on 4 September 2019).
- Anders, C.K.; Johnson, R.; Litton, J.; Phillips, M.; Bleyer, A. Breast cancer before age 40 years. Semin. Oncol. 2009, 36, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Pollán, M. Epidemiology of breast cancer in young women. Breast Cancer Res. Treat. 2010, 123 (Suppl. 1), 3–6. [Google Scholar] [CrossRef]
- Althuis, M.D.; Brogan, D.D.; Coates, R.J.; Daling, J.R.; Gammon, M.D.; Malone, K.E.; Schoenberg, J.B.; Brinton, L.A. Breast cancers among very young premenopausal women (United States). Cancer Causes Control. 2003, 14, 151–160. [Google Scholar] [CrossRef]
- Tavani, A.; Gallus, S.; Vecchia, C.L.; Negri, E.; Montella, M.; Maso, L.D.; Franceschi, S. Risk factors for breast cancer in women under 40 years. Eur. J. Cancer 1999, 35, 1361–1367. [Google Scholar] [CrossRef]
- Turnbull, C.; Rahman, N. Genetic predisposition to breast cancer: Past, present, and future. Ann. Rev. Genomics Hum. Genet. 2008, 9, 321–345. [Google Scholar] [CrossRef]
- Copson, E.R.; Maishman, T.C.; Tapper, W.J.; Cutress, R.I.; Greville-Heygate, S.; Altman, D.G.; Eccles, B.; Gerty, S.; Durcan, L.T.; Jones, L.; et al. Germline BRCA mutation and outcome in young-onset breast cancer (POSH): A prospective cohort study. Lancet Oncol. 2018, 19, 169–180. [Google Scholar] [CrossRef]
- Adank, M.A.; Hes, F.J.; van Zelst-Stams, W.A.G.; van den Tol, M.P.; Seynaeve, C.; Oosterwijk, J.C. CHEK2-mutation in Dutch breast cancer families: Expanding genetic testing for breast cancer. Ned. Tijdschr. Geneeskd. 2015, 159, A8910. [Google Scholar]
- Bakhuizen, J.J.; Velthuizen, M.E.; Stehouwer, S.; Bleiker, E.M.; Ausems, M.G. Genetic counselling of young women with breast cancer for Li-Fraumeni syndrome: A nationwide survey on the experiences and attitudes of genetics professionals. Fam. Cancer 2019, 18, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.; Casadei, S.; Coats, K.H.; Swisher, E.; Stray, S.M.; Higgins, J.; Roach, K.C.; Mandell, J.; Lee, M.K.; Ciernikova, S.; et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 2006, 295, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.G.R.; Moran, A.; Hartley, R.; Dawson, J.; Bulman, B.; Knox, F.; Howell, A.; Lalloo, F. Long-term outcomes of breast cancer in women aged 30 years or younger, based on family history, pathology and BRCA1/BRCA2/TP53 status. Br. J. Cancer 2010, 102, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Stuckey, A.R.; Onstad, M.A. Hereditary breast cancer: An update on risk assessment and genetic testing in 2015. Am. J. Obstet. Gynecol. 2015, 213, 161–165. [Google Scholar] [CrossRef]
- Gallardo-Alvarado, L.N.; Tusié-Luna, M.T.; Tussié-Luna, M.I.; Díaz-Chávez, J.; Segura, Y.X.; Bargallo-Rocha, E.; Villarreal, C.; Herrera-Montalvo, L.A.; Herrera-Medina, E.M.; Cantu-de Leon, D.F. Prevalence of germline mutations in the TP53 gene in patients with early-onset breast cancer in the Mexican population. BMC Cancer 2019, 19, 118. [Google Scholar] [CrossRef]
- Zubor, P.; Gondova, A.; Polivka, J.; Kasajova, P.; Konieczka, K.; Danko, J.; Golubnitschaja, O. Breast cancer and Flammer syndrome: Any symptoms in common for prediction, prevention and personalised medical approach? EPMA J. 2017, 8, 129–140. [Google Scholar] [CrossRef]
- Bardia, A.; Hurvitz, S. Targeted Therapy for Premenopausal Women with HR+, HER2− Advanced Breast Cancer: Focus on Special Considerations and Latest Advances. Clin. Cancer Res. 2018, 24, 5206–5218. [Google Scholar] [CrossRef]
- Lian, W.; Fu, F.; Lin, Y.; Lu, M.; Chen, B.; Yang, P.; Zeng, B.; Huang, M.; Wang, C. The Impact of Young Age for Prognosis by Subtype in Women with Early Breast Cancer. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Engstrøm, M.J.; Opdahl, S.; Hagen, A.I.; Romundstad, P.R.; Akslen, L.A.; Haugen, O.A.; Vatten, L.J.; Bofin, A.M. Molecular subtypes, histopathological grade and survival in a historic cohort of breast cancer patients. Breast Cancer Res. Treat. 2013, 140, 463–473. [Google Scholar] [CrossRef]
- Zhen, H.; Yang, L.; Li, L.; Yu, J.; Zhao, L.; Li, Y.; Li, Q. Correlation analysis between molecular subtypes and Nottingham Prognostic Index in breast cancer. Oncotarget 2017, 8, 74096–74105. [Google Scholar] [CrossRef]
- Hashmi, A.A.; Aijaz, S.; Khan, S.M.; Mahboob, R.; Irfan, M.; Zafar, N.I.; Nisar, M.; Siddiqui, M.; Edhi, M.M.; Faridi, N.; et al. Prognostic parameters of luminal A and luminal B intrinsic breast cancer subtypes of Pakistani patients. World J. Surg. Oncol. 2018, 16, 1. [Google Scholar] [CrossRef]
- Tubtimhin, S.; Promthet, S.; Suwanrungruang, K.; Supaattagorn, P. Molecular Subtypes and Prognostic Factors among Premenopausal and Postmenopausal Thai Women with Invasive Breast Cancer: 15 Years Follow-up Data. Asian Pac. J. Cancer Prev. 2018, 19, 3167–3174. [Google Scholar] [CrossRef] [Green Version]
- Radecka, B.; Litwiniuk, M. Breast cancer in young women. Ginekologia Polska 2016, 87, 659–663. [Google Scholar] [CrossRef]
- Villarreal-Garza, C.; Mohar, A.; Bargallo-Rocha, J.E.; Lasa-Gonsebatt, F.; Reynoso-Noverón, N.; Matus-Santos, J.; Cabrera, P.; Arce-Salinas, C.; Lara-Medina, F.; Alvarado-Miranda, A.; et al. Molecular Subtypes and Prognosis in Young Mexican Women With Breast Cancer. Clin. Breast Cancer 2017, 17, e95–e102. [Google Scholar] [CrossRef]
- Chollet-Hinton, L.; Olshan, A.F.; Nichols, H.B.; Anders, C.K.; Lund, J.L.; Allott, E.H.; Bethea, T.N.; Hong, C.-C.; Cohen, S.M.; Khoury, T.; et al. Biology and Etiology of Young-Onset Breast Cancers among Premenopausal African American Women: Results from the AMBER Consortium. Cancer Epidemiol. Biomarkers Prev. 2017, 26, 1722–1729. [Google Scholar] [CrossRef]
- Ma, D.; Jiang, Y.-Z.; Xie, M.-D.; Xiao, Y.; Zhao, S.; Shao, Z.-M. Abstract P3-08-11: Multi-omics profiling reveals distinct molecular features in young and elderly triple negative breast cancer. Cancer Res. 2019, 79. [Google Scholar] [CrossRef]
- Ryu, J.M.; Yu, J.; Kim, S.I.; Kim, K.S.; Moon, H.-G.; Choi, J.E.; Jeong, J.; Do Byun, K.; Nam, S.J.; Lee, J.E.; et al. Different prognosis of young breast cancer patients in their 20s and 30s depending on subtype: A nationwide study from the Korean Breast Cancer Society. Breast Cancer Res. Treat. 2017, 166, 833–842. [Google Scholar] [CrossRef]
- Tang, L.-C.; Jin, X.; Yang, H.-Y.; He, M.; Chang, H.; Shao, Z.-M.; Di, G.-H. Luminal B subtype: A key factor for the worse prognosis of young breast cancer patients in China. BMC Cancer 2015, 15, 201. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wang, X.; Liu, J.; Gao, J.; Wang, J.; Wang, X.; Zhao, D. Breast cancer in young women of Chinese Han population: A retrospective study of patients under 25 years. Pathol. Res. Pract. 2016, 212, 1015–1020. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, G. Breast cancer in young women: A retrospective study from tertiary care center of north India. South Asian J. Cancer 2017, 6, 51. [Google Scholar]
- Shoemaker, M.L.; White, M.C.; Wu, M.; Weir, H.K.; Romieu, I. Differences in breast cancer incidence among young women aged 20–49 years by stage and tumor characteristics, age, race, and ethnicity, 2004–2013. Breast Cancer Res. Treat. 2018, 169, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Flores-Ramos, L.; Castro-Sánchez, A.; Peña-Curiel, O.; Mohar-Betancourt, A. Molecular Biology in Young Women with Breast Cancer: From Tumor Gene Expression To DNA Mutations. Rev. Invest. Clin. 2017, 69, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suwinski, P.; Ong, C.; Ling, M.H.T.; Poh, Y.M.; Khan, A.M.; Ong, H.S. Advancing Personalized Medicine Through the Application of Whole Exome Sequencing and Big Data Analytics. Front. Genet. 2019, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Jasek, K.; Kasubova, I.; Holubekova, V.; Stanclova, A.; Plank, L.; Lasabova, Z. Epigenetics: An alternative pathway in GISTs tumorigenesis. Neoplasma 2018, 65, 477–493. [Google Scholar] [CrossRef]
- Kašubová, I.; Kalman, M.; Jašek, K.; Burjanivová, T.; Malicherová, B.; Vaňochová, A.; Meršaková, S.; Lasabová, Z.; Plank, L. Stratification of patients with colorectal cancer without the recorded family history. Oncol. Lett. 2019, 17, 3649–3656. [Google Scholar] [CrossRef]
- Rummel, S.K.; Lovejoy, L.; Shriver, C.D.; Ellsworth, R.E. Contribution of germline mutations in cancer predisposition genes to tumor etiology in young women diagnosed with invasive breast cancer. Breast Cancer Res. Treat. 2017, 164, 593–601. [Google Scholar] [CrossRef]
- Colak, D.; Nofal, A.; AlBakheet, A.; Nirmal, M.; Jeprel, H.; Eldali, A.; AL-Tweigeri, T.; Tulbah, A.; Ajarim, D.; Malik, O.A.; et al. Age-Specific Gene Expression Signatures for Breast Tumors and Cross-Species Conserved Potential Cancer Progression Markers in Young Women. PLoS ONE 2013, 8, e63204. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Yoon, K.-A.; Kim, J.; Park, I.H.; Park, S.J.; Kim, M.K.; Jang, W.; Cho, S.Y.; Park, B.; Kong, S.-Y.; et al. Integrative molecular profiling identifies a novel cluster of estrogen receptor-positive breast cancer in very young women. Cancer Sci. 2019, 110, 1760–1770. [Google Scholar] [CrossRef]
- Azim, H.A.; Partridge, A.H. Biology of breast cancer in young women. Breast Cancer Res. 2014, 16, 427. [Google Scholar] [CrossRef]
- Azim, H.; Azim, H.A. Targeting RANKL in breast cancer: Bone metastasis and beyond. Expert Rev. Anticancer Ther. 2013, 13, 195–201. [Google Scholar] [CrossRef]
- Choi, Y.E.; Pan, Y.; Park, E.; Konstantinopoulos, P.; De, S.; D’Andrea, A.; Chowdhury, D. MicroRNAs down-regulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability. eLife 2014, 3, e02445. [Google Scholar] [CrossRef] [PubMed]
- Söderlund, K.; Skoog, L.; Fornander, T.; Askmalm, M.S. The BRCA1/BRCA2/Rad51 complex is a prognostic and predictive factor in early breast cancer. Radiother. Oncol. 2007, 84, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Flores-Ramos, L.; Álvarez-Gómez, R.M.; Villarreal-Garza, C.; Wegman-Ostrosky, T.; Mohar, A. Breast cancer genetics in young women: What do we know? Mutat. Res. 2017, 774, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Korobeinikova, E.; Myrzaliyeva, D.; Ugenskiene, R.; Raulinaityte, D.; Gedminaite, J.; Smigelskas, K.; Juozaityte, E. The prognostic value of IL10 and TNF alpha functional polymorphisms in premenopausal early-stage breast cancer patients. BMC Genet. 2015, 16, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Coogan, P.F.; Palmer, J.R.; Strom, B.L.; Rosenberg, L. Use of nonsteroidal antiinflammatory drugs and risk of breast cancer: The Case-Control Surveillance Study revisited. Am. J. Epidemiol. 2005, 162, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña-Chilet, M.; Martínez, M.T.; Pérez-Fidalgo, J.A.; Peiró-Chova, L.; Oltra, S.S.; Tormo, E.; Alonso-Yuste, E.; Martinez-Delgado, B.; Eroles, P.; Climent, J.; et al. MicroRNA profile in very young women with breast cancer. BMC Cancer 2014, 14, 529. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.-P.; Huang, S.-F.; Li, C.-F.; Chien, H.-T.; Chen, S.-C. Differential microRNA expression in breast cancer with different onset age. PLoS ONE 2018, 13, e0191195. [Google Scholar] [CrossRef] [Green Version]
- Martínez, M.T.; Oltra, S.S.; Peña-Chilet, M.; Alonso, E.; Hernando, C.; Burgues, O.; Chirivella, I.; Bermejo, B.; Lluch, A.; Ribas, G. Breast Cancer in Very Young Patients in a Spanish Cohort: Age as an Independent Bad Prognostic Indicator. Breast Cancer (Auckl) 2019, 13, 117822341982876. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Suarez, E.; Jacob, A.P.; Jones, J.; Miller, R.; Roudier-Meyer, M.P.; Erwert, R.; Pinkas, J.; Branstetter, D.; Dougall, W.C. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 2010, 468, 103–107. [Google Scholar] [CrossRef]
- Odén, L.; Akbari, M.; Zaman, T.; Singer, C.F.; Sun, P.; Narod, S.A.; Salmena, L.; Kotsopoulos, J. Plasma osteoprotegerin and breast cancer risk in BRCA1 and BRCA2 mutation carriers. Oncotarget 2016, 7, 86687–86694. [Google Scholar] [CrossRef] [Green Version]
- Zolfaroli, I.; Tarín, J.J.; Cano, A. The action of estrogens and progestogens in the young female breast. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 230, 204–207. [Google Scholar] [CrossRef]
- Loving, V.A.; DeMartini, W.B.; Eby, P.R.; Gutierrez, R.L.; Peacock, S.; Lehman, C.D. Targeted ultrasound in women younger than 30 years with focal breast signs or symptoms: Outcomes analyses and management implications. AJR Am. J. Roentgenol. 2010, 195, 1472–1477. [Google Scholar] [CrossRef]
- Pisano, E.D.; Hendrick, R.E.; Yaffe, M.J.; Baum, J.K.; Acharyya, S.; Cormack, J.B.; Hanna, L.A.; Conant, E.F.; Fajardo, L.L.; Bassett, L.W.; et al. Diagnostic Accuracy of Digital versus Film Mammography: Exploratory Analysis of Selected Population Subgroups in DMIST. Radiology 2008, 246, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Chong, A.; Weinstein, S.P.; McDonald, E.S.; Conant, E.F. Digital Breast Tomosynthesis: Concepts and Clinical Practice. Radiology 2019, 292, 1–14. [Google Scholar] [CrossRef]
- Lång, K.; Andersson, I.; Rosso, A.; Tingberg, A.; Timberg, P.; Zackrisson, S. Performance of one-view breast tomosynthesis as a stand-alone breast cancer screening modality: Results from the Malmö Breast Tomosynthesis Screening Trial, a population-based study. Eur. Radiol. 2016, 26, 184–190. [Google Scholar] [CrossRef]
- Caumo, F.; Zorzi, M.; Brunelli, S.; Romanucci, G.; Rella, R.; Cugola, L.; Bricolo, P.; Fedato, C.; Montemezzi, S.; Houssami, N. Digital Breast Tomosynthesis with Synthesized Two-Dimensional Images versus Full-Field Digital Mammography for Population Screening: Outcomes from the Verona Screening Program. Radiology 2018, 287, 37–46. [Google Scholar] [CrossRef]
- Cai, S.; Yao, M.; Cai, D.; Yan, J.; Huang, M.; Yan, L.; Huang, H. Association between digital breast tomosynthesis and molecular subtypes of breast cancer. Oncol. Lett. 2019, 17, 2669–2676. [Google Scholar] [CrossRef]
- Gilbert, F.J.; Tucker, L.; Gillan, M.G.C.; Willsher, P.; Cooke, J.; Duncan, K.A.; Michell, M.J.; Dobson, H.M.; Lim, Y.Y.; Suaris, T.; et al. Accuracy of Digital Breast Tomosynthesis for Depicting Breast Cancer Subgroups in a UK Retrospective Reading Study (TOMMY Trial). Radiology 2015, 277, 697–706. [Google Scholar] [CrossRef]
- Paluch-Shimon, S.; Pagani, O.; Partridge, A.H.; Abulkhair, O.; Cardoso, M.-J.; Dent, R.A.; Gelmon, K.; Gentilini, O.; Harbeck, N.; Margulies, A.; et al. ESO-ESMO 3rd international consensus guidelines for breast cancer in young women (BCY3). Breast 2017, 35, 203–217. [Google Scholar] [CrossRef]
- Monticciolo, D.L.; Newell, M.S.; Moy, L.; Niell, B.; Monsees, B.; Sickles, E.A. Breast Cancer Screening in Women at Higher-Than-Average Risk: Recommendations From the ACR. J. Am. Coll. Radiol. 2018, 15, 408–414. [Google Scholar] [CrossRef]
- Crivelli, P.; Ledda, R.E.; Parascandolo, N.; Fara, A.; Soro, D.; Conti, M. A New Challenge for Radiologists: Radiomics in Breast Cancer. Biomed. Res. Int. 2018. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.; Wang, Z.; Zhao, Q.; Bai, Q.; Zhou, X.; Gu, Y.; Peng, W.; Wang, H. Machine Learning-Based Analysis of MR Multiparametric Radiomics for the Subtype Classification of Breast Cancer. Front. Oncol. 2019, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Zubor, P.; Kubatka, P.; Kajo, K.; Dankova, Z.; Polacek, H.; Bielik, T.; Kudela, E.; Samec, M.; Liskova, A.; Vlcakova, D.; et al. Why the Gold Standard Approach by Mammography Demands Extension by Multiomics? Application of Liquid Biopsy miRNA Profiles to Breast Cancer Disease Management. Int. J. Mol. Sci. 2019, 20, 2878. [Google Scholar] [CrossRef] [Green Version]
- Partridge, A.H.; Hughes, M.E.; Ottesen, R.A.; Wong, Y.-N.; Edge, S.B.; Theriault, R.L.; Blayney, D.W.; Niland, J.C.; Winer, E.P.; Weeks, J.C.; et al. The effect of age on delay in diagnosis and stage of breast cancer. Oncologist 2012, 17, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Lautner, M.; Lin, H.; Shen, Y.; Parker, C.; Kuerer, H.; Shaitelman, S.; Babiera, G.; Bedrosian, I. Disparities in the Use of Breast-Conserving Therapy Among Patients With Early-Stage Breast Cancer. JAMA Surg. 2015, 150, 778–786. [Google Scholar] [CrossRef] [Green Version]
- Lazow, S.P.; Riba, L.; Alapati, A.; James, T.A. Comparison of breast-conserving therapy vs mastectomy in women under age 40: National trends and potential survival implications. Breast J. 2019, 25, 578–584. [Google Scholar] [CrossRef]
- Rosenberg, S.M.; Sepucha, K.; Ruddy, K.J.; Tamimi, R.M.; Gelber, S.; Meyer, M.E.; Schapira, L.; Come, S.E.; Borges, V.F.; Golshan, M.; et al. Local Therapy Decision-Making and Contralateral Prophylactic Mastectomy in Young Women with Early-Stage Breast Cancer. Ann. Surg. Oncol. 2015, 22, 3809–3815. [Google Scholar] [CrossRef]
- Covelli, A.M.; Baxter, N.N.; Fitch, M.I.; McCready, D.R.; Wright, F.C. “Taking control of cancer”: Understanding women’s choice for mastectomy. Ann. Surg. Oncol. 2015, 22, 383–391. [Google Scholar] [CrossRef]
- Nichols, H.B.; Berrington de González, A.; Lacey, J.V.; Rosenberg, P.S.; Anderson, W.F. Declining incidence of contralateral breast cancer in the United States from 1975 to 2006. J. Clin. Oncol. 2011, 29, 1564–1569. [Google Scholar] [CrossRef] [Green Version]
- Sinnadurai, S.; Kwong, A.; Hartman, M.; Tan, E.Y.; Bhoo-Pathy, N.T.; Dahlui, M.; See, M.H.; Yip, C.H.; Taib, N.A.; Bhoo-Pathy, N. Breast-conserving surgery versus mastectomy in young women with breast cancer in Asian settings. BJS Open 2019, 3, 48–55. [Google Scholar] [CrossRef] [Green Version]
- van Maaren, M.C.; de Munck, L.; de Bock, G.H.; Jobsen, J.J.; van Dalen, T.; Linn, S.C.; Poortmans, P.; Strobbe, L.J.A.; Siesling, S. 10 year survival after breast-conserving surgery plus radiotherapy compared with mastectomy in early breast cancer in the Netherlands: A population-based study. Lancet Oncol. 2016, 17, 1158–1170. [Google Scholar] [CrossRef]
- Suter, M.B.; Pagani, O. Should age impact breast cancer management in young women? Fine tuning of treatment guidelines. Ther. Adv. Med. Oncol. 2018, 10. [Google Scholar] [CrossRef]
- Sauter, E.R. Breast Cancer Prevention: Current Approaches and Future Directions. Eur. J. Breast Health 2018, 14, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Dumitrescu, R.G. Chapter 4—Cancer Genetic Screening and Ethical Considerations for Precision Medicine. In Progress and Challenges in Precision Medicine; Verma, M., Barh, D., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 79–100. ISBN 978-0-12-809411-2. [Google Scholar]
- Tung, N.; Battelli, C.; Allen, B.; Kaldate, R.; Bhatnagar, S.; Bowles, K.; Timms, K.; Garber, J.E.; Herold, C.; Ellisen, L.; et al. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer 2015, 121, 25–33. [Google Scholar] [CrossRef]
- Evans, D.G.; Brentnall, A.R.; Harvie, M.; Dawe, S.; Sergeant, J.C.; Stavrinos, P.; Astley, S.; Wilson, M.; Ainsworth, J.; Cuzick, J.; et al. Breast cancer risk in young women in the national breast screening programme: Implications for applying NICE guidelines for additional screening and chemoprevention. Cancer Prev. Res. (Phila.) 2014, 7, 993–1001. [Google Scholar] [CrossRef] [Green Version]
- Amir, E.; Freedman, O.C.; Seruga, B.; Evans, D.G. Assessing women at high risk of breast cancer: A review of risk assessment models. J. Natl. Cancer Inst. 2010, 102, 680–691. [Google Scholar] [CrossRef] [Green Version]
- Smokovski, I.; Risteski, M.; Polivka, J., Jr.; Zubor, P.; Konieczka, K.; Costigliola, V.; Golubnitschaja, O. Postmenopausal breast cancer: European challenge and innovative concepts. EPMA J. 2017, 8, 159. [Google Scholar] [CrossRef] [Green Version]
- Golubnitschaja, O.; Yeghiazaryan, K.; Abraham, J.A.; Schild, H.H.; Costigliola, V.; Debald, D.; Kuhn, W. Breast Cancer Risk Assessment: A Non-invasive Multiparametric Approach to Stratify Patients by MMP-9 Serum Activity and RhoA Expression Patterns in Circulating Leucocytes. Amino Acids 2017, 49, 273–281. [Google Scholar] [CrossRef]
- Polivka, J., Jr.; Kralickova, M.; Polivka, J.; Kaiser, C.; Kuhn, W.; Golubnitschaja, O. Mystery of the brain metastatic disease in breast cancer patients: Improved patient stratification, disease prediction and targeted prevention on the horizon? EPMA J. 2017, 8, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Golubnitschaja, O.; Filep, N.; Yeghiazaryan, K.; Blom, H.J.; Konieczka-Apitius, M.; Kuhn, W. Multi-omic approach decodes paradoxes of the triple-negative breast cancer: Lessons for predictive, preventive and personalised medicine. Amino Acids 2018, 50, 383–395. [Google Scholar] [CrossRef]
- Konieczka, K.; Ritch, R.; Traverso, C.E.; Kim, D.M.; Kook, M.S.; Gallino, A.; Golubnitschaja, O.; Erb, C.; Reitsamer, H.A.; Kida, T.; et al. Flammer syndrome. EPMA J. 2014, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Mencalha, A.; Victorino, V.J.; Cecchini, R.; Panis, C. Mapping oxidative changes in breast cancer: Understanding the basic to reach the clinics. Anticancer Res. 2014, 34, 1127–1140. [Google Scholar]
- Gordon, C.J. Temperature and Toxicology: An Integrative, Comparative and Environmental Approach; Taylor & Francis: Boca Raton, FL, USA, 2005; pp. 169–171. [Google Scholar]
- Kurzrock, R. The role of cytokines in cancer-related fatigue. Cancer 2001, 92, 1684–1688. [Google Scholar] [CrossRef]
- Netea, M.G.; Kullberg, B.J.; Van derMeer, J.W.M. Circulating cytokines as mediators of fever. Clin. Infect. Dis. 2000, 31, S178–S184. [Google Scholar] [CrossRef]
- Wülfing, P.; Diallo, R.; Kersting, C.; Wülfing, C.; Poremba, C.; Rody, A.; Greb, R.R.; Böcker, W.; Kiesel, L. Expression of endothelin-1, endothelin-a, and endothelin-b receptor in human breast cancer and correlation with long-term followup. Clin. Cancer Res. 2003, 9, 4125–4131. [Google Scholar]
- Cox, T.R.; Rumney, R.M.; Schoof, E.M.; Perryman, L.; Hoye, A.M.; Agrawal, A. The hypoxic cancer secretome induces premetastatic bone lesions through lysyl oxidase. Nature 2015, 522, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Vanharanta, S. A hypoxic ticket to the bone metastatic niche. Breast Cancer Res. 2015, 17, 122. [Google Scholar] [CrossRef] [Green Version]
- Kleiner, S.M. Water: An essential but overlooked nutrient. J. Am. Diet. Assoc. 1999, 99, 200–206. [Google Scholar] [CrossRef]
- Borkum, J.M. Migraine triggers and oxidative stress: A narrative review and synthesis. Headache 2016, 56, 12–35. [Google Scholar] [CrossRef]
- Ha, N.H.; Long, J.; Cai, Q.; Shu, X.O.; Hunter, K.W. The circadian rhythm geneArntl2 is ametastasis susceptibility gene for estrogen receptornegative breast cancer. PLoS Genet. 2016, 12, e1006267. [Google Scholar] [CrossRef]
- Reszka, E.; Przybek, M. Circadian genes in breast cancer. Adv. Clin. Chem. 2016, 75, 53–70. [Google Scholar]
- Kim, D.-H.; Kim, Y.-S.; Son, N.-I.; Kang, C.-K.; Kim, A.-R. Recent omics technologies and their emerging applications for personalised medicine. IET Syst. Biol. 2017, 11, 87–98. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Network Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [CrossRef] [Green Version]
- Zeidan, B.; Manousopoulou, A.; Garay-Baquero, D.J.; White, C.H.; Larkin, S.E.T.; Potter, K.N.; Roumeliotis, T.I.; Papachristou, E.K.; Copson, E.; Cutress, R.I.; et al. Increased circulating resistin levels in early-onset breast cancer patients of normal body mass index correlate with lymph node negative involvement and longer disease free survival: A multi-center POSH cohort serum proteomics study. Breast Cancer Res. 2018, 20, 19. [Google Scholar] [CrossRef]
- Zhang, X.; Ju, S.; Wang, X.; Cong, H. Advances in liquid biopsy using circulating tumor cells and circulating cell-free tumor DNA for detection and monitoring of breast cancer. Clin. Exp. Med. 2019, 19, 271–279. [Google Scholar] [CrossRef]
- Aslebagh, R.; Channaveerappa, D.; Arcaro, K.F.; Darie, C.C. Proteomics analysis of human breast milk to assess breast cancer risk. Electrophoresis 2018, 39, 653–665. [Google Scholar] [CrossRef]
- Bohm, D.; Keller, K.; Pieter, J.; Boehm, N.; Wolters, D.; Siggelkow, W.; Lebrecht, A.; Schmidt, M.; Kolbl, H.; Pfeiffer, N. Comparison of tear protein levels in breast cancer patients and healthy controls using a de novo proteomic approach. Oncol. Rep. 2012, 28, 429–438. [Google Scholar] [CrossRef]
- Lebrecht, A.; Boehm, D.; Schmidt, M.; Koelbl, H.; Schwirz, R.L.; Grus, F.H. Diagnosis of breast cancer by tear proteomic pattern. Cancer Genomics Proteomics 2009, 6, 177–182. [Google Scholar]
- Kapinova, A.; Kubatka, P.; Golubnitschaja, O.; Kello, M.; Zubor, P.; Solar, P.; Pec, M. Dietary phytochemicals in breast cancer research: Anticancer effects and potential utility for effective chemoprevention. Environ. Health Prev. Med. 2018, 23, 36. [Google Scholar] [CrossRef]
- Ferroni, P.; Zanzotto, F.M.; Riondino, S.; Scarpato, N.; Guadagni, F.; Roselli, M. Breast Cancer Prognosis Using a Machine Learning Approach. Cancers 2019, 11, 328. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Tang, Y.; Kim, H.; Hasegawa, K. Machine Learning With K-Means Dimensional Reduction for Predicting Survival Outcomes in Patients with Breast Cancer. Cancer Inform. 2018, 17. [Google Scholar] [CrossRef]
- Sadoughi, F.; Kazemy, Z.; Hamedan, F.; Owji, L.; Rahmanikatigari, M.; Azadboni, T.T. Artificial intelligence methods for the diagnosis of breast cancer by image processing: A review. Breast Cancer (Dove Med. Press) 2018, 10, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Frey, L.J. Artificial Intelligence and Integrated Genotype–Phenotype Identification. Genes 2019, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Rossing, M.; Sørensen, C.S.; Ejlertsen, B.; Nielsen, F.C. Whole genome sequencing of breast cancer. APMIS 2019, 127, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Kunin, A.; Polivka, J.; Moiseeva, N.; Golubnitschaja, O. “Dry mouth” and “Flammer” syndromes—neglected risks in adolescents and new concepts by predictive, preventive and personalised approach. EPMA J. 2018, 9, 307–317. [Google Scholar] [CrossRef]
- Goncharenko, V.; Bubnov, R.; Polivka, J., Jr.; Zubor, P.; Biringer, K.; Bielik, T.; Kuhn, W.; Golubnitschaja, O. Vaginal dryness: Individualised patient profiles, risks and mitigating measures. EPMA J. 2019, 10, 73–79. [Google Scholar] [CrossRef]
- Hamam, R.; Hamam, D.; Alsaleh, K.A.; Kassem, M.; Zaher, W.; Alfayez, M.; Aldahmash, A.; Alajez, N.M. Circulating microRNAs in breast cancer: Novel diagnostic and prognostic biomarkers. Cell Death Dis. 2017, 8, e3045. [Google Scholar] [CrossRef] [Green Version]
MODIFIABLE Risk Factors | NON-MODIFIABLE Risk Factors |
---|---|
Body mass index | BRCA1, BRCA2 mutations |
Parity | Li Fraumeni syndrome (p53) |
High alcohol intake | CHEK2*1100delC mutations and other genetic alterations |
Smoking | Age |
Lifestyle | |
Breastfeeding | |
Radiation exposure in utero |
Molecular Signatures Groups | Most Common Genetic Alterations |
---|---|
Genomic alterations | SEPP1, ESR1, IL1RN, SCD, TIAM1, UBE2C, CCNB2, CEP55, TOP2A, BIRC5, TPX2, SHCBP1, KIAA0101, PTTG1, UBE2T, DEPDC1, NUSAP1, CCNB1, HELLS, KIF4A, RRM2, IGF1R, APOBEC3A/B, amplification of 11q13 (CCND1), 17q12 (ERBB2), Chr1p34, and copy number loss at Chr15q13 |
Inflammatory biomarkers | TNF-308G>A polymorphism |
miRNA | miR-1228, miR-3196, miR-1275 miR-1207, miR-92b, miR-139, miR-183, miR-182 and miR-96, miR-320, miR-10a, miR-130, miR-127-3p, miR-143, miR-10b, miR-125b, and miR-195 |
Signaling pathways | RANK/RANKL |
Questions | Answers (Yes/No) | Comments |
---|---|---|
Cold hands and/or feet | Yes | Very frequently |
Feel cold | Yes | Very soon |
Low blood pressure? | Yes | Very frequent |
Dizziness | Yes | Very frequent |
Prolong sleep onset | Yes | Very frequent |
Do not feel thirsty | Yes | Even in hot weather |
Headache/Migraine | No | |
Accompanying symptoms (e.g., visual disturbances) | No | |
Altered reaction towards drugs | Not known | |
Altered pain sensitivity | No | |
Strong smell perception | Yes | Extraordinary pronounced |
Slim at 20–30 years of age | Yes | Extraordinary pronounced |
Tendency towards perfectionism | Yes | Strongly pronounced |
Tinnitus | No | |
Reversible blotches (white or red) on your skin e.g., in stress situations | Yes | Strongly pronounced |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudela, E.; Samec, M.; Kubatka, P.; Nachajova, M.; Laucekova, Z.; Liskova, A.; Dokus, K.; Biringer, K.; Simova, D.; Gabonova, E.; et al. Breast Cancer in Young Women: Status Quo and Advanced Disease Management by a Predictive, Preventive, and Personalized Approach. Cancers 2019, 11, 1791. https://doi.org/10.3390/cancers11111791
Kudela E, Samec M, Kubatka P, Nachajova M, Laucekova Z, Liskova A, Dokus K, Biringer K, Simova D, Gabonova E, et al. Breast Cancer in Young Women: Status Quo and Advanced Disease Management by a Predictive, Preventive, and Personalized Approach. Cancers. 2019; 11(11):1791. https://doi.org/10.3390/cancers11111791
Chicago/Turabian StyleKudela, Erik, Marek Samec, Peter Kubatka, Marcela Nachajova, Zuzana Laucekova, Alena Liskova, Karol Dokus, Kamil Biringer, Denisa Simova, Eva Gabonova, and et al. 2019. "Breast Cancer in Young Women: Status Quo and Advanced Disease Management by a Predictive, Preventive, and Personalized Approach" Cancers 11, no. 11: 1791. https://doi.org/10.3390/cancers11111791
APA StyleKudela, E., Samec, M., Kubatka, P., Nachajova, M., Laucekova, Z., Liskova, A., Dokus, K., Biringer, K., Simova, D., Gabonova, E., Dankova, Z., Biskupska Bodova, K., Zubor, P., & Trog, D. (2019). Breast Cancer in Young Women: Status Quo and Advanced Disease Management by a Predictive, Preventive, and Personalized Approach. Cancers, 11(11), 1791. https://doi.org/10.3390/cancers11111791