Selectin Binding Sites Are Involved in Cell Adhesive Properties of Head and Neck Squamous Cell Carcinoma
Abstract
:1. Introduction
2. Results
2.1. Flow Cytometry of in Vitro Grown Cells
2.2. Laminar Flow Assay, Selectin Binding, and Canonical Selectin Ligand Expression in Vitro
2.3. Tumor Growth and Metastatic Potential of HNSCC Grown in SCID Mice
2.4. Immunohistochemistry
2.5. Tissue Microarray
3. Discussion
4. Materials and Methods
4.1. Cell Lines
4.2. Flow Cytometry
4.3. Laminar Flow Adhesion Assay
4.4. SCID Mouse Experiments
4.5. Quantification of Circulating (CTC) and Disseminated Tumor Cells (DTC) by Alu-PCR
4.6. Histology
4.7. Immunohistochemistry
4.8. Tissue Microarrays
4.9. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Takes, R.P.; Rinaldo, A.; Silver, C.E.; Haigentz, M., Jr.; Woolgar, J.A.; Triantafyllou, A.; Mondin, V.; Paccagnella, D.; de Bree, R.; Shaha, A.R.; et al. Distant Metastases from Head and Neck Squamous Cell Carcinoma. Part I. Basic Aspects. Oral Oncol. 2012, 48, 775–779. [Google Scholar] [CrossRef]
- Strell, C.; Entschladen, F. Extravasation of Leukocytes in Comparison to Tumor Cells. Cell Commun. Signal. 2008, 6, 10. [Google Scholar] [CrossRef]
- Bendas, G.; Borsig, L. Cancer Cell Adhesion and Metastasis: Selectins, Integrins, and the Inhibitory Potential of Heparins. Int. J. Cell Biol. 2012, 2012, 676731. [Google Scholar] [CrossRef]
- Kim, Y.J.; Borsig, L.; Varki, N.M.; Varki, A. P-Selectin Deficiency Attenuates Tumor Growth and Metastasis. Proc. Natl. Acad. Sci. USA 1998, 95, 9325–9330. [Google Scholar] [CrossRef]
- Pignatelli, M.; Vessey, C.J. Adhesion Molecules: Novel Molecular Tools in Tumor Pathology. Hum. Pathol. 1994, 25, 849–856. [Google Scholar] [CrossRef]
- Rosette, C.; Roth, R.B.; Oeth, P.; Braun, A.; Kammerer, S.; Ekblom, J.; Denissenko, M.F. Role of ICAM1 in Invasion of Human Breast Cancer Cells. Carcinogenesis 2005, 26, 943–950. [Google Scholar] [CrossRef]
- Yoon, K.J.; Danks, M.K. Cell Adhesion Molecules as Targets for Therapy of Neuroblastoma. Cancer Biol. Ther. 2009, 8, 306–311. [Google Scholar] [CrossRef]
- Konstantopoulos, K.; Thomas, S.N. Cancer Cells in Transit: The Vascular Interactions of Tumor Cells. Annu. Rev. Biomed. Eng. 2009, 11, 177–202. [Google Scholar] [CrossRef]
- Kedmi, R.; Peer, D. Zooming in on Selectins in Cancer. Sci. Transl. Med. 2016, 8, 345fs311. [Google Scholar] [CrossRef]
- Natoni, A.; Macauley, M.S.; O’Dwyer, M.E. Targeting Selectins and Their Ligands in Cancer. Front. Oncol. 2016, 6, 93. [Google Scholar] [CrossRef] [Green Version]
- Laubli, H.; Borsig, L. Selectins Promote Tumor Metastasis. Semin. Cancer Biol. 2010, 20, 169–177. [Google Scholar] [CrossRef]
- Witz, I.P. The Selectin-Selectin Ligand Axis in Tumor Progression. Cancer Metastasis Rev. 2008, 27, 19–30. [Google Scholar] [CrossRef]
- Desgrosellier, J.S.; Cheresh, D.A. Integrins in Cancer: Biological Implications and Therapeutic Opportunities. Nat. Rev. Cancer 2010, 10, 9–22. [Google Scholar] [CrossRef]
- Ernst, A.K.; Putscher, A.; Samatov, T.R.; Suling, A.; Galatenko, V.V.; Shkurnikov, M.Y.; Knyazev, E.N.; Tonevitsky, A.G.; Haalck, T.; Lange, T.; et al. Knockdown of L1CAM Significantly Reduces Metastasis in a Xenograft Model of Human Melanoma: L1CAM is A Potential Target for Anti-Melanoma Therapy. PLoS ONE 2018, 13, e0192525. [Google Scholar] [CrossRef]
- Diniz-Freitas, M.; Garcia-Caballero, T.; Antunez-Lopez, J.; Gandara-Rey, J.M.; Garcia-Garcia, a. Reduced E-Cadherin Expression is An Indicator of Unfavourable Prognosis in Oral Squamous Cell Carcinoma. Oral Oncol. 2006, 42, 190–200. [Google Scholar] [CrossRef]
- Islam, S.; Carey, T.E.; Wolf, G.T.; Wheelock, M.J.; Johnson, K.R. Expression of N-cadherin by Human Squamous Carcinoma Cells Induces a Scattered Fibroblastic Phenotype with Disrupted Cell-Cell Adhesion. J. Cell Biol. 1996, 135, 1643–1654. [Google Scholar] [CrossRef]
- Li, S.; Jiao, J.; Lu, Z.; Zhang, M. An Essential Role for N-Cadherin and Beta-Catenin for Progression in Tongue Squamous Cell Carcinoma and Their Effect on Invasion and Metastasis of Tca8113 Tongue Cancer Cells. Oncol. Rep. 2009, 21, 1223–1233. [Google Scholar]
- Nijkamp, M.M.; Span, P.N.; Hoogsteen, I.J.; van der Kogel, A.J.; Kaanders, J.H.; Bussink, J. Expression of E-Cadherin and Vimentin Correlates with Metastasis Formation in Head and Neck Squamous Cell Carcinoma Patients. Radiother Oncol. 2011, 99, 344–348. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Kudo, Y.; Yoshida, M.; Kamata, N.; Ogawa, I.; Takata, T. N-Cadherin Expression is Involved in Malignant Behavior of Head and Neck Cancer in Relation to Epithelial-Mesenchymal Transition. Histol. Histopathol. 2011, 26, 147–156. [Google Scholar] [CrossRef]
- Rodrigo, J.P.; Martinez, P.; Allonca, E.; Alonso-Duran, L.; Suarez, C.; Astudillo, A.; Garcia-Pedrero, J.M. Immunohistochemical Markers of Distant Metastasis in Laryngeal and Hypopharyngeal Squamous Cell Carcinomas. Clin. Exp. Metastasis 2014, 31, 317–325. [Google Scholar] [CrossRef]
- Grobe, A.; Blessmann, M.; Hanken, H.; Friedrich, R.E.; Schon, G.; Wikner, J.; Effenberger, K.E.; Kluwe, L.; Heiland, M.; Pantel, K.; et al. Prognostic Relevance of Circulating Tumor Cells in Blood and Disseminated Tumor Cells in Bone Marrow of Patients with Squamous Cell Carcinoma of the Oral Cavity. Clin. Cancer Res. 2014, 20, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Partridge, M.; Brakenhoff, R.; Phillips, E.; Ali, K.; Francis, R.; Hooper, R.; Lavery, K.; Brown, A.; Langdon, J. Detection of Rare Disseminated Tumor Cells Identifies Head and Neck Cancer Patients at Risk of Treatment Failure. Clin. Cancer Res. 2003, 9, 5287–5294. [Google Scholar] [PubMed]
- Wollenberg, B.; Walz, A.; Kolbow, K.; Pauli, C.; Chaubal, S.; Andratschke, M. Clinical Relevance of Circulating Tumour Cells in the Bone Marrow of Patients with SCCHN. Onkologie 2004, 27, 358–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wikner, J.; Grobe, A.; Pantel, K.; Riethdorf, S. Squamous Cell Carcinoma of the Oral Cavity and Circulating Tumour Cells. World J. Clin. Oncol. 2014, 5, 114–124. [Google Scholar] [CrossRef]
- Geng, Y.; Marshall, J.R.; King, M.R. Glycomechanics of the Metastatic Cascade: Tumor Cell-Endothelial Cell Interactions in the Circulation. Ann. Biomed. Eng. 2011, 40, 790–805. [Google Scholar] [CrossRef]
- Hauselmann, I.; Borsig, L. Altered Tumor-Cell Glycosylation Promotes Metastasis. Front Oncol. 2014, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Borsig, L. Selectins in Cancer Immunity. Glycobiology 2018, 28, 648–655. [Google Scholar] [CrossRef]
- Li, Q.; Wayman, A.; Lin, J.; Fang, Y.; Zhu, C.; Wu, J. Flow-Enhanced Stability of Rolling Adhesion through E-Selectin. Biophys. J. 2016, 111, 686–699. [Google Scholar] [CrossRef] [Green Version]
- Thomas, W. Catch Bonds in Adhesion. Annu. Rev. Biomed. Eng. 2008, 10, 39–57. [Google Scholar] [CrossRef] [Green Version]
- Kohler, S.; Ullrich, S.; Richter, U.; Schumacher, U. E-/P-selectins and Colon Carcinoma Metastasis: First in Vivo Evidence for Their Crucial Role in a Clinically Relevant Model of Spontaneous Metastasis Formation in the Lung. Br. J. Cancer 2010, 102, 602–609. [Google Scholar] [CrossRef]
- Croce, M.V.; Rabassa, M.E.; Price, M.R.; Segal-Eiras, A. MUC1 Mucin and Carbohydrate Associated Antigens as Tumor Markers in Head and Neck Squamous Cell Carcinoma. Pathol. Oncol. Res. 2001, 7, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Farmer, R.W.; Richtsmeier, W.J.; Scher, R.L. Identification of sialyl Lewis-x in Squamous Cell Carcinoma of the Head and Neck. Head Neck 1998, 20, 726–731. [Google Scholar] [CrossRef]
- Gunawardena, I.; Arendse, M.; Jameson, M.B.; Plank, L.D.; Gregor, R.T. Prognostic Molecular Markers in Head and Neck Squamous Cell Carcinoma in a New Zealand Population: Matrix Metalloproteinase-2 and sialyl Lewis x Antigen. ANZ J. Surg. 2015, 85, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Kurahara, S.; Shinohara, M.; Ikebe, T.; Nakamura, S.; Hiraki, A.; Sasaki, M.; Beppu, M.; Shirasuna, K. Immunohistochemical Study of sialyl Le(a) and sialyl Le(x) Antigen in Oral Squamous Cell Carcinoma: The Association of sialyl Le(a) Expression with the Metastatic Potential. Head Neck 1999, 21, 330–337. [Google Scholar] [CrossRef]
- Lim, S.C. CD24 and Human Carcinoma: Tumor Biological Aspects. Biomed. Pharmacother 2005, 59 Suppl 2, S351–S354. [Google Scholar] [CrossRef]
- Friederichs, J.; Zeller, Y.; Hafezi-Moghadam, A.; Grone, H.J.; Ley, K.; Altevogt, P. The CD24/P-Selectin Binding Pathway Initiates Lung Arrest of Human A125 Adenocarcinoma Cells. Cancer Res. 2000, 60, 6714–6722. [Google Scholar]
- Modur, V.; Joshi, P.; Nie, D.; Robbins, K.T.; Khan, A.U.; Rao, K. CD24 Expression May Play a Role as a Predictive Indicator and a Modulator of Cisplatin Treatment Response in Head and Neck Squamous Cellular Carcinoma. PLoS ONE 2016, 11, e0156651. [Google Scholar] [CrossRef]
- Jacobs, P.P.; Sackstein, R. CD44 and HCELL: Preventing Hematogenous Metastasis at Step 1. FEBS Lett. 2011, 585, 3148–3158. [Google Scholar] [CrossRef]
- Jaggupilli, A.; Elkord, E. Significance of CD44 and CD24 as Cancer Stem Cell Markers: An Enduring Ambiguity. Clin. Dev. Immunol. 2012, 2012, 708036. [Google Scholar] [CrossRef]
- Thapa, R.; Wilson, G.D. The Importance of CD44 as a Stem Cell Biomarker and Therapeutic Target in Cancer. Stem Cells Int. 2016, 2016, 2087204. [Google Scholar] [CrossRef]
- Emich, H.; Chapireau, D.; Hutchison, I.; Mackenzie, I. The Potential of CD44 as a Diagnostic and Prognostic Tool in Oral Cancer. J. Oral Pathol. Med. 2015, 44, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Lange, T.; Kupfernagel, M.; Wicklein, D.; Gebauer, F.; Maar, H.; Brugge, K.; Muller, I.; Simon, R.; Schlomm, T.; Sauter, G.; et al. Aberrant Presentation of HPA-Reactive Carbohydrates Implies Selectin-Independent Metastasis Formation in Human Prostate Cancer. Clin. Cancer Res. 2014, 20, 1791–1802. [Google Scholar] [CrossRef] [PubMed]
- Schwankhaus, N.; Gathmann, C.; Wicklein, D.; Riecken, K.; Schumacher, U.; Valentiner, U. Cell Adhesion Molecules in Metastatic Neuroblastoma Models. Clin. Exp. Metastasis 2014, 31, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, F.; Wicklein, D.; Stubke, K.; Nehmann, N.; Schmidt, A.; Salamon, J.; Peldschus, K.; Nentwich, M.F.; Adam, G.; Tolstonog, G.; et al. Selectin Binding is Essential for Peritoneal Carcinomatosis in a Xenograft Model of Human Pancreatic Adenocarcinoma in pfp--/rag2-- Mice. Gut 2013, 62, 741–750. [Google Scholar] [CrossRef]
- Stubke, K.; Wicklein, D.; Herich, L.; Schumacher, U.; Nehmann, N. Selectin-Deficiency Reduces the Number of Spontaneous Metastases in a Xenograft Model of Human Breast Cancer. Cancer Lett. 2012, 321, 89–99. [Google Scholar] [CrossRef]
- Laubli, H.; Borsig, L. Altered Cell Adhesion and Glycosylation Promote Cancer Immune Suppression and Metastasis. Front. Immunol. 2019, 10, 2120. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.; Giancotti, F.G. Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell 2019, 35, 347–367. [Google Scholar] [CrossRef]
- Fabricius, E.M.; Wildner, G.P.; Kruse-Boitschenko, U.; Hoffmeister, B.; Goodman, S.L.; Raguse, J.D. Immunohistochemical Analysis of Integrins alphavbeta3, alphavbeta5 and alpha5beta1, and their Ligands, Fibrinogen, Fibronectin, Osteopontin and Vitronectin, in Frozen Sections of Human Oral Head and Neck Squamous Cell Carcinomas. Exp. Ther. Med. 2011, 2, 9–19. [Google Scholar] [CrossRef]
- Georgolios, A.K.; Batistatou, A.; Charalabopoulos, K. Integrins in Head and Neck Squamous Cell Carcinoma (HNSCC): A Review of the Current Literature. Cell Commun. Adhes 2005, 12, 1–8. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Kan, X.; Li, Y.; Liu, M.; Lu, J.G. Elevated Expression of Integrin Alphav and beta5 Subunit in Laryngeal Squamous-Cell Carcinoma Associated with Lymphatic Metastasis and Angiogenesis. Pathol. Res. Pract. 2013, 209, 105–109. [Google Scholar] [CrossRef]
- Richter, U.; Schroder, C.; Wicklein, D.; Lange, T.; Geleff, S.; Dippel, V.; Schumacher, U.; Klutmann, S. Adhesion of Small Cell Lung Cancer Cells to E- and P-selectin under Physiological Flow Conditions: Implications for Metastasis Formation. Histochem. Cell Biol. 2011, 135, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Nehmann, N.; Wicklein, D.; Schumacher, U.; Muller, R. Comparison of Two Techniques for the Screening of Human Tumor Cells in Mouse Blood: Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Versus Laser Scanning Cytometry (LSC). Acta Histochem. 2010, 112, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.; Osl, F.; Friess, T.; Stockinger, H.; Scheuer, W.V. Quantification of Human Alu Sequences by Real-Time PCR--an Improved Method to Measure Therapeutic Efficacy of Anti-Metastatic Drugs in Human Xenotransplants. Clin. Exp. Metastasis 2002, 19, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Kalinina, T.; Gungor, C.; Thieltges, S.; Moller-Krull, M.; Penas, E.M.; Wicklein, D.; Streichert, T.; Schumacher, U.; Kalinin, V.; Simon, R.; et al. Establishment and Characterization of A New Human Pancreatic Adenocarcinoma Cell Line with High Metastatic Potential to the Lung. BMC Cancer 2010, 10, 295. [Google Scholar] [CrossRef]
- Jojovic, M.; Schumacher, U. Quantitative Assessment of Spontaneous Lung Metastases of Human HT29 Colon Cancer Cells Transplanted into SCID Mice. Cancer Lett. 2000, 152, 151–156. [Google Scholar] [CrossRef]
- Clauditz, T.S.; Wang, C.J.; Gontarewicz, A.; Blessmann, M.; Tennstedt, P.; Borgmann, K.; Tribius, S.; Sauter, G.; Dalchow, C.; Knecht, R.; et al. Expression of Insulin-Like Growth Factor II mRNA-Binding Protein 3 in Squamous Cell Carcinomas of the Head and Neck. J. Oral Pathol. Med. 2013, 42, 125–132. [Google Scholar] [CrossRef]
- Kononen, J.; Bubendorf, L.; Kallioniemi, A.; Barlund, M.; Schraml, P.; Leighton, S.; Torhorst, J.; Mihatsch, M.J.; Sauter, G.; Kallioniemi, O.P. Tissue Microarrays for High-Throughput Molecular Profiling of Tumor Specimens. Nat. Med. 1998, 4, 844–847. [Google Scholar] [CrossRef]
- Bubendorf, L.; Kononen, J.; Koivisto, P.; Schraml, P.; Moch, H.; Gasser, T.C.; Willi, N.; Mihatsch, M.J.; Sauter, G.; Kallioniemi, O.P. Survey of Gene Amplifications during Prostate Cancer Progression by High-Throughout Fluorescence in Situ Hybridization on Tissue Microarrays. Cancer Res. 1999, 59, 803–806. [Google Scholar]
- Santarelli, A.; Mascitti, M.; Rubini, C.; Bambini, F.; Giannatempo, G.; Lo Russo, L.; Sartini, D.; Emanuelli, M.; Procaccini, M.; Lo Muzio, L. Nuclear Survivin as a Prognostic Factor in Squamous-Cell Carcinoma of the Oral Cavity. Appl. Immunohistochem. Mol. Morphol. 2017, 25, 566–570. [Google Scholar] [CrossRef]
Cell Line | Sex | Age | Primary Tumor Location | TNM | Specimen Origin | Grade |
---|---|---|---|---|---|---|
UTSCC 2 | M | 60 | Oral cavity (base of mouth) | T4N1M0 | pri | |
UTSCC 16A | F | 77 | Oral cavity (tongue) | T3N0M0 | pri | G3 |
UTSCC 24A | M | 41 | Oral cavity (tongue) | T2N0M0 | pri | G2 |
UTSCC 24B | M | 41 | Derived from metastatic site: neck; pri: oral cavity (tongue) | met | G2 | |
UTSCC 60A | M | 59 | Oropharynx (left tonsil) | T4N1M0 | pri | G1 |
Carey 24 | M | 57 | Larynx (true vocal cord) | T1N0M0 | rec |
Antibodies | UTSCC 2 | UTSCC 16A | UTSCC 24A | UTSCC 24B | UTSCC 60A | Carey 24 | |
---|---|---|---|---|---|---|---|
Primary Tumor | Primary Tumor | Primary Tumor | Lung Metastases | Primary Tumor | Primary Tumor | Primary Tumor | |
E-cad | ++ | +++ a | ++/+++ | ++ | +++ a | +++ a | +++ a |
N-cad | +++ | + | ++ | + | + | + | + |
sLeA (CA19-9) | - | - | +++ (5–25) | +++ b | +++ (<10) | +/++ | - |
sLeX (CD15s) | - | +++ b | + (80) +++ (5) | - | +++ (5–10) | +++ b | +++ b |
CD 44 | +++ (25) | +++ a | +++ (25) | +++ b | +++ a | +++ a | +++ a |
CD 24 | - | ++ c | + | - | ++ c | ++ c | - |
ITGA5 | - | + a | - | - | + a | +/++ a | + a |
ITGb1 | + | + | + | + | + | ++ | + |
ITGb4 | + | + | + | + | + | + | + |
ICAM | - | ++ a | +++ b | +++ b | ++ b | ++/+++ a | ++ a |
L1CAM | - | ++ | + | + | ++ (30–50) | +++ (50) | + |
ALCAM (105902, R&D systems, Minneapolis, USA) |
---|
CA19-9 (sLeA) (121SLE, Novus Biological, Littleton, CO, USA) |
CD11a (HI111, BioLegend, London UK) |
CD11b (ICRF44, eBioscience, Waltham, MA, USA) |
CD15s (sLeX) (FH6, BioLegend) |
CD44 (B-F24, Diaclone, Besancon Cedex, France) |
CD46 (TRA-2-10, BioLegend) |
CD24 (eBioSN3, eBioscience) |
CD162 (FLEG, eBioscience) |
EpCAM (1B7, eBioscience) |
ICAM-1 (HA58, eBioscience) |
ITGAV (NKI-M9, BioLegend) |
ITGA4 (9F10, BioLegend) |
ITGA5 (P1D6, eBioscience) |
ITGA6 (GoH3, BioLegend) |
ITGB1 (TS2/16, eBioscinece) |
ITGB2 (TS1/18, BD Bioscience, Heidelberg, Germany) |
ITGB3 (VI-PL2, BioLegend) |
ITGB4 (439-9B, eBioscience) |
ITGB5 (KN52, eBioscience) |
ITGB7 (473207, R&D systems) |
L1CAM (eBio5G3, eBioscience) |
Antibodies | Pretreatment |
---|---|
CA19-9 (sLeA) (121SLE, abcam, Cambridge, UK) | 0.1% trypsin in TBS, 5 min |
CD15s (sLeX) (CSLEX1, BD Pharmingen, Heidelberg, Germany) | Citrate buffer, steamer, 10 min, 121 °C |
CD24 (SWA11, kindly provided by Prof. Peter Altevogt, German Cancer Research Centre, Heidelberg, Germany) | Fast enzyme (Zytomed, Berlin, Germany) in TBS, 10 min |
CD44 (G44-26, BD Pharmingen) | S1699 (DAKO), steamer, 10 min, 121 °C |
E-cadherin (NCH 38, DAKO, Glostrup, Denmark) | S1699 (DAKO), water bath, overnight, 85 °C |
ICAM-1 (G-5, Santa Cruz, CA, USA) | S1699 (DAKO), microwave |
ITGA5 (EPR7854, abcam) | S1699 (DAKO), steamer, 10 min, 121 °C |
ITGB1 (4B7R, abcam) | Fast enzyme (Zytomed) in TBS, 10 min |
ITGB4 (439-9B, abcam) | S1699 (DAKO), microwave |
L1CAM (UJ127, abcam) | EDTA, microwave |
N-cadherin (6-G11, DAKO) | 0.1% trypsin in TBS, 5 min |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valentiner, U.; Knips, J.; Pries, R.; Clauditz, T.; Münscher, A.; Sauter, G.; Wollenberg, B.; Schumacher, U. Selectin Binding Sites Are Involved in Cell Adhesive Properties of Head and Neck Squamous Cell Carcinoma. Cancers 2019, 11, 1672. https://doi.org/10.3390/cancers11111672
Valentiner U, Knips J, Pries R, Clauditz T, Münscher A, Sauter G, Wollenberg B, Schumacher U. Selectin Binding Sites Are Involved in Cell Adhesive Properties of Head and Neck Squamous Cell Carcinoma. Cancers. 2019; 11(11):1672. https://doi.org/10.3390/cancers11111672
Chicago/Turabian StyleValentiner, Ursula, Jillian Knips, Ralph Pries, Till Clauditz, Adrian Münscher, Guido Sauter, Barbara Wollenberg, and Udo Schumacher. 2019. "Selectin Binding Sites Are Involved in Cell Adhesive Properties of Head and Neck Squamous Cell Carcinoma" Cancers 11, no. 11: 1672. https://doi.org/10.3390/cancers11111672
APA StyleValentiner, U., Knips, J., Pries, R., Clauditz, T., Münscher, A., Sauter, G., Wollenberg, B., & Schumacher, U. (2019). Selectin Binding Sites Are Involved in Cell Adhesive Properties of Head and Neck Squamous Cell Carcinoma. Cancers, 11(11), 1672. https://doi.org/10.3390/cancers11111672