Synergistic Driver-Laser/Modulator Co-Design with Versatile Output Stage: A Unified Optical Transmitter EIC Design Approach
Abstract
1. Introduction
- (1)
- Signal amplification: The driver significantly boosts the amplitude of the input electrical signal to meet the driving voltage/current swing requirements of the subsequent optical modulator.
- (2)
- Impedance matching: It carefully maintains proper impedance matching throughout the signal path to minimize reflections and inter-symbol interference (ISI) and ensure maximum power transfer.
- (3)
- Signal conditioning: The driver often incorporates additional features such as signal shaping and pre-emphasis to compensate for bandwidth limitations in the transmission path.
2. Conventional Driver Design
3. Versatile Output Driver Design
3.1. PBT Based VOD
3.2. ABT Based VOD
- (1)
- An open-drain main driver (MDRV) with tail current ;
- (2)
- An ABT circuit comprising: A reduced tail current amplifier (); Raised resistive loads () to maintain equivalent voltage swing; And a low-output-impedance buffer (BUF) with termination resistor .
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pires, J.J.O. On the Capacity of Optical Backbone Networks. Network 2024, 4, 114–132. [Google Scholar] [CrossRef]
- Sadot, D.; Dorman, G.; Gorshtein, A.; Sonkin, E.; Vidal, O. Single channel 112Gbit/sec PAM4 at 56Gbaud with digital signal processing for data centers applications. Opt. Express 2015, 23, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Zhang, K.; He, H.; Hu, W.; Zhang, M. Fidelity enhancement in high-data-rate digital mobile fronthaul with sample bits interleaving and unequally-spaced PAM4. Opt. Express 2017, 25, 5559–5570. [Google Scholar] [CrossRef] [PubMed]
- Winzer, P.J.; Neilson, D.T. From scaling disparities to integrated parallelism: A decathlon for a decade. J. Light. Technol. 2017, 35, 1099–1115. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Wu, X.; Zhu, J.; Zeng, Y.; Liu, D.; Wang, X.; Zhang, D. Fiber-to-the-room (FTTR) technologies for the 5th generation fixed network (F5G) and beyond. In Proceedings of the 2022 IEEE Future Networks World Forum (FNWF), Montreal, QC, Canada, 10–14 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 351–354. [Google Scholar] [CrossRef]
- Morley, S. A 3 V 10.7 Gb/s differential laser diode driver with active back-termination output stage. In Proceedings of the ISSCC, 2005 IEEE International Digest of Technical Papers, Solid-State Circuits Conference, San Francisco, CA, USA, 10 February 2005; IEEE: Piscataway, NJ, USA, 2025; pp. 220–594. [Google Scholar] [CrossRef]
- Li, H.; Balamurugan, G.; Sakib, M.; Kumar, R.; Jayatilleka, H.; Rong, H.; Jaussi, J.; Casper, B. 12.1 A 3D-integrated microring-based 112 Gb/s PAM-4 silicon-photonic transmitter with integrated nonlinear equalization and thermal control. In Proceedings of the 2020 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 16–20 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 208–210. [Google Scholar] [CrossRef]
- Mondal, S.; Qiu, J.; Krishnamurthy, S.; Kennedy, J.; Bose, S.; Acikalin, T.; Yamada, S.; Jaussi, J.; Mansuri, M. 18.2 A 4 × 64 Gb/s NRZ 1.3 pJ/b Co-Packaged and Fiber-Terminated 4-Ch VCSEL-Based Optical Transmitter. In Proceedings of the 2024 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 18–22 February 2024; IEEE: Piscataway, NJ, USA, 2024; Volume 67, pp. 340–342. [Google Scholar] [CrossRef]
- Zhang, K.; Zhuge, Q.; Xin, H.; Hu, W.; Plant, D.V. Performance comparison of DML, EML and MZM in dispersion-unmanaged short reach transmissions with digital signal processing. Opt. Express 2018, 26, 34288–34304. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Debregeas, H.; Da Rold, G.; Carrara, D.; Louarn, K.; Valdeiglesias, E.D.; Lelarge, F. Versatile externally modulated lasers technology for multiple telecommunication applications. IEEE J. Sel. Top. Quantum Electron. 2020, 27, 1–12. [Google Scholar] [CrossRef]
- Yang, R.; Dang, Y.; Chen, J.; Li, D.; Svelto, F. CMOS Low-Power Optical Transceiver for Short Reach. Micromachines 2025, 16, 587. [Google Scholar] [CrossRef] [PubMed]
- XLMD2 Multi-Source Agreement Documents. 2013. Available online: https://xlmd-msa.org/ (accessed on 1 October 2025).
- Knickerbocker, J.U.; Herou, J.B.; Ramos, A.P.; Hsu, H.; Liu, N.; Taira, Y.; Marushima, C.; Kohara, S.; Mori, H.; Schultz, M.; et al. Co-Packaged Optics (CPO) Technology Full Module Test Vehicle Demonstrations. In Proceedings of the 2025 IEEE 75th Electronic Components and Technology Conference (ECTC), Dallas, TX, USA, 27–30 May 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 274–281. [Google Scholar] [CrossRef]
- Chuang, H.M.; Thei, K.B.; Tsai, S.F.; Liu, W.C. Temperature-dependent characteristics of polysilicon and diffused resistors. IEEE Trans. Electron Devices 2003, 50, 1413–1415. [Google Scholar] [CrossRef]
- Dawei, Z.; Yingmei, C.; Ling, T.; Li, Z. Design of a 10 Gb/s laser diode voltage driver in 0.18 μm CMOS technology. In Proceedings of the 2012 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, Nanjing, China, 18–20 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Savoj, J.; Hsieh, K.; Upadhyaya, P.; An, F.T.; Bekele, A.; Chen, S.; Jiang, X.; Lai, K.W.; Poon, C.F.; Sewani, A.; et al. A wide common-mode fully-adaptive multi-standard 12.5 Gb/s backplane transceiver in 28 nm CMOS. In Proceedings of the 2012 Symposium on VLSI Circuits (VLSIC), Honolulu, HI, USA, 13–15 June 2012; pp. 104–105. [Google Scholar] [CrossRef]
- Koizumi, H.; Togashi, M.; Nogawa, M.; Ohtomo, Y. A 10 Gb/s burst-mode laser diode driver for burst-by-burst power saving. In Proceedings of the 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 19–23 February 2012; pp. 414–416. [Google Scholar] [CrossRef]
- Yin, B.; Qi, N.; Shi, J.; Xiao, X.; Chen, D.; Li, M.; Li, Z.; Du, J.; He, Z.; Bai, R.; et al. A 32 Gb/s-NRZ, 15GBaud/s-PAM4 DFB laser driver with active back-termination in 65 nm CMOS. In Proceedings of the 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, USA, 4–6 June 2017; pp. 264–267. [Google Scholar] [CrossRef]
- Ho, W.-H.; Hsieh, Y.-H.; Murmann, B.; Chen, W.-Z. A 32 Gb/s PAM-4 Optical Transceiver with Active Back Termination in 40 nm CMOS Technology. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 10–21 October 2020; pp. 1–4. [Google Scholar] [CrossRef]















| Device | VCSEL | DFB | EML | MZM |
|---|---|---|---|---|
| Modulation Type | Direct | Direct | External | External |
| Impedance Requirement * | - | 25 | 50 | 50 |
| Drive Swing | <10 mA | ∼40 mA | 1–2 V | 3–5 V |
| Power Consumption | Very Low | Low | Moderate | High |
| Chirp | Moderate | High | Low | Very Low |
| Launch Power | Low | Medium | Medium | High |
| Transmission Range | <2 km | ∼10 km | ∼40 km | >100 km |
| Resistor Type | Diffused | Polysilicon | Metal |
|---|---|---|---|
| Sheet Resistance (/sq) | ∼20 † | ∼600 ‡ | <1 |
| Temperature Stability | Poor | Good | Poor |
| Process Variation | Large | Moderate | Small |
| Accuracy | Low | Moderate | High |
| Current Density Tolerance (mA/m) | ∼5 † | ∼0.4 ‡ | ∼1 |
| Area Efficiency * | Good | Poor | Poor |
| PBT | ABT | |
|---|---|---|
| Power Efficiency | Low (Theoretical max ≤ 50%) | ☺ High (>77% total output stage efficiency in this work) |
| Bandwidth | ☺ High (Simple structure, lower parasitics) | Medium (Limited by active circuitry and efficiency-bandwidth trade-off) |
| Output Swing | Varies with operating mode | ☺ Stable across different impedance modes |
| Design Complexity | ☺ Low (Simple structure, easy implementation) | High (Complex design, requires stability consideration) |
| Typical Application | Ultra high speed, long-reach systems | High-density, power-sensitive systems |
| Key Advantage | Bandwidth, Design Simplicity | Power Efficiency, Stable Output Swing |
| [15] | [16] | [17] | [18] | [19] | This Work | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Process | 180 nm CMOS | 28 nm CMOS | 180 nm SiGe | 65 nm CMOS | 40 nm CMOS | 180 nm CMOS | |||||
| Modulation Format | NRZ | NRZ | NRZ | NRZ | PAM4 | NRZ | |||||
| Data Rate (Gbps) | 12.5 | 12.5 | 10 | 32 | 32 | 10 | |||||
| Termination Type | PBT | PBT | PBT | ABT | ABT | PBT | ABT | ||||
| Impedance Mode | 1 | 1 | 1 | 1 | 1 | 3 | |||||
| 50 | 100 | OD | 50 | 100 | OD | ||||||
| # | 12 | N.A. | N.A. | 60 | 5 | 40 | 20 | 40 | 80 | ||
| Area () | 0.21 | 3.76 * | 2.85 | 1.20 | 0.87 | 0.85 | 0.87 | ||||
| Power (mW) ‡ | 142 | 335 | 1116 † | 550 | 146.8 | 260 | 200 | 200 | 460 | 400 | 340 |
| FoM (A/W) | 0.085 | N.A. | N.A. | 0.109 | 0.034 | 0.154 | 0.100 | 0.200 | 0.174 | 0.200 | 0.235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Li, C.; Xia, Y.; Yang, Y.; Geng, L.; Li, D. Synergistic Driver-Laser/Modulator Co-Design with Versatile Output Stage: A Unified Optical Transmitter EIC Design Approach. Micromachines 2025, 16, 1262. https://doi.org/10.3390/mi16111262
Yang R, Li C, Xia Y, Yang Y, Geng L, Li D. Synergistic Driver-Laser/Modulator Co-Design with Versatile Output Stage: A Unified Optical Transmitter EIC Design Approach. Micromachines. 2025; 16(11):1262. https://doi.org/10.3390/mi16111262
Chicago/Turabian StyleYang, Ruixuan, Cailing Li, Yifei Xia, Yuye Yang, Li Geng, and Dan Li. 2025. "Synergistic Driver-Laser/Modulator Co-Design with Versatile Output Stage: A Unified Optical Transmitter EIC Design Approach" Micromachines 16, no. 11: 1262. https://doi.org/10.3390/mi16111262
APA StyleYang, R., Li, C., Xia, Y., Yang, Y., Geng, L., & Li, D. (2025). Synergistic Driver-Laser/Modulator Co-Design with Versatile Output Stage: A Unified Optical Transmitter EIC Design Approach. Micromachines, 16(11), 1262. https://doi.org/10.3390/mi16111262


