Performance Evaluation of Thermoelectric Energy Harvesting System on Operating Rolling Stock
Abstract
1. Introduction
2. System Design
2.1. Thermoelectric Module
2.2. Cooling System
3. Performance Test on TEMs
4. Results and Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Garcia Marquez, F.P.; Schmid, F.; Collado, J.C. A reliability centered approach to remote condition monitoring. A railway points case study. Reliab. Eng. Syst. Saf. 2003, 80, 33–40. [Google Scholar] [CrossRef]
- Kim, J. Infrared thermographic monitoring for failure characterization in railway axle materials. J. Korean Soc. Nondestr. Test. 2010, 30, 116–120. [Google Scholar]
- Han, S.; Cho, S. Review of non-destructive evaluation technologies for rail inspection. J. Korean Soc. Nondestr. Test. 2011, 31, 398–413. [Google Scholar]
- Choi, K.; Kim, J. A study for applying thermoelectric module in a bogie axle bearing. Trans. Korean Soc. Mech. Eng. B 2016, 40, 255–262. [Google Scholar] [CrossRef]
- Koo, J.S.; Oh, H.S. A new derailment coefficient considering dynamic and geometrical effects of a single wheelset. J. Mech. Sci. Technol. 2014, 28, 3483–3498. [Google Scholar] [CrossRef]
- Choi, S.; Kim, Y.H.; Lee, T.S. Case study on the incident caused by axle bearings of the railway vehicles. In Proceedings of the Korean Society for Railway Fall Conference, Jeju Island, Korea, 30–31 October 2014; Volume 10, pp. 1035–1040. [Google Scholar]
- Choi, S.; Kim, M. A study on efficient rolling stock HBD monitoring method using EWMA technique. J. Korea Acad. Industr. Coop. Soc. 2017, 18, 609–617. [Google Scholar] [CrossRef]
- Bhatia, D.; Lee, J.; Hwang, H.J.; Baik, J.M.; Kim, S.; Choi, D. Design of mechanical frequency regulator for predictable uniform power from triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702667. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, G.; Li, X.; Qin, Y.; Xu, D.; Tang, W.; Yin, H.; Wei, X.; Jia, L. Self-powered triboelectric nano vibration accelerometer based wireless sensor system for railway state health monitoring. Nano Energy 2017, 34, 549–555. [Google Scholar] [CrossRef]
- Choi, W.; Choi, K.; Yang, G.; Kim, J.C.; Yu, C. Improving piezoelectric performance of lead-free polymer composites with high aspect ratio BaTiO3 nanowires. Polym. Test. 2016, 53, 143–148. [Google Scholar] [CrossRef]
- Choi, K.; Choi, W.; Yu, C.; Park, Y.T. Enhanced piezoelectric behavior of PVDF nanocomposite by AC dielectrophoresis alignment of ZnO nanowires. J. Nanomater. 2017, 2017, 6590121. [Google Scholar] [CrossRef]
- Choi, K.; Ahn, D.; Boo, J.H. Influence of temperature gradient induced by concentrated solar thermal energy on the power generation performance of a thermoelectric module. J. Korea Acad. Ind. Coop. Soc. 2017, 18, 777–784. [Google Scholar] [CrossRef]
- Tianchen, Y.; Jian, Y.; Ruigang, S.; Xiaowe, L. Vibration energy harvesting system for railroad safety based on running vehicles. Smart Mater. Struct. 2014, 23, 125046. [Google Scholar] [CrossRef]
- Cahill, P.; Nuallain, N.A.N.; Jackson, N.; Mathewson, A.; Karoumi, R.; Pakrashi, V. Energy harvesting from train-induced response in bridges. J. Bridge Eng. 2014, 19, 04014034. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, Y.; Zhang, N.; Zou, H.; Liu, R.; Tao, C.; Fan, X.; Wang, Z.L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521. [Google Scholar] [CrossRef]
- Turner, J.A. A realizable renewable energy future. Science 1999, 285, 687–689. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.E. Cooling, heatng, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.Z. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2009, 2, 148–173. [Google Scholar] [CrossRef]
- Wang, Z.L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282. [Google Scholar] [CrossRef]
- Wang, E.H.; Zhang, H.G.; Fan, B.Y.; Ouyang, M.G.; Zhao, Y.; Mu, Q.H. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy 2011, 36, 3406–3418. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, J.; Yang, J. Recent progress in triboelectric nanogenerators as a renewable and sustainable power source. J. Nanomater. 2016, 2016, 5651613. [Google Scholar] [CrossRef]
- Huang, K.D.; Tzeng, S. Development of a hybrid pneumatic-power vehicle. Appl. Energy 2005, 8, 47–59. [Google Scholar] [CrossRef]
- Nas, B.; Berktay, A. Energy potential of biodiesel generated from waste cooking oil: An environmental approach. Energy Sources Part B 2007, 2, 63–71. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, J.; Zhang, T.; Jing, Q.; Wang, Z.L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, G.; Yang, W.; Jing, Q.; Bai, P.; Yang, Y.; Hou, T.C.; Wang, Z.L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094–6099. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, J.; Jin, L.; Deng, W.; Zhang, L.; Zhang, H.; Zhu, M.; Yang, W.; Wang, J.L. Rotating-disk-based hybridized electromagnetic–triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 2016, 10, 6241–6247. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, J.; Guo, H.; Li, Z.; Zheng, L.; Su, Y.; Wen, Z.; Fan, X.; Wang, Z.L. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators. ACS Nano 2015, 9, 12334–12343. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, J.; Yang, Y.; Zhang, H.; Yang, W.; Bai, P.; Su, Y.; Wang, Z.L. Broadband vibrational energy harvesting based on a triboelectric nanogenerator. Adv. Energy Mater. 2014, 4, 1301322. [Google Scholar] [CrossRef]
- Zhang, N.; Tao, C.; Fan, X.; Chen, J. Progress in triboelectric nanogenerator as self-powered smart sensors. J. Mater. Res. 2017, 32, 1628–1646. [Google Scholar] [CrossRef]
- Armaroli, N.; Balzani, V. The future of energy supply: Challenges and opportunities. Angew. Chem. 2006, 46, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Dresselhaus, M.S.; Dresselhaus, G.; Fleurial, J.P.; Caillat, T. Recent developments in thermoelectric materials. Int. Mater. Rev. 2003, 48, 45–66. [Google Scholar] [CrossRef]
- Tritt, T.M.; Boettner, H.; Chen, L. Thermoelectris: Direct solar thermal energy conversion. MRS Bull. 2008, 33, 366–368. [Google Scholar] [CrossRef]
- Majumdar, A. Thermoelectricity in Semiconductor nanostructures. Science 2004, 303, 777–778. [Google Scholar] [CrossRef] [PubMed]
- Incropera, F.P. Convection Heat Transfer in Electronic Equipment Cooling. J. Heat Transfer 1988, 110, 1097–1111. [Google Scholar] [CrossRef]
- Tan, Y.K.; Panda, S.K. Optimized wind energy harvesting system using resistance emulator and active rectifier for wireless sensor nodes. IEEE T. Power Electr. 2011, 26, 38–50. [Google Scholar] [CrossRef]
Number of Fin | Height of Fin (mm) | |||||
---|---|---|---|---|---|---|
31.3 | 35.3 | 39.3 | 43.3 | 47.3 | 51.3 | |
7 | 14.89 | 15.66 | 16.34 | 16.94 | 17.49 | 17.97 |
9 | 16.12 | 16.93 | 17.64 | 18.25 | 18.81 | 19.32 |
11 | 16.81 | 17.65 | 18.39 | 19.01 | 19.57 | 20.05 |
(a) | ||||
ΔT (°C) | I at Pmax (mA) | V at Pmax (V) | R at Pmax (Ω) | Pmax (mW) |
10 | 47.85 | 0.061 | 1.278 | 2.946 |
15 | 68.09 | 0.096 | 1.406 | 6.503 |
20 | 89.98 | 0.126 | 1.403 | 11.382 |
25 | 112.21 | 0.157 | 1.401 | 17.658 |
30 | 127.30 | 0.194 | 1.524 | 24.673 |
(b) | ||||
ΔT (°C) | I at Pmax (mA) | V at Pmax (V) | R at Pmax (Ω) | Pmax (mW) |
10 | 41.40 | 0.078 | 1.892 | 3.296 |
15 | 62.02 | 0.118 | 1.900 | 7.295 |
20 | 75.14 | 0.165 | 2.197 | 12.701 |
25 | 100.42 | 0.201 | 2.001 | 19.879 |
30 | 111.83 | 0.246 | 2.197 | 27.969 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, D.; Choi, K. Performance Evaluation of Thermoelectric Energy Harvesting System on Operating Rolling Stock. Micromachines 2018, 9, 359. https://doi.org/10.3390/mi9070359
Ahn D, Choi K. Performance Evaluation of Thermoelectric Energy Harvesting System on Operating Rolling Stock. Micromachines. 2018; 9(7):359. https://doi.org/10.3390/mi9070359
Chicago/Turabian StyleAhn, Dahoon, and Kyungwho Choi. 2018. "Performance Evaluation of Thermoelectric Energy Harvesting System on Operating Rolling Stock" Micromachines 9, no. 7: 359. https://doi.org/10.3390/mi9070359
APA StyleAhn, D., & Choi, K. (2018). Performance Evaluation of Thermoelectric Energy Harvesting System on Operating Rolling Stock. Micromachines, 9(7), 359. https://doi.org/10.3390/mi9070359