Selective Detection of NO and NO2 with CNTs-Based Ionization Sensor Array
Abstract
:1. Introduction
2. Experimental Detail
2.1. Synthesis of CNT Films and Three Electrodes
2.2. Fabrication of Sensors and Sensor Array
2.3. Experimental Testing System
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [PubMed]
- Rheaume, J.M.; Pisano, A.P. A review of recent progress in sensing of gas concentration by impedance change. Ionics 2011, 17, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Afzal, A.; Cioffi, N.; Sabbatini, L.; Torsi, L. NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives. Sens. Actuators B Chem. 2012, 171, 25–42. [Google Scholar] [CrossRef]
- Privett, B.J.; Shin, J.H.; Schoenfisch, M.H. Electrochemical nitric oxide sensors for physiological measurements. Chem. Soc. Rev. 2010, 39, 1925–1935. [Google Scholar] [CrossRef] [PubMed]
- Macam, E.R.; Blackburn, B.M.; Wachsman, E.D. The effect of La2CuO4 sensing electrode thickness on a potentiometric NOx sensor response. Sens. Actuator B-Chem. 2011, 157, 353–360. [Google Scholar] [CrossRef]
- Yao, F.; Dinh, L.D.; Lim, S.C.; Yang, S.B.; Hwang, H.R.; Yu, W.J.; Lee, I.H.; Gunes, F.; Lee, Y.H. Humidity-assisted selective reactivity between NO2 and SO2 gas on carbon nanotubes. J. Mater. Chem. 2011, 21, 4502–4508. [Google Scholar] [CrossRef]
- Lu, R.J.; Shi, K.Y.; Zhou, W.; Wang, L.; Tian, C.G.; Pan, K.; Sun, L.; Fu, H.G. Highly dispersed Ni-decorated porous hollow carbon nanofibers: Fabrication, characterization, and NOx gas sensors at room temperature. J. Mater. Chem. 2012, 22, 24814–24820. [Google Scholar] [CrossRef]
- Iqbal, N.; Afzal, A.; Cioffi, N.; Sabbatini, L.; Torsi, L. NOx sensing one- and two-dimensional carbon nanostructures and nanohybrids: Progress and perspectives. Sens. Actuators B Chem. 2013, 181, 9–21. [Google Scholar] [CrossRef]
- Yun, J.H.; Kim, J.; Park, Y.C.; Song, J.W.; Shin, D.H.; Han, C.S. Highly sensitive carbon nanotube-embedding gas sensors operating at atmospheric pressure. Nanotechnology 2009, 20, 055503. [Google Scholar] [CrossRef] [PubMed]
- Penza, M.; Rossi, R.; Alvisi, M.; Serra, E. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Nanotechnology 2010, 21, 105501. [Google Scholar] [CrossRef] [PubMed]
- Mangu, R.; Rajaputra, S.; Singh, V.P. Mwcnt-polymer composites as highly sensitive and selective room temperature gas sensors. Nanotechnology 2011, 22, 215502. [Google Scholar] [CrossRef] [PubMed]
- Vuong, N.M.; Jung, H.; Kim, D.; Kim, H.; Hong, S.K. Realization of an open space ensemble for nanowires: A strategy for the maximum response in resistive sensors. J. Mater. Chem. 2012, 22, 6716–6725. [Google Scholar] [CrossRef]
- Llobet, E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B Chem. 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Lucci, M.; Reale, A.; Di Carlo, A.; Orlanducci, S.; Tamburri, E.; Terranova, M.L.; Davoli, I.; Di Natale, C.; D’Amico, A.; Paolesse, R. Optimization of a NOx gas sensor based on single walled carbon nanotubes. Sens. Actuator B-Chem. 2006, 118, 226–231. [Google Scholar] [CrossRef]
- Ueda, T.; Bhulyan, M.M.H.; Norimatsu, H.; Katsuki, S.; Ikegami, T.; Mitsugi, F. Development of carbon nanotube-based gas sensors for NOx gas detection working at low temperature. Physica E-Low-Dimens. Syst. Nanostruct. 2008, 40, 2272–2277. [Google Scholar] [CrossRef]
- Jang, D.M.; Jung, H.; Hoa, N.D.; Kim, D.; Hong, S.K.; Kim, H. Tin oxide-carbon nanotube composite for NOx sensing. J. Nanosci. Nanotechnol. 2012, 12, 1425–1428. [Google Scholar] [CrossRef] [PubMed]
- Yavari, F.; Castillo, E.; Gullapalli, H.; Ajayan, P.M.; Koratkar, N. High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett. 2012, 100, 203120. [Google Scholar] [CrossRef]
- Boyd, A.; Dube, I.; Fedorov, G.; Paranjape, M.; Barbara, P. Gas sensing mechanism of carbon nanotubes: From single tubes to high-density networks. Carbon 2014, 69, 417–423. [Google Scholar] [CrossRef]
- Dube, I.; Jiménez, D.; Fedorov, G.; Boyd, A.; Gayduchenko, I.; Paranjape, M.; Barbara, P. Understanding the electrical response and sensing mechanism of carbon-nanotube-based gas sensors. Carbon 2015, 87, 330–337. [Google Scholar] [CrossRef]
- Shengbing, C.; Yong, Z.; Zhemin, D. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode. J. Micromech. Microeng. 2012, 22, 125017. [Google Scholar]
- Zhang, Y.; Li, S.; Zhang, J.; Pan, Z.; Min, D.; Li, X.; Song, X.; Liu, J. High-performance gas sensors with temperature measurement. Sci. Rep. 2013, 3, 1267. [Google Scholar] [CrossRef] [PubMed]
- Raizer, Y.P. Gas Discharge Physics; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Li, X.; Zhao, D.; Pang, K.; Pang, J.; Liu, W.; Liu, H.; Wang, X. Carbon nanotube cathode with capping carbon nanosheet. Appl. Surf. Sci. 2013, 283, 740–743. [Google Scholar] [CrossRef]
- Sadeghian, R.B.; Kahrizi, M. A novel gas sensor based on tunneling-field-ionization on whisker-covered gold nanowires. IEEE Sens. J. 2008, 8, 161–169. [Google Scholar] [CrossRef]
- Sadeghian, R.B.; Kahrizi, M. A novel miniature gas ionization sensor based on freestanding gold nanowires. Sens. Actuators A Phys. 2007, 137, 248–255. [Google Scholar] [CrossRef]
- Nikfarjam, A.; Zad, A.I.; Razi, F.; Mortazavi, S.Z. Fabrication of gas ionization sensor using carbon nanotube arrays grown on porous silicon substrate. Sens. Actuators A Phys. 2010, 162, 24–28. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Gu, C.; Yu, K.; Meng, F.; Liu, J. A novel highly sensitive gas ionization sensor for ammonia detection. Sens. Actuators A Phys. 2009, 150, 218–223. [Google Scholar] [CrossRef]
- Raizer, Y.P.; Allen, J.E. Gas Discharge Physics; Springer: Berlin, Germany, 1997; Volume 2. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Li, K.; Wang, C. Selective Detection of NO and NO2 with CNTs-Based Ionization Sensor Array. Micromachines 2018, 9, 354. https://doi.org/10.3390/mi9070354
Song H, Li K, Wang C. Selective Detection of NO and NO2 with CNTs-Based Ionization Sensor Array. Micromachines. 2018; 9(7):354. https://doi.org/10.3390/mi9070354
Chicago/Turabian StyleSong, Hui, Kun Li, and Chang Wang. 2018. "Selective Detection of NO and NO2 with CNTs-Based Ionization Sensor Array" Micromachines 9, no. 7: 354. https://doi.org/10.3390/mi9070354
APA StyleSong, H., Li, K., & Wang, C. (2018). Selective Detection of NO and NO2 with CNTs-Based Ionization Sensor Array. Micromachines, 9(7), 354. https://doi.org/10.3390/mi9070354