Fabrication of Stable Carbon Nanotube Cold Cathode Electron Emitters with Post-Growth Electrical Aging
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of Carbon Nanotube (CNT) Field Emitters
2.2. Electrical Aging Technology
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kim, K.S.; Ryu, J.H.; Lee, C.S.; Jang, J.; Park, K.C. Enhanced and stable electron emission of carbon nanotube emitter arrays by post-growth hydrofluoric acid treatment. J. Vac. Sci. Technol. B 2007, 20, 120–124. [Google Scholar] [CrossRef]
- Jung, S.I.; Jo, S.H.; Moon, H.S.; Kim, J.M.; Zang, D.-S.; Lee, C.J. Improved Crystallinity of Double-Walled Carbon Nanotubes after a High-Temperature Thermal Annealing and Their Enhanced Field Emission Properties. J. Phys. Chem. C 2007, 111, 4175–4179. [Google Scholar] [CrossRef]
- Ryu, J.H.; Kim, K.S.; Lee, C.S.; Jang, J.; Park, K.C. Effect of electrical aging on field emission from carbon nanotube field emitter arrays. J. Vac. Sci. Technol. B 2008, 26, 856. [Google Scholar] [CrossRef]
- Liu, C.; Kim, K.S.; Baek, J.; Cho, Y.; Han, S.; Kim, S.-W.; Min, N.; Choi, Y.; Kim, J.; Lee, C.J. Improved field emission properties of double-walled carbon nanotubes decorated with Ru nanoparticles. Carbon 2009, 47, 1158–1164. [Google Scholar] [CrossRef]
- Wang, W.-P.; Wen, H.-C.; Jian, S.-R.; Cheng, H.-Z.; Jang, J.S.-C.; Juang, J.-Y.; Cheng, H.-C.; Chou, C.-P. Field emission characteristics of carbon nanotubes post-treated with high-density Ar plasma. Appl. Surf. Sci. 2010, 256, 2184–2188. [Google Scholar] [CrossRef]
- Sun, Y.; Shin, D.H.; Yun, K.N.; Hwang, Y.M.; Song, Y.; Leti, G.; Jeon, S.; Kim, J.; Saito, Y.; Lee, C.J. Field emission behavior of carbon nanotube field emitters after high temperature thermal annealing. AIP Adv. 2014, 4, 077110. [Google Scholar] [CrossRef]
- Lee, S.W.; Kang, J.S.; Lee, H.R.; Park, S.Y.; Jang, J.; Park, K.C. Enhanced and stable electron emission of carbon nanotube emitters with graphitization. Vacuum 2015, 121, 212–216. [Google Scholar] [CrossRef]
- Kang, J.S.; Hong, J.H.; Chung, M.T.; Park, K.C. Highly stable carbon nanotube cathode for electron beam application. J. Vac. Sci. Technol. B 2016, 34, 02G104. [Google Scholar] [CrossRef]
- Kang, J.S.; Park, K.C. Electron extraction electrode for a high-performance electron beam from carbon nanotube cold cathodes. J. Vac. Sci. Technol. B 2017, 35, 02C109. [Google Scholar] [CrossRef]
- Park, J.H.; Jeon, S.Y.; Alegaonkar, P.S.; Yoo, J.B. Improvement of emission reliability of carbon nanotube emitters by electrical conditioning. Thin Solid Films 2008, 516, 3618–3621. [Google Scholar] [CrossRef]
- Saito, Y.; Seko, K.; Kinoshita, J. Dynamic behavior of carbon nanotube field emitters observed by in situ transmission electron microscopy. Diam. Relat. Mater. 2005, 14, 1843–1847. [Google Scholar] [CrossRef]
- Sveningsson, M.; Hansen, K.; Svensson, K.; Olsson, E.; Campbell, E.E.B. Quantifying temperature-enhanced electron field emission from individual carbon nanotubes. Phys. Rev. B 2005, 72. [Google Scholar] [CrossRef]
- Machida, H.; Honda, S.; Fujii, S.; Himuro, K.; Kawai, H.; Ishida, K.; Oura, K.; Katayama, M. Effect of Electrical Aging on Field Electron Emission from Screen-Printed Carbon Nanotube Film. Jpn. J. Appl. Phys. 2007, 46, 867–869. [Google Scholar] [CrossRef]
- Passacantando, M.; Bussolotti, F.; Santucci, S.; Di Bartolomeo, A.; Giubileo, F.; Iemmo, L.; Cucolo, A.M. Field emission from a selected multiwall carbon nanotube. Nanotechnology 2008, 19, 395701. [Google Scholar] [CrossRef] [PubMed]
- Di, Y.; Xiao, M.; Zhang, X.; Wang, Q.; Li, C.; Lei, W.; Cui, Y. Large and stable emission current from synthesized carbon nanotube/fiber network. J. Appl. Phys. 2014, 115, 064305. [Google Scholar] [CrossRef]
- Nilsson, L.; Groening, O.; Emmenegger, C.; Kuettel, O.; Schaller, E.; Schlapbach, L.; Kind, H.; Bonard, J.-M.; Kern, K. Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 2000, 76, 2071–2073. [Google Scholar] [CrossRef]
- Liang, X.H.; Deng, S.Z.; Xu, N.S.; Chen, J.; Huang, N.Y.; She, J.C. On achieving better uniform carbon nanotube field emission by electrical treatment and the underlying mechanism. Appl. Phys. Lett. 2006, 88, 111501. [Google Scholar] [CrossRef]
- Zou, Q.; Wang, M.Z.; Li, Y.G.; Zou, L.H. Ageing effect on the field emission reproducibility of multiwalled carbon nanotubes. J. Exp. Nanosci. 2011, 6, 270–280. [Google Scholar] [CrossRef]
- Di Bartolomeo, A.; Scarfato, A.; Giubileo, F.; Bobba, F.; Biasiucci, M.; Cucolo, A.M.; Santucci, S.; Passacantando, M. A local field emission study of partially aligned carbon-nanotubes by atomic force microscope probe. Carbon 2007, 45, 2957–2971. [Google Scholar] [CrossRef]
- Giubileo, F.; Di Bartolomeo, A.; Iemmo, L.; Luongo, G.; Urban, F. Field Emission from Carbon Nanostructures. Appl. Sci. 2018, 8, 526. [Google Scholar] [CrossRef]
- Giubileo, F.; Di Bartolomeo, A.; Scarfato, A.; Iemmo, L.; Bobba, F.; Passacantando, M.; Santucci, S.; Cucolo, A.M. Local probing of the field emission stability of vertically aligned multi-walled carbon nanotubes. Carbon 2009, 47, 1074–1080. [Google Scholar] [CrossRef]
- Lee, J.; Jung, Y.; Song, J.; Kim, J.S.; Lee, G.-W.; Jeong, H.J.; Jeong, Y. High-performance field emission from a carbon nanotube carpet. Carbon 2012, 50, 3889–3896. [Google Scholar] [CrossRef]
- Dean, K.A.; Chalamala, B.R. Current saturation mechanisms in carbon nanotube field emitters. Appl. Phys. Lett. 2000, 76, 375–377. [Google Scholar] [CrossRef]
- Hata, K.; Takakura, A.; Saito, Y. Field emission microscopy of adsorption and desorption of residual gas molecules on a carbon nanotube tip. Surf. Sci. 2001, 490, 296–300. [Google Scholar] [CrossRef]
- Park, J.H.; Moon, J.S.; Nam, J.W.; Yoo, J.B.; Park, C.Y.; Kim, J.M.; Park, J.H.; Lee, C.J.; Choe, D.H. Field emission properties and stability of thermally treated photosensitive carbon nanotube paste with different inorganic binders. Diamond Relat. Mater. 2005, 14, 2113–2117. [Google Scholar] [CrossRef]
- Cho, Y.; Song, H.; Choi, G.; Kim, D. A simple method to fabricate high-performance carbon nanotube field emitters. J. Electroceram. 2006, 17, 945–949. [Google Scholar] [CrossRef]
- Guo, P.S.; Chen, T.; Chen, Y.; Zhang, Z.J.; Feng, T.; Wang, L.L.; Lin, L.F.; Sun, Z.; Zheng, Z.H. Fabrication of field emission display prototype utilizing printed carbon nanotubes/nanofibers emitters. Solid-State Electron. 2008, 52, 877–881. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Chen, T.; Que, W.; Sun, Z. Optimization of field emission properties of carbon nanotubes cathodes by electrophoretic deposition. Mater. Lett. 2007, 61, 1265–1269. [Google Scholar] [CrossRef]
- Choi, Y.C.; Lee, N. Influence of length distributions of carbon nanotubes on their field emission uniformity in the paste-printed dot arrays. Diam. Relat. Mater. 2008, 17, 270–275. [Google Scholar] [CrossRef]
- Park, J.H.; Alegaonkar, P.S.; Kim, D.Y.; Yoo, J.B. Electrical ageing of carbon nanotube composite cathode layers. Diam. Relat. Mater. 2008, 17, 980–985. [Google Scholar] [CrossRef]
- Giubileo, F.; Di Bartolomeo, A.; Sarno, M.; Altavilla, C.; Santandrea, S.; Ciambelli, P.; Cucolo, A.M. Field emission properties of as-grown multiwalled carbon nanotube films. Carbon 2012, 50, 163–169. [Google Scholar] [CrossRef]
- Dong, C.; Gupta, M.C. Influences of the surface reactions on the field emission from multiwall carbon nanotubes. Appl. Phys. Lett. 2003, 83, 159–161. [Google Scholar] [CrossRef]
- Park, K.C.; Ryu, J.H.; Kim, K.S.; Yu, Y.Y.; Jang, J. Growth of carbon nanotubes with resist assisted patterning process. J. Vac. Sci. Technol. B 2007, 25, 1261–1264. [Google Scholar] [CrossRef]
- Ryu, J.H.; Bae, N.Y.; Oh, H.M.; Zhou, O.; Jang, J.; Park, K.C. Stabilized electron emission from silicon coated carbon nanotubes for a high-performance electron source. J. Vac. Sci. Technol. B 2011, 29, 02B120. [Google Scholar] [CrossRef]
Treatment | Driving | Turn on Field (V/μm) | Current Density at 5.4 V/μm (mA/cm2) |
---|---|---|---|
As-grown | 3.6 | 4.5 | |
Annealed | DC | 3.3 | 48 |
Electrically aged | 3 | 97 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.H.; Kang, J.S.; Park, K.C. Fabrication of Stable Carbon Nanotube Cold Cathode Electron Emitters with Post-Growth Electrical Aging. Micromachines 2018, 9, 648. https://doi.org/10.3390/mi9120648
Kim JH, Kang JS, Park KC. Fabrication of Stable Carbon Nanotube Cold Cathode Electron Emitters with Post-Growth Electrical Aging. Micromachines. 2018; 9(12):648. https://doi.org/10.3390/mi9120648
Chicago/Turabian StyleKim, Jung Hyun, Jung Su Kang, and Kyu Chang Park. 2018. "Fabrication of Stable Carbon Nanotube Cold Cathode Electron Emitters with Post-Growth Electrical Aging" Micromachines 9, no. 12: 648. https://doi.org/10.3390/mi9120648
APA StyleKim, J. H., Kang, J. S., & Park, K. C. (2018). Fabrication of Stable Carbon Nanotube Cold Cathode Electron Emitters with Post-Growth Electrical Aging. Micromachines, 9(12), 648. https://doi.org/10.3390/mi9120648