The Fantastic Voyage of the Trypanosome: A Protean Micromachine Perfected during 500 Million Years of Engineering
Abstract
:1. Introduction
2. Trypanosomes—Cosmopolitan Parasites
3. The Model Trypanosome
4. The Sinuous Basic Motion Pattern
5. Blood Microswimmers
6. Location Matters
7. The Multifarious Tsetse System
8. Towards Bioinspired Trypanobots
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Feynman, R.P. There’s plenty of room at the bottom. Eng. Sci. 1960, 23, 22–36. [Google Scholar]
- Ornes, S. Inner Workings: Medical microrobots have potential in surgery, therapy, imaging, and diagnostics. Proc. Natl. Acad. Sci. USA 2017, 114, 12356–12358. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, H.; Giltinan, J.; Kozielski, K.; Sitti, M. Mobile microrobots for bioengineering applications. Lab Chip 2017, 17, 1705–1724. [Google Scholar] [CrossRef] [PubMed]
- Martel, S. Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents: A perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks. Biomicrofluidics 2016, 10, 021301. [Google Scholar] [CrossRef] [PubMed]
- Sitti, M.; Ceylan, H.; Hu, W.; Giltinan, J.; Turan, M.; Yim, S.; Diller, E. Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE Inst. Electr. Electron. Eng. 2015, 103, 205–224. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.J.; Kaliakatsos, I.K.; Abbott, J.J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 2010, 12, 55–85. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, L.; Medina-Sánchez, M.; Schmidt, O.G. Hybrid BioMicromotors. Appl. Phys. Rev. 2017, 4, 031301. [Google Scholar] [CrossRef]
- Medina-Sánchez, M.; Schmidt, O.G. Medical microbots need better imaging and control. Nature 2017, 545, 406–408. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.V.; Sitti, M. Targeted drug delivery and imaging using mobile milli/microrobots: A promising future towards theranostic pharmaceutical design. Curr. Pharm. Des. 2016, 22, 1418–1428. [Google Scholar] [CrossRef] [PubMed]
- Servant, A.; Qiu, F.; Mazza, M.; Kostarelos, K.; Nelson, B.J. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 2015, 27, 2981–2988. [Google Scholar] [CrossRef] [PubMed]
- Dreyfus, R.; Baudry, J.; Roper, M.L.; Fermigier, M.; Stone, H.A.; Bibette, J. Microscopic artificial swimmers. Nature 2005, 437, 862–865. [Google Scholar] [CrossRef] [PubMed]
- Park, B.-W.; Zhuang, J.; Yasa, O.; Sitti, M. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano 2017, 11, 8910–8923. [Google Scholar] [CrossRef] [PubMed]
- Stanton, M.M.; Park, B.-W.; Miguel-López, A.; Ma, X.; Sitti, M.; Sánchez, S. Biohybrid microtube swimmers driven by single captured bacteria. Small 2017, 13. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, S.; Lee, J.; Nelson, B.J.; Zhang, L.; Choi, H. Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.; Kim, D.H.; Kim, P.; Kim, M.J.; Julius, A.A. Motion control of magnetized Tetrahymena pyriformis cells by a magnetic field with model predictive control. Int. J. Robot. Res. 2013, 32, 129–140. [Google Scholar] [CrossRef]
- Fearing, R.S. Control of a micro-organism as a prototype micro-robot. In Proceedings of the 2nd Int. Symp. Micromachines and Human Sciences, Nagoya, Japan, 8–9 October 1991. [Google Scholar]
- Magdanz, V.; Sanchez, S.; Schmidt, O.G. Development of a sperm-flagella driven micro-bio-robot. Adv. Mater. 2013, 25, 6581–6588. [Google Scholar] [CrossRef] [PubMed]
- Weibel, D.B.; Garstecki, P.; Ryan, D.; DiLuzio, W.R.; Mayer, M.; Seto, J.E.; Whitesides, G.M. Microoxen: Microorganisms to move microscale loads. Proc. Natl. Acad. Sci. USA 2005, 102, 11963–11967. [Google Scholar] [CrossRef] [PubMed]
- Lukeš, J.; Skalický, T.; Týč, J.; Votýpka, J.; Yurchenko, V. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 2014, 195, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.R.; McCulloch, R.; Morrison, L.J. The within-host dynamics of African trypanosome infections. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370. [Google Scholar] [CrossRef] [PubMed]
- Cnops, J.; Magez, S.; De TREZ, C. Escape mechanisms of African trypanosomes: Why trypanosomosis is keeping us awake. Parasitology 2015, 142, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Pays, E.; Vanhollebeke, B.; Uzureau, P.; Lecordier, L.; Pérez-Morga, D. The molecular arms race between African trypanosomes and humans. Nat. Rev. Microbiol. 2014, 12, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Rotureau, B.; Van Den Abbeele, J. Through the dark continent: African trypanosome development in the tsetse fly. Front. Cell. Infect. Microbiol. 2013, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.; Gluenz, E.; Peacock, L.; Gibson, W.; Gull, K.; Carrington, M. The heart of darkness: Growth and form of Trypanosoma brucei in the tsetse fly. Trends Parasitol. 2009, 25, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Casas-Sánchez, A.; Acosta-Serrano, Á. Skin deep. eLife 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Capewell, P.; Cren-Travaillé, C.; Marchesi, F.; Johnston, P.; Clucas, C.; Benson, R.A.; Gorman, T.-A.; Calvo-Alvarez, E.; Crouzols, A.; Jouvion, G.; et al. The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. eLife 2016, 5, e17716. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.; Krüger, T.; Subota, I.; Thusek, S.; Rotureau, B.; Beilhack, A.; Engstler, M. Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system. eLife 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Hoare, C.A.; Wallace, F.G. Developmental stages of trypanosomatid flagellates: A new terminology. Nature 1966, 212, 1385–1386. [Google Scholar] [CrossRef]
- Vickerman, K. Developmental cycles and biology of pathogenic trypanosomes. Br. Med. Bull. 1985, 41, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, R.J.; Gluenz, E.; Gull, K. The limits on trypanosomatid morphological diversity. PLoS ONE 2013, 8, e79581. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.; Hancock, G.J. The Propulsion of sea-urchin spermatozoa. J. Exp. Biol. 1955, 32, 802–814. [Google Scholar]
- Lindemann, C.B.; Lesich, K.A. Flagellar and ciliary beating: The proven and the possible. J. Cell Sci. 2010, 123, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Purcell, E.M. Life at low Reynolds number. Am. J. Phys. 1977, 45, 3. [Google Scholar] [CrossRef]
- Lindemann, C.B.; Lesich, K.A. Functional anatomy of the mammalian sperm flagellum: Mammalian sperm mechanics. Cytoskeleton 2016, 73, 652–669. [Google Scholar] [CrossRef] [PubMed]
- Bargul, J.L.; Jung, J.; McOdimba, F.A.; Omogo, C.O.; Adung’a, V.O.; Krüger, T.; Masiga, D.K.; Engstler, M. Species-specific adaptations of trypanosome morphology and motility to the mammalian host. PLoS Pathog. 2016, 12, e1005448. [Google Scholar] [CrossRef] [PubMed]
- Heddergott, N.; Krüger, T.; Babu, S.B.; Wei, A.; Stellamanns, E.; Uppaluri, S.; Pfohl, T.; Stark, H.; Engstler, M. Trypanosome motion represents an adaptation to the crowded environment of the vertebrate bloodstream. PLoS Pathog. 2012, 8, e1003023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alizadehrad, D.; Krüger, T.; Engstler, M.; Stark, H. Simulating the complex cell design of trypanosoma brucei and its motility. PLoS Comput. Biol. 2015, 11, e1003967. [Google Scholar] [CrossRef] [PubMed]
- Mugnier, M.R.; Cross, G.A.M.; Papavasiliou, F.N. The in vivo dynamics of antigenic variation in Trypanosoma brucei. Science 2015, 347, 1470–1473. [Google Scholar] [CrossRef] [PubMed]
- Engstler, M.; Pfohl, T.; Herminghaus, S.; Boshart, M.; Wiegertjes, G.; Heddergott, N.; Overath, P. Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 2007, 131, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Caljon, G.; Van Reet, N.; De Trez, C.; Vermeersch, M.; Pérez-Morga, D.; Van Den Abbeele, J. The dermis as a delivery site of trypanosoma brucei for tsetse flies. PLoS Pathog. 2016, 12, e1005744. [Google Scholar] [CrossRef] [PubMed]
- Trindade, S.; Rijo-Ferreira, F.; Carvalho, T.; Pinto-Neves, D.; Guegan, F.; Aresta-Branco, F.; Bento, F.; Young, S.A.; Pinto, A.; Van Den Abbeele, J.; et al. Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host Microbe 2016, 19, 837–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogk, S.; Meiwes, A.; Boßelmann, C.M.; Wolburg, H.; Duszenko, M. The lane to the brain: How African trypanosomes invade the CNS. Trends Parasitol. 2014, 30, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Ooi, C.-P.; Bastin, P. More than meets the eye: Understanding Trypanosoma brucei morphology in the tsetse. Front. Cell. Infect. Microbiol. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Dyer, N.A.; Rose, C.; Ejeh, N.O.; Acosta-Serrano, A. Flying tryps: Survival and maturation of trypanosomes in tsetse flies. Trends Parasitol. 2013, 29, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Rotureau, B.; Subota, I.; Buisson, J.; Bastin, P. A new asymmetric division contributes to the continuous production of infective trypanosomes in the tsetse fly. Development 2012, 139, 1842–1850. [Google Scholar] [CrossRef] [PubMed]
- Krüger, T.; Engstler, M. Flagellar motility in eukaryotic human parasites. Semin. Cell Dev. Biol. 2015, 46, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Abenga, J.N. A comparative pathology of trypanosoma brucei infections. Glob. Adv. Res. J. Med. Med. Sci. 2014, 3, 390–399. [Google Scholar]
- Goodwin, L.G. The pathology of African trypanosomiasis. Trans. R. Soc. Trop. Med. Hyg. 1970, 64, 797–817. [Google Scholar] [CrossRef]
- Hoare, C.A. The Trypanosomes of Mammals. A Zoological Monograph; Blackwell Scientific Publications: Oxford/Edinburgh, UK, 1972. [Google Scholar]
- Losos, G.J.; Ikede, B.O. Review of pathology of diseases in domestic and laboratory animals caused by Trypanosoma congolense, T. vivax, T. brucei, T. rhodesiense and T. gambiense. Vet. Pathol. 1972, 9, 1–79. [Google Scholar] [CrossRef]
- MacLeod, A.; Tait, A.; Turner, C.M. The population genetics of Trypanosoma brucei and the origin of human infectivity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001, 356, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Gibson, W. Epidemiology and diagnosis of African trypanosomiasis using DNA probes. Trans. R. Soc. Trop. Med. Hyg. 2002, 96, S141–S143. [Google Scholar] [CrossRef]
- Sullivan, L.H. The tall office building artistically considered. Lippincotts Mon. Mag. 1896, 339, 403–409. [Google Scholar]
- Stellamanns, E.; Uppaluri, S.; Hochstetter, A.; Heddergott, N.; Engstler, M.; Pfohl, T. Optical trapping reveals propulsion forces, power generation and motility efficiency of the unicellular parasites Trypanosoma brucei brucei. Sci. Rep. 2015, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunter, J.D.; Gull, K. The flagellum attachment zone: ‘The cellular ruler’ of trypanosome morphology. Trends Parasitol. 2016, 32, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Ostendorf, A.; Ksouri, S.I.; Aumann, A.; Ghadiri, R. Assembling and manipulating with light: Optical micro-machining tool for manufacturing and manipulation of arbitrary particles. Opt. Photonik 2012, 7, 44–47. [Google Scholar] [CrossRef]
- Ostendorf, A.; König, K. Tutorial: Laser in material nanoprocessing. In Optically Induced Nanostructures: Biomedical and Technical Applications; König, K., Ostendorf, A., Eds.; De Gruyter: Berlin, Germany, 2015; ISBN 978-3-11-033718-1. [Google Scholar]
- Freitas, R.A. 1: Nanomedicine, Volume I: Basic Capabilities, 1st ed.; Landes Bioscience: Austin, TX, USA, 1999; ISBN 978-1-57059-645-2. [Google Scholar]
- Spasic, M.; Jacobs, C.R. Primary cilia: Cell and molecular mechanosensors directing whole tissue function. Semin. Cell Dev. Biol. 2017, 71, 42–52. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krüger, T.; Engstler, M. The Fantastic Voyage of the Trypanosome: A Protean Micromachine Perfected during 500 Million Years of Engineering. Micromachines 2018, 9, 63. https://doi.org/10.3390/mi9020063
Krüger T, Engstler M. The Fantastic Voyage of the Trypanosome: A Protean Micromachine Perfected during 500 Million Years of Engineering. Micromachines. 2018; 9(2):63. https://doi.org/10.3390/mi9020063
Chicago/Turabian StyleKrüger, Timothy, and Markus Engstler. 2018. "The Fantastic Voyage of the Trypanosome: A Protean Micromachine Perfected during 500 Million Years of Engineering" Micromachines 9, no. 2: 63. https://doi.org/10.3390/mi9020063