Nicolai, E.N.; Michelson, N.J.; Settell, M.L.; Hara, S.A.; Trevathan, J.K.; Asp, A.J.; Stocking, K.C.; Lujan, J.L.; Kozai, T.D.Y.; Ludwig, K.A.
Design Choices for Next-Generation Neurotechnology Can Impact Motion Artifact in Electrophysiological and Fast-Scan Cyclic Voltammetry Measurements. Micromachines 2018, 9, 494.
https://doi.org/10.3390/mi9100494
AMA Style
Nicolai EN, Michelson NJ, Settell ML, Hara SA, Trevathan JK, Asp AJ, Stocking KC, Lujan JL, Kozai TDY, Ludwig KA.
Design Choices for Next-Generation Neurotechnology Can Impact Motion Artifact in Electrophysiological and Fast-Scan Cyclic Voltammetry Measurements. Micromachines. 2018; 9(10):494.
https://doi.org/10.3390/mi9100494
Chicago/Turabian Style
Nicolai, Evan N., Nicholas J. Michelson, Megan L. Settell, Seth A. Hara, James K. Trevathan, Anders J. Asp, Kaylene C. Stocking, J. Luis Lujan, Takashi D.Y. Kozai, and Kip A. Ludwig.
2018. "Design Choices for Next-Generation Neurotechnology Can Impact Motion Artifact in Electrophysiological and Fast-Scan Cyclic Voltammetry Measurements" Micromachines 9, no. 10: 494.
https://doi.org/10.3390/mi9100494
APA Style
Nicolai, E. N., Michelson, N. J., Settell, M. L., Hara, S. A., Trevathan, J. K., Asp, A. J., Stocking, K. C., Lujan, J. L., Kozai, T. D. Y., & Ludwig, K. A.
(2018). Design Choices for Next-Generation Neurotechnology Can Impact Motion Artifact in Electrophysiological and Fast-Scan Cyclic Voltammetry Measurements. Micromachines, 9(10), 494.
https://doi.org/10.3390/mi9100494