Mathematical Modelling and Simulation Research of Thermal Engraving Technology Based on PMMA Material
Abstract
:1. Introduction
2. Design of Experimental System
3. Modeling, Simulation and Result Analysis
3.1. Thermal Micorgraver Head Heat Transfer Analysis
3.1.1. Geometric Model
3.1.2. Micrograver Head Heat Transfer Analysis
3.2. Temperature Distribution of PMMA Materials
3.3. Thermal Engraving Model
3.3.1. Construction of the Geometric Model of the Viscous Flow Microchannels
3.3.2. Temperature Field Distribution in the Viscous Flow Channel
3.3.3. Viscous Flow Field Distribution
3.3.4. Viscous Flow Pressure Distribution
3.3.5. Viscous Flow Microchannel Pressure Distribution
3.4. Result Analysis
3.4.1. Effects of the Temperature
3.4.2. Effects of the Speed
4. Microchannel Characterization
4.1. Surface Topography Characterization
4.2. Wettability Characterization
4.2.1. Effects of Temperature on Microchannel Surface Wettability
4.2.2. Effects of Roughness on Microchannel Surface Wettability
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ren, M.Y.; Tian, L. Design and simulation of photoelectric detection circuit for microfluidics chip. Appl. Mech. Mater 2013, 384, 3308–3311. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, J. Characterization of a capacitance coupled contactless conductivity detection system with sidewall electrodes on a low voltage driven electrophoresis microchip. Anal. Bioanal. Chem. 2010, 397, 1583–1593. [Google Scholar] [CrossRef] [PubMed]
- Matteucci, M.; Christiansen, T.L. Fabrication and characterization of injection molded multi level nano and microfluidic systems. Microelectron. Eng. 2013, 111, 294–298. [Google Scholar] [CrossRef]
- Qi, S.; Liu, X. Microfluidic devices fabricated in poly (methylmethacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection. Lab Chip 2002, 2, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Nugen, S.R.; Asiello, P.J. Design and fabrication of a microfluidic device for near-single cell mRNA isolation using a copper hot embossing master. Microsyst. Technol. 2009, 15, 477–483. [Google Scholar] [CrossRef]
- Prakash, S.; Kumar, S. Profile and depth prediction in single pass and two pass CO2 laser microchanneling process. J. Micromech. Microeng. 2015, 25, 035010. [Google Scholar] [CrossRef]
- Romoli, L.; Tantussi, G.; Dini, G. Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices. Opt. Lasers Eng. 2011, 49, 419–427. [Google Scholar] [CrossRef]
- Criales, L.E.; Orozco, P.F. Effect of fluence and pulse overlapping on fabrication of microchannels in PMMA/PDMS via UV laser micromachining: modeling and experimentation. Mater. Manuf. Processes 2015, 30, 890–901. [Google Scholar] [CrossRef]
- Chang, T.L. Micromachining of microfluidic channels in glass by microjoule femtosecond laser pulses. Microelectron. Eng. 2013, 110, 450–456. [Google Scholar] [CrossRef]
- De, M.C.; Eaton, S.M. Solvent vapor treatment controls surface wettability in PMMA femtosecond laser ablated microchannels. Microfluid Nanofluid 2013, 14, 171–176. [Google Scholar]
- Chung, C.K.; Lin, S.L. On the fabrication of minimizing bulges and reducing the feature dimensions of microchannels using novel CO2 laser micromachining. J. Micromech. Microeng. 2011, 21, 1–7. [Google Scholar]
- Tao, Y.H. The New PID Control and Its Application, 1st ed.; Machinery Industry Press: Beijing, China, 1998; pp. 27–35. [Google Scholar]
- Kobayashi, H.; Takahashi, H. Viscosity measurement of organic glasses below and above glass transition temperature. J. Non-Crystal. Solids 2001, 290, 32–40. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q. Scale effect on filling stage in micro-injection molding for thin slit cavities. Microsyst. Technol. 2012, 18, 2085–2091. [Google Scholar] [CrossRef]
- Tosello, G.; Marinello, F.; Hansen, H.N. Characterisation and analysis of microchannels and submicrometre surface roughness of injection moulded microfluidic systems using optical metrology. Plast. Rubber Compos. 2012, 41, 29–39. [Google Scholar] [CrossRef]
- Jiang, J.; Zhan, J.; Yue, W. A single low-cost microfabrication approach for polymethylmethacrylate, polystyrene, polycarbonate and polysulfone based microdevices. RSC Adv. 2015, 5, 36036–36043. [Google Scholar] [CrossRef]
- Shamsi, A.; Amiri, A.; Heydari, P. Low cost method for hot embossing of microstructures on PMMA by SU-8 masters. Microsyst. Technol. 2014, 20, 1925–1931. [Google Scholar] [CrossRef]
Method | Microchannel Size (μm) | Surface Roughness (μm) | Process Cycle (min) | Assistant Technology | Cost | Literature |
---|---|---|---|---|---|---|
Injection moulding | 48 × 110 | <0.001 | - | EDM, PVD | High | [15] |
CO2 laser ablation | 150 × 50 | 25 | <1 | None | Low | [7] |
Femtosecond laser ablation | 100 × 20 | 0.05–0.3 | <1 | Chloroform vapor Treatment | Low | [11] |
PCB mold hot embossing | 400 × 25 | 0.56 ± 0.13 | 5 | UV Lithography | Low | [16] |
SU-8 mold hot embossing | 15 × 50 | 0.7 | 60–80 | UV Lithography | High | [17] |
Thermal engraving | 30 × 30 | 0.3 | <1 | None | Lower | This paper |
Temperature (°C) | 89 | 90 | 91 | 92 | 93 | 94 | 95 |
Contact angle (°) | 77.4 | 77.8 | 78.3 | 79.4 | 79.9 | 80.6 | 81.1 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Liu, X.; Tian, L. Mathematical Modelling and Simulation Research of Thermal Engraving Technology Based on PMMA Material. Micromachines 2016, 7, 37. https://doi.org/10.3390/mi7030037
Han X, Liu X, Tian L. Mathematical Modelling and Simulation Research of Thermal Engraving Technology Based on PMMA Material. Micromachines. 2016; 7(3):37. https://doi.org/10.3390/mi7030037
Chicago/Turabian StyleHan, Xiaowei, Xiaowei Liu, and Li Tian. 2016. "Mathematical Modelling and Simulation Research of Thermal Engraving Technology Based on PMMA Material" Micromachines 7, no. 3: 37. https://doi.org/10.3390/mi7030037