Radio-Frequency Characteristics of Stacked Metal–Insulator–Metal Capacitors in Radio-Frequency CMOS Devices
Abstract
1. Introduction
2. Experimental Procedure
2.1. Fabrication of Stacked MIM Capacitors
2.2. RF Measurement Setup and Calibration
- Measurement range: 500 MHz to 20 GHz;
- Measurement equipment: HP8510C Vector Network Analyzer (Agilent Technology);
- RF probe: Cascade Infinity GSG Probe;
- Calibration method: Two-port short, open, load, and thru calibration.
2.3. De-Embedding Procedure
3. Results and Discussion
3.1. RF Characteristics Analysis Based on De-Embedding Method
3.2. RF Modeling Based on Analysis of RF Characteristics of Stacked MIM Capacitors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Levinger, R.; Shumaker, E.; Banin, R.; Ravi, A.; Degani, O. The rise of the digital rfic era: An overview of past and present digital rfic advancements. IEEE Microw. Mag. 2022, 23, 71–85. [Google Scholar] [CrossRef]
- Robertson, I.D.; Lucyszyn, S. RFIC and MMIC Design and Technology; IET: London, UK, 2001. [Google Scholar]
- Ellinger, F.; Claus, M.; Schröter, M.; Carta, C. Review of advanced and beyond cmos fet technologies for radio frequency circuit design. In Proceedings of the 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011), Natal, Brazil, 29 October–1 November 2011; pp. 347–351. [Google Scholar]
- Malm, B.G.; Haralson, E.; Johansson, T.; Ostling, M. Self-heating effects in a bicmos on soi technology for rfic applications. IEEE Trans. Electron Devices 2005, 52, 1423–1428. [Google Scholar] [CrossRef]
- Sia, C.B.; Ong, B.H.; Yeo, K.S.; Ma, J.-G.; Do, M.A. Accurate and scalable rf interconnect model for silicon-based rfic applications. IEEE Trans. Microw. Theory Tech. 2005, 53, 3035–3044. [Google Scholar] [CrossRef]
- Yang, R.; Qian, H.; Li, J.; Xu, Q.; Hai, C.; Han, Z. Soi technology for radio-frequency integrated-circuit applications. IEEE Trans. Electron Devices 2006, 53, 1310–1316. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Park, Y.; Sen, P.; Srirattana, N.; Lee, J.; Lee, C.-H.; Nuttinck, S.; Joseph, A.; Cressler, J.D.; Laskar, J. Reconfigurable rfics in si-based technologies for a compact intelligent rf front-end. IEEE Trans. Microw. Theory Tech. 2005, 53, 81–93. [Google Scholar] [CrossRef]
- Bennett, H.S.; Brederlow, R.; Costa, J.C.; Cottrell, P.E.; Huang, W.M.; Immorlica, A.A.; Mueller, J.-E.; Racanelli, M.; Shichijo, H.; Weitzel, C.E. Device and technology evolution for si-based rf integrated circuits. IEEE Trans. Electron Devices 2005, 52, 1235–1258. [Google Scholar] [CrossRef]
- Watson, A.; Mayevskiy, Y.; Francis, P.; Hwang, K.; Srinivasan, G.; Weisshaar, A. Compact modeling of differential spiral inductors in si-based rfics. In Proceedings of the 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535), Fort Worth, TX, USA, 6–11 June 2004; Volume 2, pp. 1053–1056. [Google Scholar]
- Sia, C.B.; Ong, B.H.; Lim, W.M.; Yeo, K.S.; Alam, T. Modeling and layout optimization of differential inductors for silicon-based rfic applications. IEEE Trans. Electron Devices 2008, 55, 1058–1066. [Google Scholar] [CrossRef]
- Sul, W.S.; Pyo, S.G. Rf characteristic analysis model extraction on the stacked metal–insulator–metal capacitors for radio frequency applications. IEEE Trans. Electron Devices 2014, 61, 3011–3013. [Google Scholar] [CrossRef]
- Sul, W.S.; Kwon, S.H.; Choi, E.; Cui, Y.; Lee, K.W.; Shim, H.J.; Gao, Y.; Hahn, S.J.; Pyo, S.G. Radiofrequency characteristics of ionized sputtered tantalum nitride thin-film resistor in cmos device. Electron. Mater. Lett. 2017, 13, 230–234. [Google Scholar] [CrossRef]
- Mindan, B.; Hong, L. The analysis of impedance matching problem in rf circuit design. In Proceedings of the 2010 International Forum on Information Technology and Applications, Kunming, China, 16–18 July 2010; Volume 1, pp. 350–353. [Google Scholar]
- Chongcheawchamnan, M.; Karacaoglu, U.; Robertson, I.D. Radio-frequency integrated circuits. In Encyclopedia of RF and Microwave Engineering; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Chen, C.; Huang, D.; Zhao, Y.; Jin, Y.; Yang, J. An ultra-low-voltage 2.4-ghz flicker-noise-free rf receiver front end based on switched-capacitor hybrid tia with 4.5-db nf and 11.5-dbm oip3. IEEE J. Solid-State Circuits 2023, 58, 1825–1837. [Google Scholar] [CrossRef]
- Molinero, D.; Aghaei, S.; Morris, A.S.; Cunningham, S. Linearity and rf power handling on capacitive rf mems switches. IEEE Trans. Microw. Theory Tech. 2019, 67, 4905–4913. [Google Scholar] [CrossRef]
- Kannadassan, D.; Sivasankaran, K.; Kumaravel, S.; Cheng, C.-H.; Baghini, M.S.; Mallick, P. High-k metal–insulator–metal capacitors for rf and mixed-signal vlsi circuits: Challenges and opportunities. Proc. IEEE 2024, 112, 1610–1631. [Google Scholar] [CrossRef]
- Choi, T.-M.; Jung, E.-S.; Yoo, J.-U.; Lee, H.-R.; Yoon, S.; Pyo, S.-G. I–v characteristics and electrical reliability of metal–sixny–metal capacitors as a function of nitrogen bonding composition. Micromachines 2025, 16, 615. [Google Scholar] [CrossRef]
- Choi, T.M.; Jung, E.S.; Yoo, J.U.; Lee, H.R.; Pyo, S.G. Capacitance-voltage fluctuation of si(x)n(y)-based metal-insulator-metal capacitor due to silane surface treatment. Micromachines 2024, 15, 1204. [Google Scholar] [CrossRef]
- Yu, X.; Zhu, C.; Hu, H.; Chin, A.; Li, M.F.; Cho, B.J.; Kwong, D.-L.; Foo, P.D.; Yu, M.B. A high-density mim capacitor (13 ff/μm2) using ald hfo2 dielectrics. IEEE Electron Device Lett. 2003, 24, 63–65. [Google Scholar] [CrossRef]
- Klootwijk, J.H.; Jinesh, K.B.; Dekkers, W.; Verhoeven, J.F.; Heuvel, F.C.v.d.; Kim, H.D.; Blin, D.; Verheijen, M.A.; Weemaes, R.G.R.; Kaiser, M.; et al. Ultrahigh capacitance density for multiple ald-grown mim capacitor stacks in 3-d silicon. IEEE Electron Device Lett. 2008, 29, 740–742. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, S.; Du, X.; Liang, S.; Huang, S.; Peng, S.; Xie, Y.; Ma, M.; Xiong, L. Construction of ultrahigh capacity density carbon nanotube based mim capacitor. Energy Storage Mater. 2023, 63, 103064. [Google Scholar] [CrossRef]
- Gutiérrez-Vicente, V.; Torres-Torres, J.A.; Torres-Torres, R. Broadband s-parameter-based characterization of multilayer ceramic capacitors submitted to mechanical stress through bending tests on a pcb. Micromachines 2024, 15, 1386. [Google Scholar] [CrossRef]
- Ye, Y.; Cheng, K.W.E. Analysis and optimization of switched capacitor power conversion circuits with parasitic resistances and inductances. IEEE Trans. Power Electron. 2017, 32, 2018–2028. [Google Scholar] [CrossRef]
- Gurov, E.V.; Uvaysov, S.U.; Uvaysova, A.S.; Ivanov, I.A. Analysis of the parasitic parameters influence on the analog filters frequency response. In Proceedings of the 2019 International Seminar on Electron Devices Design and Production (SED), Prague, Czech Republic, 23–24 April 2019; pp. 1–7. [Google Scholar]
- Aniktar, H.; Savcı, H.Ş. Numerical and measurement based modeling of a mim capacitor in a 0.25 µm sige-c bicmos process. Prog. Electromagn. Res. C 2023, 129, 173–186. [Google Scholar] [CrossRef]
- Wang, L.; Xu, R.-M.; Yan, B. Mim capacitor simple scalable model determination for mmic application on gaas. Prog. Electromagn. Res. 2006, 66, 173–178. [Google Scholar] [CrossRef]
- Mu, J.; Chou, X.; Ma, Z.; He, J.; Xiong, J. High-performance mim capacitors for a secondary power supply application. Micromachines 2018, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.; Yu, S.; Song, S.S.; Nam, I. Characterization and modeling of stacked mim on-chip capacitors with high-capacitance density up to 20 ghz frequency region. Microw. Opt. Technol. Lett. 2009, 51, 1235–1238. [Google Scholar] [CrossRef]
- Cai, W.Z.; Shastri, S.C.; Azam, M.; Hoggatt, C.; Loechelt, G.H.; Grivna, G.M.; Wen, Y.; Dow, S. Development and extraction of high-frequency spice models for metal-insulator-metal capacitors. In Proceedings of the 2004 International Conference on Microelectronic Test Structures (IEEE Cat. No.04CH37516), Awaji, Japan, 22–25 March 2004; pp. 231–234. [Google Scholar] [CrossRef]
- Tseng, V.F.G.; Xie, H. Increased multilayer fabrication and rf characterization of a high-density stacked mim capacitor based on selective etching. IEEE Trans. Electron Devices 2014, 61, 2302–2308. [Google Scholar] [CrossRef]
- Piquet, J.; Cueto, O.; Charlet, F.; Thomas, M.; Bermond, C.; Farcy, A.; Torres, J.; Fléchet, B. Simulation and characterization of high-frequency performances of advanced mim capacitors. In Proceedings of the 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005, Grenoble, France, 16 September 2005; pp. 497–500. [Google Scholar]
- Liao, E.B.; Li, H.; Guo, L.H.; Lo, G.Q.; Kumar, R.; Balasubramanian, N.; Kwong, D.L. Rf, dc, and reliability performance of mim capacitors embedded in organic substrates by wafer-transfer technology (wtt) for system-on-package applications. IEEE Trans. Electron Devices 2007, 54, 425–432. [Google Scholar] [CrossRef]







| MIM (μm2) | 10 × 10 | 15 × 15 | 20 × 20 | 25 × 25 | 30 × 30 |
|---|---|---|---|---|---|
| LS (pH) | 19.04 | 11.74 | 6.26 | 2.61 | 0.78 |
| RS (mΩ) | 2.28 | 0.76 | 0.35 | 0.22 | 0.18 |
| CMIM (fF) | 216.00 | 466.40 | 825.90 | 1277.00 | 1782.00 |
| Cox (fF) | 4.71 | 7.59 | 11.11 | 1.25 | 20.02 |
| CSub (fF) | 2902.00 | 1370.88 | 836.10 | 589.08 | 455.17 |
| RSub (Ω) | 7.16 | 18.77 | 35.32 | 56.83 | 83.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Choi, T.M.; Lee, H.R.; Pyo, S.G. Radio-Frequency Characteristics of Stacked Metal–Insulator–Metal Capacitors in Radio-Frequency CMOS Devices. Micromachines 2026, 17, 54. https://doi.org/10.3390/mi17010054
Choi TM, Lee HR, Pyo SG. Radio-Frequency Characteristics of Stacked Metal–Insulator–Metal Capacitors in Radio-Frequency CMOS Devices. Micromachines. 2026; 17(1):54. https://doi.org/10.3390/mi17010054
Chicago/Turabian StyleChoi, Tae Min, Hwa Rim Lee, and Sung Gyu Pyo. 2026. "Radio-Frequency Characteristics of Stacked Metal–Insulator–Metal Capacitors in Radio-Frequency CMOS Devices" Micromachines 17, no. 1: 54. https://doi.org/10.3390/mi17010054
APA StyleChoi, T. M., Lee, H. R., & Pyo, S. G. (2026). Radio-Frequency Characteristics of Stacked Metal–Insulator–Metal Capacitors in Radio-Frequency CMOS Devices. Micromachines, 17(1), 54. https://doi.org/10.3390/mi17010054

