Advances in Silicon-Based UV Light Detection
Abstract
1. Introduction
2. Parameters Relevant to Photodetector Performance
- i.
- Dark Current (Id)
- ii.
- Photocurrent (Iph)
- iii.
- Responsivity (R)
- iv.
- External Quantum Efficiency (EQE)
- v.
- Voltage Bias
- vi.
- Response Time
- vii.
- Noise EquivalentOptical Power (NEP)
- viii.
- Specific Detectivity (D*)
3. Classification of Photodetectors by Detection Mechanism
3.1. Photomultiplier Tube (PMT) for Photodetection
3.2. Photodiodes and Photovoltaic Devices for Light Detection

3.3. Photoconductive Detectors for Light Detection
3.4. Field-Effect Transistor-Based Photodetectors
3.5. Avalanche Photodiodes for Light Detection
4. Wide-Bandgap Semiconductors and Metal–Semiconductor–Metal Structure for UV Light Detectors
| Active Material | Bandgap Energy (eV) | UV Wavelength (nm) | Photodetector Type | Responsivity (A/W) | Bias Voltage (Volt) | Ref. |
|---|---|---|---|---|---|---|
| AlN | ~6.2 | 193 | photoconductive | 0.39 | 20 | [135] |
| Boron Nitride (BN) | ~6 | 200 | photoconductive | 0.095 | 20 | [136] |
| Diamond | ~5.48 | 222 | photoconductive | 22.6 | 50 | [137] |
| α-Ga2O3 | ~5.1–5.3 | 230 | photoconductive | 2.71 | 10 | [138] |
| €-Ga2O3 | ~4.9 | 240 | photoconductive | 52.77 | 20 | [139] |
| WO3/AlGaN/GaN | ~3.2 | 240 | Photo-FET | 1.67 × 104 | 0.5 | [140] |
| AlGaN | ~3.4–6.2 | 250 | photoconductive | ~106 | 5 | [141] |
| Si/SiC | ~1.12/3.26 | 260 | Photo-FET | 4.63 × 105 | 5 | [142] |
| TiO2 | ~3.2 | 260 | photoconductive | 199 | 5 | [143] |
| AlGaN/GaN | ~3.4–6.2/3.4 | 265 | Photo-FET | 3.6 × 107 | −8.2 | [144] |
| Graphene/SiC | ~0/3.26 | 275 | photoconductive | 5.425 × 103 | 1 | [145] |
| SnO2 | ~3.6 | 322 | photoconductive | 1.353 × 103 | 10 | [146] |
| ZnO | ~3.37 | 325 | photoconductive | 2.6 × 104 | 8 | [147] |
| GaN | 3.4 | 340 | photoconductive | ~1.3 × 104 | 1 | [148] |
| CsPbCl3 nanowires | ~3.03 | 360 | Photovoltaic | 0.398 | 0 | [149] |
| SiC | 3.26 | 360 | n+/p/n− Photo-FET | 2.02 × 104 | 37 | [150] |
| GaSe/GaN | ~3.4 | 362 | p-n heterojunction | 1.38 × 105 | −4 | [151] |
| W18O49/TiO2 | ~3.2 | 365 | Photoconductive | 1.6 × 104 | 1 | [152] |
| AlGaN/GaN | ~3.4–6.2/3.4 | 365 | Photo-FET | 1 × 106 | −8.2 | [144] |
5. Silicon-Based UV Detectors: Structural Advancements and Challenges
5.1. Surface Passivation
5.2. Ion Implantation
5.3. Quantum Cutting
5.4. Surface Etching and Plasmonic Surface Nano-Structuring
5.5. Wide-Bandgap Semiconductor Integrated Si
| Material | Device Type | Wavelength nm | EQE % | Responsivity (A/W) | Refs. |
|---|---|---|---|---|---|
| Boron implanted n-type black Si | p-i-n diode | 200 | 100 | 0.15 | [161] |
| n-type black Si | p-i-n diode | 200 | 132 | 0.213 | [162] |
| p-type Si | p-n diode | 206 | 80 | 0.13 | [158] |
| β-Ga2O3/p-type Silicon | MSM Schottky diode | 230 | 378.5 | 0.702 | [206] |
| La3+, Yb3+ co-doped CsPbClBr2/Si | p-n diode | 240 | 55.6 | 0.13 | [169] |
| p-type Si | n+–p–n diode | 250 | 100 | 0.2016 | [160] |
| SiC/Si | MSM Schottky diode | 250 | 89.3 | 0.18 | [215] |
| β-Ga2O3/p-type Si | MSM Schottky diode | 250 | 19,250 | 38.8 | [216] |
| β-Ga2O3/AiN/p-type Si | MSM Schottky diode | 250 | 5880 | 11.84 | [216] |
| SiC/p-type Si | MSM Schottky diode/MOSFET | 260 | 2.2 × 108 | 4.63 × 105 | [129] |
| Corrugated n-type Si | photoconductor | 266 | 140 | 0.3 | [184] |
| AlGaN/Si | p-i-n diode | 274 | 54.3 | 0.12 | [201] |
| La3+, Yb3+ co-doped CsPbCl3/Si | photodiode | 300 | 57.9 | 0.14 | [170] |
| Eu3+-doped CsPbCl2Br1/Si | photo diode | 320 | 3.41 | 0.009 | [172] |
| Dy3+-doped CsPbCl2Br1/Si | photo diode | 320 | 2.3 | 0.006 | [171] |
| GaN/Si | Asymmetric MSM diode | 340 | 21,200 | 58 | [217] |
| ZnO/Si | heterojunction photoconductor | 350 | 24,100 | 68 | [218] |
| Porous n-type Si | MSM diode | 380 | 658 | 2.01 | [176] |
| Au NPs/porous p-type Si | MSM diode | 365 | 69.69 | 0.205 | [183] |
| Boron-implanted n-type black Si | p-i-n diode | 400 | 100 | 0.3 | [161] |
5.6. Comparative Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blaustein, A.R.; Searle, C. Ultraviolet Radiation. In Encyclopedia of Biodiversity, 2nd ed.; Levin, S.A., Ed.; Academic Press: Waltham, MA, USA, 2013; pp. 296–303. [Google Scholar]
- Wood, J.; Monge, M.; Seto, E.P.; Ratliff, K.; Ford, B.; Aslett, D.; Abdel-Hady, A.; Mendez Sandoval, L. Sterilization of Stainless-Steel Surfaces Using Ultraviolet Radiation Produced by Light-Emitting Diodes. Astrobiology 2025, 25, 550–562. [Google Scholar] [CrossRef]
- Belay, E.; Abafoge, H.; Ahmed, F.; Alemu, B.; Sisay, S. Design and Development of Automated Ultraviolet (UV-C) Surface Sterilizer and Disinfection Device Using a User-Centered Design Approach. F1000Research 2025, 14, 512. [Google Scholar] [CrossRef]
- Sankurantripati, S.; Duchaine, F. Indoor air quality control for airborne diseases: A review on portable UV air purifiers. Fluids 2024, 9, 281. [Google Scholar] [CrossRef]
- Haque, S.N.; Bhuyan, M.M.; Jeong, J.-H. Radiation-induced hydrogel for water treatment. Gels 2024, 10, 375. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.-w.; Zheng, M.; Fan, H.-y.; Liang, X.-h.; Tang, Y.-l. Ultraviolet (UV) radiation: A double-edged sword in cancer development and therapy. Mol. Biomed. 2024, 5, 49. [Google Scholar] [CrossRef]
- Mittal, A.; Kumar, M.; Gopishankar, N.; Kumar, P.; Verma, A.K. Quantification of narrow band UVB radiation doses in phototherapy using diacetylene based film dosimeters. Sci. Rep. 2021, 11, 684. [Google Scholar] [CrossRef]
- Onatayo, D.A.; Srinivasan, R.S.; Shah, B. Ultraviolet radiation transmission in building’s fenestration: Part ii, exploring digital imaging, uv photography, image processing, and computer vision techniques. Buildings 2023, 13, 1922. [Google Scholar] [CrossRef]
- Mojeski, J.A.; Almashali, M.; Jowdy, P.; Fitzgerald, M.E.; Brady, K.L.; Zeitouni, N.C.; Colegio, O.R.; Paragh, G. Ultraviolet imaging in dermatology. Photodiagnosis Photodyn. Ther. 2020, 30, 101743. [Google Scholar] [CrossRef]
- Harada, K.; Horinouchi, R.; Murakami, M.; Isii, M.; Kamashita, Y.; Shimotahira, N.; Suehiro, F.; Nishi, Y.; Murata, H.; Nishimura, M. The disinfectant effects of portable ultraviolet light devices and their application to dentures. Photodiagnosis Photodyn. Ther. 2025, 51, 104434. [Google Scholar] [CrossRef]
- Casini, B.; Scarpaci, M.; Chiovelli, F.; Leonetti, S.; Costa, A.L.; Baroni, M.; Petrillo, M.; Cavallo, F. Antimicrobial efficacy of an experimental UV-C robot in controlled conditions and in a real hospital scenario. J. Hosp. Infect. 2025, 156, 72–77. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Applications of Lasers for Tactical Military Operations. IEEE Access 2017, 5, 20736–20753. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Xu, Z.; Yang, Z.; Gong, C.; Xu, Z.; Long, F.; Tang, J.; Chi, N.; Shen, C. A Large FoV UV LED Array Transmitter Enabling Optical Wireless Communication Over 1.1 km. IEEE Photonics Technol. Lett. 2025, 37, 563–566. [Google Scholar] [CrossRef]
- Gu, K.; Wu, K.; Zhang, Z.; Ohsawa, T.; Huang, J.; Koide, Y.; Toda, M.; Liao, M. Synergistic Effect of Surface States and Deep Defects for Ultrahigh Gain Deep-Ultraviolet Photodetector with Low-Voltage Operation. Adv. Funct. Mater. 2025, 35, 2420238. [Google Scholar] [CrossRef]
- Hou, X.; Liu, Y.; Bai, S.; Yu, S.; Huang, H.; Yang, K.; Li, C.; Peng, Z.; Zhao, X.; Zhou, X.; et al. Pyroelectric Photoconductive Diode for Highly Sensitive and Fast DUV Detection. Adv. Mater. 2024, 36, 2314249. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, M.; Shi, X.; Hu, P.; Yu, H.; Teng, F. The Influence of Surface Treatment on the Performance of Photoconductive Detectors Based on Silicon Wafer. IEEE Sens. J. 2024, 24, 20476–20484. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, Y.; Liu, L.; Berbille, A.; Wang, K.; Han, G.; Zhu, L.; Wang, Z.L. A self-powered Ag/β-Ga2O3 photodetector with broadband response from 200 to 980 nm based on the photovoltaic and pyro-phototronic effects. J. Mater. Sci. Technol. 2025, 206, 125–134. [Google Scholar] [CrossRef]
- Yu, P.; You, S.; Liu, X.; Zhu, Z.-K.; Zeng, Y.; Luo, J. Self-Powered Broadband Photodetection Ranging from X-ray to UV–Vis Light in a Polar Perovskite Induced by Bulk Photovoltaic Effect. J. Phys. Chem. Lett. 2024, 15, 11767–11772. [Google Scholar] [CrossRef] [PubMed]
- Khurana, M.; Upasana; Saxena, M.; Gupta, M. TCAD based investigation of junctionless phototransistor for UVC radiation detection. Opt. Laser Technol. 2024, 172, 110486. [Google Scholar] [CrossRef]
- Wang, C.; Zilong, W.; Yichao, W.; Cichao, Y.; Qianyi, Z.; Xinru, W.; Yu, G.; Ji, Z. Low voltage flexible high performance organic field-effect transistor and its application for ultraviolet light detectors. Soft Mater. 2024, 22, 183–191. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Ding, L.; Li, Y.; Ma, J.; Sang, S.; Minami, T. Organic Photodetectors Achieving UV–Visible Broadband Detection via P3HT-OFET Epitaxial Integration. ACS Appl. Electron. Mater. 2025, 7, 6166–6176. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, W.; Sa, Z.; Li, R.; Yang, Z.; Jia, Y.; Sun, X.; Chen, F. Ultrafast and Ultra-Broadband Ferroelectric Photo-Pyroelectric Detectors with Long-Term Stability. Adv. Funct. Mater. 2025, 35, 2502467. [Google Scholar] [CrossRef]
- Zhao, X.; Weng, W.; Tang, L.; Xu, H.; Ma, Y.; Rong, H.; Ni, H.; Zhang, J.; Luo, J.; Sun, Z. Broadband Pyro-Phototronic Effect in Lead-Free Double Perovskite Crystal Enables UV-to-NIR and Polarization-Sensitive Detection. Chem. Mater. 2025, 37, 3384–3391. [Google Scholar] [CrossRef]
- Kuzanyan, A.A.; Nikoghosyan, V.R.; Kuzanyan, A.S. Ultraviolet thermoelectric single photon detector with high signal-to-noise ratio. Opt. Eng. 2024, 63. [Google Scholar] [CrossRef]
- Kuzanyan, A.A.; Nikoghosyan, V.R.; Kuzanyan, A.S. Nanoscale thermoelectric detection pixel for single-photon detection from far ultraviolet to near infrared. Opt. Eng. 2024, 63, 067102. [Google Scholar] [CrossRef]
- Yeboah, L.A.; Abdul Malik, A.; Oppong, P.A.; Acheampong, P.S.; Morgan, J.A.; Addo, R.A.A.; Williams Henyo, B.; Taylor, S.T.; Zudor, W.M.; Osei-Amponsah, S. Wide-Bandgap Semiconductors: A Critical Analysis of GaN, SiC, AlGaN, Diamond, and Ga2O3 Synthesis Methods, Challenges, and Prospective Technological Innovations. Intell. Sustain. Manuf. 2025, 2, 10011. [Google Scholar] [CrossRef]
- Woods-Robinson, R.; Han, Y.; Zhang, H.; Ablekim, T.; Khan, I.; Persson, K.A.; Zakutayev, A. Wide band gap chalcogenide semiconductors. Chem. Rev. 2020, 120, 4007–4055. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Bando, Y.; Gautam, U.K.; Ye, C.; Golberg, D. Inorganic semiconductor nanostructures and their field-emission applications. J. Mater. Chem. 2008, 18, 509–522. [Google Scholar] [CrossRef]
- Sun, Y.; Rogers, J.A. Inorganic semiconductors for flexible electronics. Adv. Mater. 2007, 19, 1897–1916. [Google Scholar] [CrossRef]
- Xie, C.; Lu, X.T.; Tong, X.W.; Zhang, Z.X.; Liang, F.X.; Liang, L.; Luo, L.B.; Wu, Y.C. Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv. Funct. Mater. 2019, 29, 1806006. [Google Scholar] [CrossRef]
- Bronstein, H.; Nielsen, C.B.; Schroeder, B.C.; McCulloch, I. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 2020, 4, 66–77. [Google Scholar] [CrossRef]
- Zhang, J.-L.; Nan, Y.-X.; Li, H.-G.; Qiu, W.-M.; Yang, X.; Wu, G.; Chen, H.-Z.; Wang, M. A new wide bandgap organic semiconductor and its application in organic UV sensors with tunable response wavelength. Sens. Actuators B Chem. 2012, 162, 321–326. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Matsunami, H.; Nanishi, Y. Development and applications of wide bandgap semiconductors. In Wide Bandgap Semiconductors: Fundamental Properties and Modern Photonic and Electronic Devices; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–24. [Google Scholar]
- He, C.; Liu, X. The rise of halide perovskite semiconductors. Light Sci. Appl. 2023, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Abiram, G.; Thanihaichelvan, M.; Ravirajan, P.; Velauthapillai, D. Review on Perovskite Semiconductor Field–Effect Transistors and Their Applications. Nanomaterials 2022, 12, 2396. [Google Scholar] [CrossRef]
- Fox, M.; Ispasoiu, R. Quantum wells, superlattices, and band-gap engineering. In Springer Handbook of Electronic and Photonic Materials; Springer: Cham, Switzerland, 2017; p. 1. [Google Scholar]
- Sun, Y.; Wei, Y.; Li, M.; Zhang, Y.; Li, X.; Fan, L.; Li, Y. Wet chemical synthesis of ultrathin γ-Ga2O3 quantum wires enabling far-UVC photodetection with ultrahigh selectivity and sensitivity. J. Phys. Chem. Lett. 2024, 15, 4301–4310. [Google Scholar] [CrossRef]
- Yakimenko, I.I.; Yakimenko, I.P. Electronic properties of semiconductor quantum wires for shallow symmetric and asymmetric confinements. J. Phys. Condens. Matter 2021, 34, 105302. [Google Scholar] [CrossRef]
- Kamal, A.; Hong, S.; Ju, H. Carbon Quantum Dots: Synthesis, Characteristics, and Quenching as Biocompatible Fluorescent Probes. Biosensors 2025, 15, 99. [Google Scholar] [CrossRef]
- Bera, D.; Qian, L.; Tseng, T.-K.; Holloway, P.H. Quantum dots and their multimodal applications: A review. Materials 2010, 3, 2260–2345. [Google Scholar] [CrossRef]
- Reimann, S.M.; Manninen, M. Electronic structure of quantum dots. Rev. Mod. Phys. 2002, 74, 1283. [Google Scholar] [CrossRef]
- Fan, Q.; Chai, C.; Wei, Q.; Yang, Y. Two novel silicon phases with direct band gaps. Phys. Chem. Chem. Phys. 2016, 18, 12905–12913. [Google Scholar] [CrossRef]
- Oliphant, E.; Mantena, V.; Brod, M.; Snyder, G.J.; Sun, W. Why does silicon have an indirect band gap? Mater. Horiz. 2025, 12, 3073–3083. [Google Scholar] [CrossRef]
- Schroder, D.K. Carrier lifetimes in silicon. IEEE Trans. Electron Devices 2002, 44, 160–170. [Google Scholar] [CrossRef]
- Bullis, W.M.; Huff, H.R. Interpretation of carrier recombination lifetime and diffusion length measurements in silicon. J. Electrochem. Soc. 1996, 143, 1399. [Google Scholar] [CrossRef]
- Niewelt, T.; Steinhauser, B.; Richter, A.; Veith-Wolf, B.; Fell, A.; Hammann, B.; Grant, N.E.; Black, L.; Tan, J.; Youssef, A.; et al. Reassessment of the intrinsic bulk recombination in crystalline silicon. Sol. Energy Mater. Sol. Cells 2022, 235, 111467. [Google Scholar] [CrossRef]
- Amaral, S.P.; Grosche, L.C.; Sousa, J.P.S. Synergistic UV protection: Hybrid TiO2@SiO2/UVabs nanoparticles with augmented UV-shielding efficiency for the development of durable protective coatings. Prog. Org. Coat. 2025, 205, 109286. [Google Scholar] [CrossRef]
- Saravanan, S.; Dubey, R. Synthesis of SiO2Nanoparticles by Sol-Gel Method and Their Optical and Structural Properties. Sci. Technol. 2020, 23, 105–112. [Google Scholar]
- Izhaky, N.; Morse, M.T.; Koehl, S.; Cohen, O.; Rubin, D.; Barkai, A.; Sarid, G.; Cohen, R.; Paniccia, M.J. Development of CMOS-Compatible Integrated Silicon Photonics Devices. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1688–1698. [Google Scholar] [CrossRef]
- Kannan, S.; Chang, R.; Potluri, H.; Zhang, S.; Li, J.; Xu, B.; Hsu, H.C. High Density Integration of Silicon Photonic Chiplets for 51.2T Co-packaged Optics. In Proceedings of the 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, CO, USA, 28–31 May 2024; pp. 81–84. [Google Scholar]
- Miskovsky, N.M.; Cutler, P.H.; Mayer, A.; Weiss, B.L.; Willis, B.; Sullivan, T.E.; Lerner, P.B. Nanoscale Devices for Rectification of High Frequency Radiation from the Infrared through the Visible: A New Approach. J. Nanotechnol. 2012, 2012, 512379. [Google Scholar] [CrossRef]
- Simone, G.; Dyson, M.J.; Meskers, S.C.J.; Janssen, R.A.J.; Gelinck, G.H. Organic Photodetectors and their Application in Large Area and Flexible Image Sensors: The Role of Dark Current. Adv. Funct. Mater. 2020, 30, 1904205. [Google Scholar] [CrossRef]
- Nodari, D.; Hart, L.J.F.; Sandberg, O.J.; Furlan, F.; Angela, E.; Panidi, J.; Qiao, Z.; McLachlan, M.A.; Barnes, P.R.F.; Durrant, J.R.; et al. Dark Current in Broadband Perovskite–Organic Heterojunction Photodetectors Controlled by Interfacial Energy Band Offset. Adv. Mater. 2024, 36, 2401206. [Google Scholar] [CrossRef]
- Alkauskas, A.; Dreyer, C.E.; Lyons, J.L.; Van de Walle, C.G. Role of excited states in Shockley-Read-Hall recombination in wide-band-gap semiconductors. Phys. Rev. B 2016, 93, 201304. [Google Scholar] [CrossRef]
- Höhr, T.; Schenk, A.; Fichtner, W. Revised Shockley–Read–Hall lifetimes for quantum transport modeling. J. Appl. Phys. 2004, 95, 4875–4882. [Google Scholar] [CrossRef]
- Mandurrino, M.; Goano, M.; Vallone, M.; Bertazzi, F.; Ghione, G.; Verzellesi, G.; Meneghini, M.; Meneghesso, G.; Zanoni, E. Semiclassical simulation of trap-assisted tunneling in GaN-based light-emitting diodes. J. Comput. Electron. 2015, 14, 444–455. [Google Scholar] [CrossRef]
- Labed, M.; Kim, K.; Kim, K.H.; Hong, J.; Rim, Y.S. Trap-assisted tunneling in type II Ag2O/β-Ga2O3 self-powered solar blind photodetector. Sens. Actuators A Phys. 2024, 372, 115368. [Google Scholar] [CrossRef]
- Fregolent, M.; Piva, F.; Buffolo, M.; De Santi, C.; Cester, A.; Higashiwaki, M.; Meneghesso, G.; Zanoni, E.; Meneghini, M. Advanced defect spectroscopy in wide-bandgap semiconductors: Review and recent results. J. Phys. D Appl. Phys. 2024, 57, 433002. [Google Scholar] [CrossRef]
- Zhou, X.; Jiang, D.; Yang, X.; Duan, Y.; Zhang, W.; Zhao, M.; Liang, Q.; Gao, S.; Hou, J.; Zheng, T. Voltage-dependent responsivity of ZnO Schottky UV photodetectors with different electrode spacings. Sens. Actuators A Phys. 2018, 284, 12–16. [Google Scholar] [CrossRef]
- Goushcha, A.; Tabbert, B. On response time of semiconductor photodiodes. Opt. Eng. 2017, 56, 097101. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, Y.; Michel, P.; Strauß, F.; Wang, X.; Braun, K.; Scheele, M. Ultrafast Hot Carrier Cooling Enabled van der Waals Photodetectors at Telecom Wavelengths. Nano Lett. 2025, 25, 3497–3504. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Sahu, B.P.; Biswas, A.; Dhar, S. p-(001)NiO/n-(0001)ZnO heterojunction based ultraviolet photodetectors with controllable response time. Semicond. Sci. Technol. 2025, 40, 045011. [Google Scholar] [CrossRef]
- Hayashi, T. New photomultiplier tubes for medical imaging. IEEE Trans. Nucl. Sci. 1989, 36, 1078–1083. [Google Scholar] [CrossRef]
- Kume, H.; Suzuki, S.; Oba, K. Recent Development of Photomultiplier Tubes for Nuclear and Medical Applications. IEEE Trans. Nucl. Sci. 1985, 32, 355–359. [Google Scholar] [CrossRef]
- Suzuki, S.; Matsushita, T.; Suzuki, T.; Kimura, S.; Kume, H. New position sensitive photomultiplier tubes for high energy physics and nuclear medical applications. IEEE Trans. Nucl. Sci. 1988, 35, 382–386. [Google Scholar] [CrossRef]
- Rai, R.; Singh, B. Optical and structural properties of CsI thin film photocathode. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 785, 70–76. [Google Scholar]
- Simons, D.; Fraser, G.; De Korte, P.; Pearson, J.; De Jong, L. UV and XUV quantum detection efficiencies of CsI-coated microchannel plates. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1987, 261, 579–586. [Google Scholar] [CrossRef]
- Yusof, Z.; Denchfield, A.; Warren, M.; Cardenas, J.; Samuelson, N.; Spentzouris, L.; Power, J.; Zasadzinski, J. Photocathode quantum efficiency of ultrathin Cs2Te layers on Nb substrates. Phys. Rev. Accel. Beams 2017, 20, 123401. [Google Scholar] [CrossRef]
- Moorhead, M.E.; Tanner, N.W. Optical properties of an EMI K2CsSb bialkali photocathode. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1996, 378, 162–170. [Google Scholar] [CrossRef]
- Sun, J.; Jin, M.; Wang, X.; Si, S.; Ren, L.; Hou, W.; Qiao, F.; Zhao, M.; Gu, Y.; Huang, G.; et al. Enhanced photoemission capability of bialkali photocathodes for 20-inch photomultiplier tubes. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 971, 164021. [Google Scholar] [CrossRef]
- Mansmann, R.; Sipkens, T.A.; Menser, J.; Daun, K.J.; Dreier, T.; Schulz, C. Detector calibration and measurement issues in multi-color time-resolved laser-induced incandescence. Appl. Phys. B 2019, 125, 126. [Google Scholar] [CrossRef]
- Bie, Y.Q.; Liao, Z.M.; Zhang, H.Z.; Li, G.R.; Ye, Y.; Zhou, Y.B.; Xu, J.; Qin, Z.X.; Dai, L.; Yu, D.P. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater. 2011, 23, 649–653. [Google Scholar] [CrossRef]
- Monroy, E.; Munoz, E.; Sánchez, F.; Calle, F.; Calleja, E.; Beaumont, B.; Gibart, P.; Muñoz, J.; Cussó, F. High-performance GaN pn junction photodetectors for solar ultraviolet applications. Semicond. Sci. Technol. 1998, 13, 1042. [Google Scholar] [CrossRef]
- Shi, Z.; Gao, X.; Xie, M.; Xie, T.; Li, Z.; Zhao, H.; Wang, Y.; Gao, X. Dual-Sided Multiband Ultraviolet Communication System Based on Ga2O3/GaN PN Junction Photodetectors. ACS Appl. Mater. Interfaces 2025, 17, 11325–11333. [Google Scholar] [CrossRef]
- Wang, J.; Li, Q.; Mi, W.; Wang, D.; Xu, M.; Xiao, L.; Zhang, X.; Luan, C.; Zhao, J. Fast response self-powered solar-blind UV photodetector based on NiO/Ga2O3 pn junction. Mater. Sci. Semicond. Process. 2025, 186, 109084. [Google Scholar] [CrossRef]
- Wei, S.; Chen, B.; Zhu, J.; Wu, X.; Zhang, C.; Zhang, D.W.; Sun, Q.-Q.; Ji, L.; Hu, S. Self-Powered Broad-Spectrum UV–vis–NIR Photodetector Based on p-Si/Zn–Sn–Al–O Heterojunction. ACS Appl. Electron. Mater. 2025, 7, 5069–5079. [Google Scholar] [CrossRef]
- Padha, B.; Ahmed, Z.; Dutta, S.; Pandey, A.; Padha, N.; Yadav, I.; Arya, S. Transient response of low-temperature ALD-grown ZnO thin film-based p–i–n UV photodetector. Opt. Mater. 2025, 167, 117264. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Cao, J.; Jiang, Y.; Zhang, Y.; Tang, W.; Wu, Z. Improved response speed of β-Ga2O3 solar-blind photodetectors by optimizing illumination and bias. Mater. Des. 2022, 221, 110917. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, G.; Zhang, Q.; Wang, S.; Hu, X.; Liu, L.; Lv, S.; Chen, W.; Xu, X.; Zhang, L. Recent progress in GaN-based ultraviolet photodetectors. J. Mater. Chem. C 2025, 13, 10972–10996. [Google Scholar] [CrossRef]
- Vashishtha, P.; Verma, A.K.; Walia, S.; Gupta, G. A solar-blind ultraviolet photodetector with self-biasing capability, controlled by surface potential based on GaN hexagonal nano-spikes. Mater. Lett. 2024, 368, 136708. [Google Scholar] [CrossRef]
- Maraj, M.; Yaoze, L.; Sun, W. Overview of the structural effects on the performance of AlGaN solar-blind UV detectors. J. Lumin. 2025, 121178. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, B.; Zhan, J.; Zheng, F.; Sun, Z. Characterization of high-performance AlGaN-based solar-blind UV photodetectors. Optoelectron. Lett. 2025, 21, 402–406. [Google Scholar] [CrossRef]
- De Napoli, M. SiC detectors: A review on the use of silicon carbide as radiation detection material. Front. Phys. 2022, 10, 898833. [Google Scholar] [CrossRef]
- Pacheco, E.; Zhou, B.; Aldalbahi, A.; Zhou, A.F.; Feng, P.X. Zero-biased and visible-blind UV photodetectors based on nitrogen-doped ultrananocrystalline diamond nanowires. Ceram. Int. 2022, 48, 3757–3761. [Google Scholar] [CrossRef]
- Angelone, M.; Bombarda, F.; Cesaroni, S.; Marinelli, M.; Raso, A.M.; Verona, C.; Verona-Rinati, G. X-Ray and UV Detection Using Synthetic Single Crystal Diamond. Instruments 2025, 9, 9. [Google Scholar] [CrossRef]
- Nguyen, T.M.H.; Shin, S.G.; Choi, H.W.; Bark, C.W. Recent advances in self-powered and flexible UVC photodetectors. Exploration 2022, 2, 20210078. [Google Scholar] [CrossRef]
- Yin, G.; Bi, K.; Guo, M.; Li, C.; Huang, D.; Liu, H.; Liu, L.; Xiong, W.; Chen, J.; Wang, H. Graphene Ultraviolet Photoconductive Detector Enhanced by Plasmon Local Field with Sea-Urchin-Like Gold Structure. Plasmonics 2025, 20, 1–10. [Google Scholar] [CrossRef]
- Cadatal-Raduban, M.; Kato, T.; Horiuchi, Y.; Olejníček, J.; Kohout, M.; Yamanoi, K.; Ono, S. Effect of substrate and thickness on the photoconductivity of nanoparticle titanium dioxide thin film vacuum ultraviolet photoconductive detector. Nanomaterials 2021, 12, 10. [Google Scholar] [CrossRef]
- Whitfield, M.D.; McKeag, R.D.; Pang, L.Y.; Chan, S.S.; Jackman, R.B. Thin film diamond UV photodetectors: Photodiodes compared with photoconductive devices for highly selective wavelength response. Diam. Relat. Mater. 1996, 5, 829–834. [Google Scholar] [CrossRef]
- Kim, H.; Rothschild, M.; Lee, D.H.; Kim, C.S.; Park, J.; Min, B.-C.; Lee, S. Bias-Switchable Photodetector from Broad-Band to UV-Selective Detection Mode Leveraging Nanolayered Dual-Schottky Junction. ACS Appl. Nano Mater. 2022, 5, 17891–17899. [Google Scholar] [CrossRef]
- Basyooni, M.; Kabatas, M.A.; En-Nadir, R.; Rahmani, K.; Eker, Y.R. Positive and Negative Photoconductivity in Ir Nanofilm-Coated MoO3 Bias-Switching Photodetector. Micromachines 2023, 14, 1860. [Google Scholar] [CrossRef]
- Xu, Z.-Q.; Deng, H.; Xie, J.; Li, Y.; Zu, X.-T. Ultraviolet photoconductive detector based on Al doped ZnO films prepared by sol–gel method. Appl. Surf. Sci. 2006, 253, 476–479. [Google Scholar] [CrossRef]
- Wang, L.W.; Wu, T.Y.; Chu, S.Y. Metal-Free All Transparent Zinc Oxide-Based Ultraviolet Photodetectors With Simple Bilayer Structure. IEEE Sens. J. 2024, 24, 22344–22350. [Google Scholar] [CrossRef]
- Huang, M.; Yang, B.; Xu, G.; Lu, J.; Guo, Y.; Weng, L.; Sun, D. Enhancement of high-temperature solar-blind UV photodetector performance on 4H–SiC substrates by deposition of ultrawide bandgap diamond films. Carbon 2025, 237, 120130. [Google Scholar] [CrossRef]
- Yang, W. AlGaN UV Photodetectors. In III-V Nitride Semiconductors; CRC Press: Boca Raton, FL, USA, 2022; pp. 675–691. [Google Scholar]
- Nie, Y.; Jiao, S.; Yang, S.; Zhao, Y.; Gao, S.; Wang, D.; Yang, X.; Li, Y.; Fu, Z.; Li, A.; et al. Achieving Ultra-Low Dark Current in β-Ga2O3 Photoconductive Photodetectors for Anti-Interference Optical Human–Machine Interaction Systems via Gallium Interstitials Engineering. Small 2025, 21, 2501442. [Google Scholar] [CrossRef]
- Hillebrand, M.; Blecher, F.; Sterzel, J.; Böhm, M. An Amorphous Silicon Photoconductor for UV Detection. MRS Proc. 2003, 762, A18.15. [Google Scholar] [CrossRef]
- Hou, Y.; Mei, Z.; Du, X. Semiconductor ultraviolet photodetectors based on ZnO and MgxZn1−xO. J. Phys. D Appl. Phys. 2014, 47, 283001. [Google Scholar] [CrossRef]
- Dacey, G.C.; Ross, I.M. The Field Effect Transistor. Bell Syst. Tech. J. 1955, 34, 1149–1189. [Google Scholar] [CrossRef]
- Shin, J.; Yoo, H. Photogating Effect-Driven Photodetectors and Their Emerging Applications. Nanomaterials 2023, 13, 882. [Google Scholar] [CrossRef]
- Sahni, S.; Luo, X.; Liu, J.; Xie, Y.-h.; Yablonovitch, E. Junction field-effect-transistor-based germanium photodetector on silicon-on-insulator. Opt. Lett. 2008, 33, 1138–1140. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, Y.; Ruocco, A.; Wang, M.; Li, B.; Akhavan, S. Printed Lithography of Graphene-Perovskite Quantum Dot Hybrid Photodetectors on Paper Substrates. ACS Appl. Mater. Interfaces 2025, 17, 6716–6727. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Nie, C.; Sun, F.; Li, G.; Wei, X. Photodetectors based on graphene–semiconductor hybrid structures: Recent progress and future outlook. Adv. Devices Instrum. 2023, 4, 0031. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; Zhang, X.; Bai, G.; Chen, X.; Teng, X.; Lou, Z.; Hou, Y.; Teng, F.; Hu, Y. High-Performance CsPbBr3 Quantum Dot/ZTO Heterojunction Phototransistor with Enhanced Stability and Responsivity. J. Phys. Chem. Lett. 2025, 16, 1634–1643. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Liu, C.-K.; Loi, H.-L.; Yan, F. Perovskite-Based Phototransistors and Hybrid Photodetectors. Adv. Funct. Mater. 2020, 30, 1903907. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, X.; Liu, B.; Wu, R.; Zhao, J.; Liu, Y.; Hua, X.; Yang, Y.; Hao, Z.; Guo, A. Advances in Photovoltaic Detectors: Principles, Challenges, and the Role of Avalanche Detectors in High-Sensitivity Detection. In Light-Driven Materials and Devices: Fundamentals and Emerging Applications; IntechOpen Limited: London, UK, 2025. [Google Scholar]
- Su, L.; Xu, W.; Zhou, D.; Ren, F.; Chen, D.; Zhang, R.; Zheng, Y.; Lu, H. Avalanche mechanism analysis of 4H-SiC nip and pin avalanche photodiodes working in Geiger mode. Chin. Opt. Lett. 2021, 19, 092501. [Google Scholar] [CrossRef]
- Jeong, H.; Garzda, E.; Ji, M.-H.; Cho, M.; Detchprohm, T.; Shen, S.-C.; Otte, A.; Dupuis, R.D. Low-temperature geiger-mode characterization of a gallium nitride pin avalanche photodiode. IEEE J. Quantum Electron. 2023, 59, 1–8. [Google Scholar] [CrossRef]
- Gautam, L.; Jaud, A.G.; Lee, J.; Brown, G.J.; Razeghi, M. Geiger-mode operation of AlGaN avalanche photodiodes at 255 nm. IEEE J. Quantum Electron. 2021, 57, 1–6. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, L.; Jin, Y.; Zhang, S.; Wang, Y.; Hu, A.; Guo, X. Ultraviolet response in coplanar silicon avalanche photodiodes with CMOS compatibility. Sensors 2022, 22, 3873. [Google Scholar] [CrossRef]
- Vinogradov, S.; Popova, E.; Schmailzl, W.; Engelmann, E. Tip Avalanche Photodiode–A New Wide Spectral Range Silicon Photomultiplier. In Radiation Detection Systems; CRC Press: Boca Raton, FL, USA, 2021; pp. 257–288. [Google Scholar]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98. [Google Scholar] [CrossRef]
- Park, S.-H.; Kim, J.-J.; Kim, H.-M. Exciton binding energy in wurtzite InGaN/GaN quantum wells. J. Korean Phys. Soc. 2004, 45. [Google Scholar]
- Cretì, A.; Tobaldi, D.M.; Lomascolo, M.; Tarantini, I.; Esposito, M.; Passaseo, A.; Tasco, V. Exciton effects in low-barrier GaN/AlGaN quantum wells. J. Phys. Chem. C 2022, 126, 14727–14734. [Google Scholar] [CrossRef]
- Grunert, M.; Großmann, M.; Runge, E. Predicting exciton binding energies from ground-state properties. Phys. Rev. B 2024, 110, 075204. [Google Scholar] [CrossRef]
- Li, J.; Nam, K.B.; Nakarmi, M.L.; Lin, J.Y.; Jiang, H.X.; Carrier, P.; Wei, S.-H. Band structure and fundamental optical transitions in wurtzite AlN. Appl. Phys. Lett. 2003, 83, 5163–5165. [Google Scholar] [CrossRef]
- Dean, P.J.; Lightowlers, E.C.; Wight, D.R. Intrinsic and Extrinsic Recombination Radiation from Natural and Synthetic Aluminum-Doped Diamond. Phys. Rev. 1965, 140, A352–A368. [Google Scholar] [CrossRef]
- Clark, C.D.; Dean, P.J.; Harris, P.V. Intrinsic edge absorption in diamond. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1964, 277, 312–329. [Google Scholar] [CrossRef]
- Mnatsakanov, T.; Levinshtein, M.; Pomortseva, L.; Yurkov, S. Carrier mobility model for simulation of SiC-based electronic devices. Semicond. Sci. Technol. 2002, 17, 974. [Google Scholar] [CrossRef]
- Ayalew, T. SiC Semiconductor Devices Technology, Modeling and Simulation. Ph.D. Thesis, Technische Universität Wien, Vienna, Austria, 2004. [Google Scholar]
- Schwierz, F. An electron mobility model for wurtzite GaN. Solid-State Electron. 2005, 49, 889–895. [Google Scholar] [CrossRef]
- Mnatsakanov, T.T.; Levinshtein, M.E.; Pomortseva, L.I.; Yurkov, S.N.; Simin, G.S.; Asif Khan, M. Carrier mobility model for GaN. Solid-State Electron. 2003, 47, 111–115. [Google Scholar] [CrossRef]
- Liu, J.; Yu, H.; Shao, S.; Tu, J.; Zhu, X.; Yuan, X.; Wei, J.; Chen, L.; Ye, H.; Li, C. Carrier mobility enhancement on the H-terminated diamond surface. Diam. Relat. Mater. 2020, 104, 107750. [Google Scholar] [CrossRef]
- Looi, H.J.; Jackman, R.B.; Foord, J.S. High carrier mobility in polycrystalline thin film diamond. Appl. Phys. Lett. 1998, 72, 353–355. [Google Scholar] [CrossRef]
- Li, Z.; Chen, L.; Liu, C.; Tai, J.; Zhao, Y.; Yin, H. High carrier mobility of diamond (100) enabled by surface modification using doped hexagonal boron nitride. Appl. Phys. Lett. 2025, 126. [Google Scholar] [CrossRef]
- Abutawahina, M.S.; Abbas, A.A.; Hamzah, N.; Ng, S.; Quah, H.; Ahmed, N.M.; Shaveisi, M. Experimental and simulation analyses of bulk GaN-based metal-semiconductor-metal ultraviolet photodetectors. Mater. Sci. Eng. B 2025, 319, 118323. [Google Scholar] [CrossRef]
- Choubey, B.; Ghosh, K. Highly Sensitive and Fast Response AlGaN-Based MSM Solar-Blind Photodetector. IEEE Trans. Electron Devices 2025, 72, 4204–4210. [Google Scholar] [CrossRef]
- Thalayarathna, D.; Samintha, M.; Attygalle, D.; Amarasinghe, D.S. Capacitive Response Study of ZnO Based Metal-Semiconductor-Metal Ultraviolet Photodetector. In Proceedings of the 2024 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 8–10 August 2024; pp. 472–476. [Google Scholar]
- Zhang, W.; Chen, Y.; Yang, J.; Feng, S.; Li, B.; Lu, W.; Liu, F.; Wan, J. A Novel Ultraviolet Photodetector With High Responsivity and Low Operating Voltage Based on Hybrid Si/SiC Technology. IEEE Trans. Electron Devices 2025, 72, 2411–2416. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, C.; Cao, G.; Zhang, X.; Chen, Y.; Dai, H.; He, X.; Long, H.; Yu, S.; Xu, X. Mpcvd Growth of Single Crystal Diamond (001) Films For Fast Speed Solar-Blind Uv Photodetectors. SSRN, 2024; preprint. [Google Scholar]
- Das, N.; Fadakar, F. Application of Metal-Semiconductor-Metal Photodetector in High-Speed Optical Communication Systems. In Advances in Optical Communication; Das, N., Ed.; IntechOpen: Rijeka, Croatia, 2014. [Google Scholar] [CrossRef]
- Kim, M.; Seo, J.-H.; Singisetti, U.; Ma, Z. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond. J. Mater. Chem. C 2017, 5, 8338–8354. [Google Scholar] [CrossRef]
- Liu, C.J.; Peng, T.; Wang, B.; Guo, Y.; Lou, Y.; Zhao, N.; Wang, W.; Chen, X.L. Progress in single crystal growth of wide bandgap semiconductor SiC. In Proceedings of Materials Science Forum; Trans Tech Publications Ltd.: Bäch, Switzerland, 2019; pp. 35–45. [Google Scholar]
- Yuvaraja, S.; Khandelwal, V.; Tang, X.; Li, X. Wide bandgap semiconductor-based integrated circuits. Chip 2023, 2, 100072. [Google Scholar] [CrossRef]
- Zheng, W.; Huang, F.; Zheng, R.; Wu, H. Low-Dimensional Structure Vacuum-Ultraviolet-Sensitive (λ < 200 nm) Photodetector with Fast-Response Speed Based on High-Quality AlN Micro/Nanowire. Adv. Mater. 2015, 27, 3921–3927. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, T.; Zhao, J.; Zhu, J.; Chen, X.; Yu, H.; Gao, Y.; Zhou, J.; Chen, Z. High-Sensitivity Amorphous Boron Nitride Vacuum Ultraviolet Photodetectors. IEEE Electron Device Lett. 2025, 46, 76–79. [Google Scholar] [CrossRef]
- Qiu, M.; Jia, Z.; Yang, M.; Li, M.; Shen, Y.; Liu, C.; Nishimura, K.; Jiang, N.; Wang, B.; Lin, C.-T.; et al. High-performance single crystal diamond pixel photodetector with nanosecond rise time for solar-blind imaging. Diam. Relat. Mater. 2024, 144, 110996. [Google Scholar] [CrossRef]
- Seo, M.; Han, C.; Kim, Y.; Son, J.; Heo, J. Large-area α-Ga2O3 Metal–Semiconductor–Metal Photodetectors for Detecting Ultra-low UV-C Light amid Sunlight in Arc Monitoring. IEEE Sens. J. 2025, 25, 34549–34557. [Google Scholar] [CrossRef]
- Yang, Y.; Han, D.; Wu, S.; Lin, H.; Zhang, J.; Zhang, W.; Ye, J. High-performance solar-blind ultraviolet photodetector arrays based on two-inch ϵ-Ga2O3 films for imaging applications. J. Phys. D Appl. Phys. 2025, 58, 105108. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, S.; Zhan, T.; Liu, Z.; Wang, J.; Yi, X.; Li, J.; Sarro, P.M.; Zhang, G. A high responsivity and controllable recovery ultraviolet detector based on a WO3 gate AlGaN/GaN heterostructure with an integrated micro-heater. J. Mater. Chem. C 2020, 8, 5409–5416. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Ushida, S.; Nagase, K.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I. High-performance solar-blind Al0.6Ga0.4N/Al0.5Ga0.5N MSM type photodetector. Appl. Phys. Lett. 2017, 111, 191103. [Google Scholar] [CrossRef]
- Abdulrahman, A.F.; Abd-Alghafour, N.M.; Almessiere, M.A. A high responsivity, fast response time of ZnO nanorods UV photodetector with annealing time process. Opt. Mater. 2023, 141, 113869. [Google Scholar] [CrossRef]
- Xue, H.; Kong, X.; Liu, Z.; Liu, C.; Zhou, J.; Chen, W.; Ruan, S.; Xu, Q. TiO2 based metal-semiconductor-metal ultraviolet photodetectors. Appl. Phys. Lett. 2007, 90, 201118. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, F.; Song, K.; Xing, C.; Wang, D.; Yu, H.; Huang, C.; Sun, Y.; Yang, L.; Zhao, X.; et al. Demonstration of AlGaN/GaN-based ultraviolet phototransistor with a record high responsivity over 3.6 × 107 A/W. Appl. Phys. Lett. 2021, 118, 242105. [Google Scholar] [CrossRef]
- Wang, X.; Tang, C.; Li, R.; Zhu, X.; Jin, W.; Hao, L.; Sun, R.; Liu, J.; Ma, Y.; Ma, L. High-Responsivity UV Photodetectors Based on High-Mobility Graphene Epitaxially Grown on 4H-SiC. ACS Appl. Nano Mater. 2025, 8, 15799–15807. [Google Scholar] [CrossRef]
- Fu, R.; Jiang, X.; Wang, Y.; Xia, D.; Li, B.; Ma, J.; Xu, H.; Shen, A.; Liu, Y. A high responsivity, high detectivity, and high response speed MSM UVB photodetector based on SnO2 microwires. Nanoscale 2023, 15, 7460–7465. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.S.; Shan, C.X.; Li, B.H.; Zhang, Z.Z.; Yang, C.L.; Shen, D.Z.; Fan, X.W. High responsivity ultraviolet photodetector realized via a carrier-trapping process. Appl. Phys. Lett. 2010, 97. [Google Scholar] [CrossRef]
- Liu, L.; Yang, C.; Patanè, A.; Yu, Z.; Yan, F.; Wang, K.; Lu, H.; Li, J.; Zhao, L. High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN. Nanoscale 2017, 9, 8142–8148. [Google Scholar] [CrossRef]
- Wu, X.; Sun, J.; Shao, H.; Zhai, Y.; Li, L.; Chen, W.; Zhu, J.; Dong, B.; Xu, L.; Zhou, D.; et al. Self-powered UV photodetectors based on CsPbCl3 nanowires enabled by the synergistic effect of acetate and lanthanide ion passivation. Chem. Eng. J. 2021, 426, 131310. [Google Scholar] [CrossRef]
- Huang, D.; Zhao, X.; Guo, S.; Fu, X.; Cui, P.; Ye, S.; Yu, Z.; He, Y. High Responsivity Analysis of 4H-SiC Phototransistor. IEEE Sens. Lett. 2025, 9, 1–4. [Google Scholar] [CrossRef]
- Wang, Y.J.; Chen, J.W.; Hu, T.G.; Huang, Y.Q.; Zhu, W.K.; Li, W.H.; Hu, Y.; Wei, Z.M.; Fan, Z.C.; Zhao, L.X.; et al. High-Performance Ultraviolet Photodetector Based on the Vertical GaSe/GaN Heterojunction. Small 2025, 21, 2407473. [Google Scholar] [CrossRef]
- Zheng, L.; Yang, Y.; Bowen, C.R.; Jiang, L.; Shu, Z.; He, Y.; Yang, H.; Xie, Z.; Lu, T.; Hu, F.; et al. A high-performance UV photodetector with superior responsivity enabled by a synergistic photo/thermal enhancement of localized surface plasmon resonance. J. Mater. Chem. C 2023, 11, 6227–6238. [Google Scholar] [CrossRef]
- Huang, X.; Han, S.; Huang, W.; Liu, X. Enhancing solar cell efficiency: The search for luminescent materials as spectral converters. Chem. Soc. Rev. 2013, 42, 173–201. [Google Scholar] [CrossRef]
- Canfield, L.R.; Kerner, J.; Korde, R. Stability and quantum efficiency performance of silicon photodiode detectors in the far ultraviolet. Appl. Opt. 1989, 28, 3940–3943. [Google Scholar] [CrossRef] [PubMed]
- Tosaka, A.; Nishiguchi, T.; Nonaka, H.; Ichimura, S. Low-Temperature Oxidation of Silicon using UV-Light-Excited Ozone. Jpn. J. Appl. Phys. 2005, 44, L1144. [Google Scholar] [CrossRef]
- Hoex, B.; Gielis, J.J.H.; van de Sanden, M.C.M.; Kessels, W.M.M. On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3. J. Appl. Phys. 2008, 104. [Google Scholar] [CrossRef]
- Hoex, B.; Schmidt, J.; Pohl, P.; van de Sanden, M.C.M.; Kessels, W.M.M. Silicon surface passivation by atomic layer deposited Al2O3. J. Appl. Phys. 2008, 104. [Google Scholar] [CrossRef]
- Nikzad, S.; Hoenk, M.; Jewell, A.D.; Hennessy, J.J.; Carver, A.G.; Jones, T.J.; Goodsall, T.M.; Hamden, E.T.; Suvarna, P.; Bulmer, J.; et al. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials. Sensors 2016, 16, 927. [Google Scholar] [CrossRef]
- Current, M.I. Ion implantation of advanced silicon devices: Past, present and future. Mater. Sci. Semicond. Process. 2017, 62, 13–22. [Google Scholar] [CrossRef]
- Kuroda, R.; Nakazawa, T.; Hanzawa, K.; Sugawa, S. Highly ultraviolet light sensitive and highly reliable photodiode with atomically flat Si surface. In Proceedings of the International Image Sensor Workshop, Nanae, Japan, 8–11 June 2011; pp. 38–41. [Google Scholar]
- Setälä, O.E.; Chen, K.; Pasanen, T.P.; Liu, X.; Radfar, B.; Vähänissi, V.; Savin, H. Boron-Implanted Black Silicon Photodiode with Close-to-Ideal Responsivity from 200 to 1000 nm. ACS Photonics 2023, 10, 1735–1741. [Google Scholar] [CrossRef] [PubMed]
- Garin, M.; Heinonen, J.; Werner, L.; Pasanen, T.P.; Vähänissi, V.; Haarahiltunen, A.; Juntunen, M.A.; Savin, H. Black-Silicon Ultraviolet Photodiodes Achieve External Quantum Efficiency above 130. Phys. Rev. Lett. 2020, 125, 117702. [Google Scholar] [CrossRef]
- Vergeer, P.; Vlugt, T.; Kox, M.; Den Hertog, M.; Van der Eerden, J.; Meijerink, A. Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+. Phys. Rev. B—Condens. Matter Mater. Phys. 2005, 71, 014119. [Google Scholar] [CrossRef]
- Chen, G.; Yang, C.; Prasad, P.N. Nanophotonics and nanochemistry: Controlling the excitation dynamics for frequency up-and down-conversion in lanthanide-doped nanoparticles. Acc. Chem. Res. 2013, 46, 1474–1486. [Google Scholar] [CrossRef] [PubMed]
- Mayavan, A. Comprehensive Review on Downconversion/Downshifting Silicate-Based Phosphors for Solar Cell Applications. ACS Omega 2024, 9, 16880–16892. [Google Scholar] [CrossRef]
- Rahman, N.U.; Khan, W.U.; Li, W.; Khan, S.; Khan, J.; Zheng, S.; Su, T.; Zhao, J.; Aldred, M.P.; Chi, Z. Simultaneous enhancement in performance and UV-light stability of organic–inorganic perovskite solar cells using a samarium-based down conversion material. J. Mater. Chem. A 2019, 7, 322–329. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, W.; Zheng, J.; Zhu, L.; Mo, L.e.; Li, Z.; Hu, L.; Hayat, T.; Alsaedi, A.; Zhang, C. Enhancing the photovoltaic performance of perovskite solar cells with a down-conversion Eu-complex. ACS Appl. Mater. Interfaces 2017, 9, 26958–26964. [Google Scholar] [CrossRef]
- Ding, N.; Xu, W.; Liu, H.; Jing, Y.; Wang, Z.; Ji, Y.; Wu, J.; Shao, L.; Zhu, G.; Dong, B. Highly DUV to NIR-II responsive broadband quantum dots heterojunction photodetectors by integrating quantum cutting luminescent concentrators. Light Sci. Appl. 2024, 13, 289. [Google Scholar] [CrossRef]
- Shao, L.; Liu, Q.; Liu, X.; Wu, W.; Liu, M. Boosting UV responsivity of silicon photodetectors through efficient quantum-cutting with La3+, Yb3+ co-doped perovskite quantum dots. J. Lumin. 2024, 272, 120657. [Google Scholar] [CrossRef]
- Yang, G.; Zheng, C.; Zhu, Y.; Li, X.; Huang, J.; Xu, X.; Liu, W.; Cui, S.; Pan, G. Efficient quantum cutting of lanthanum and ytterbium ions co-doped perovskite quantum dots towards improving the ultraviolet response of silicon-based photodetectors. J. Alloys Compd. 2022, 921, 166097. [Google Scholar] [CrossRef]
- Hao, M.; Cheng, S.; He, Y.; Xiang, W.; Ding, N.; Xu, W.; Ma, C.G.; Liang, X. Dy3+ Doped All-Inorganic Perovskite Nanocrystals Glass toward High-Performance and High-Stability Silicon Photodetectors. Laser Photonics Rev. 2023, 17, 2200748. [Google Scholar] [CrossRef]
- Ding, J.; Mu, S.; Xiang, W.; Ding, N.; Xu, W.; Liang, X. Eu3+ doped CsPbCl2Br1 nanocrystals glass for enhanced the ultraviolet response of Si photodetectors. J. Lumin. 2023, 254, 119530. [Google Scholar] [CrossRef]
- Ramalingam, G.; Kathirgamanathan, P. Quantum Confinement Effect of 2D Nanomaterials. In Quantum Dots: Fundamental and Applications; BoD—Books on Demand: Norderstedt, Germany, 2020; p. 11. [Google Scholar]
- Lv, J.; Zhang, T.; Zhang, P.; Zhao, Y.; Li, S. Review application of nanostructured black silicon. Nanoscale Res. Lett. 2018, 13, 110. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Z.; Jing, J.; Gao, R.; Liao, Z.; Zhang, W.; Liu, G.; Wang, Y.; Wang, K.; Xue, C. Black silicon for near-infrared and ultraviolet photodetection: A review. APL Mater. 2023, 11, 021107. [Google Scholar] [CrossRef]
- Thahe, A.A.; Dahi, A.; Qaeed, M.A.; Farhat, O.F.; Bakhtiar, H.; Allam, N.K. Engineered etching and laser treatment of porous silicon for enhanced sensitivity and speed of Pt/n-PSi/Pt UV photodetectors. Nanoscale Adv. 2025, 7, 2955–2966. [Google Scholar] [CrossRef] [PubMed]
- Link, S.; El-Sayed, M.A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999, 103, 8410–8426. [Google Scholar] [CrossRef]
- Petryayeva, E.; Krull, U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef]
- Seok, J.S.; Ju, H. Plasmonic Optical Biosensors for Detecting C-Reactive Protein: A Review. Micromachines 2020, 11, 895. [Google Scholar] [CrossRef]
- Willets, K.A.; Van Duyne, R.P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.; Nanda, S.S.; Yi, D.K.; Ju, H. Effects of Aspect Ratio Heterogeneity of an Assembly of Gold Nanorod on Localized Surface Plasmon Resonance. J. Phys. Chem. Lett. 2020, 11, 5972–5979. [Google Scholar] [CrossRef]
- Mustafa, D.E.; Yang, T.; Xuan, Z.; Chen, S.; Tu, H.; Zhang, A. Surface plasmon coupling effect of gold nanoparticles with different shape and size on conventional surface plasmon resonance signal. Plasmonics 2010, 5, 221–231. [Google Scholar] [CrossRef]
- Ismail, R.A.; Alwan, A.M.; Ahmed, A.S. Preparation and characteristics study of nano-porous silicon UV photodetector. Appl. Nanosci. 2017, 7, 9–15. [Google Scholar] [CrossRef]
- Tanaka, Y.-i.; Ono, A.; Inami, W.; Kawata, Y. Silicon Plasmonics for Enhanced Responsivity of Silicon Photodetectors in Deep-Ultraviolet Region. Phys. Rev. Lett. 2025, 134, 226901. [Google Scholar] [CrossRef]
- Cao, F.; Liu, Y.; Liu, M.; Han, Z.; Xu, X.; Fan, Q.; Sun, B. Wide Bandgap Semiconductors for Ultraviolet Photodetectors: Approaches, Applications, and Prospects. Research 2024, 7, 0385. [Google Scholar] [CrossRef]
- Sang, L.; Liao, M.; Sumiya, M. A comprehensive review of semiconductor ultraviolet photodetectors: From thin film to one-dimensional nanostructures. Sensors 2013, 13, 10482–10518. [Google Scholar] [CrossRef]
- Landis, G.A.; Loferski, J.J.; Beaulieu, R.; Sekula-Moisé, P.A.; Vernon, S.M.; Spitzer, M.B.; Keavney, C.J. Wide-bandgap epitaxial heterojunction windows for silicon solar cells. IEEE Trans. Electron Devices 1990, 37, 372–381. [Google Scholar] [CrossRef]
- Bean, J.C. Silicon-based semiconductor heterostructures: Column IV bandgap engineering. Proc. IEEE 2002, 80, 571–587. [Google Scholar] [CrossRef]
- Zhong, C.; Luo, L.; Tan, H.; Geng, K. Band gap optimization of the window layer in silicon heterojunction solar cells. Sol. Energy 2014, 108, 570–575. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J. Nanointerface chemistry: Lattice-mismatch-directed synthesis and application of hybrid nanocrystals. Chem. Rev. 2020, 120, 2123–2170. [Google Scholar] [CrossRef]
- Chu, S.; Tsang, W.; Chiu, T.; Macrander, A. Lattice-mismatch-generated dislocation structures and their confinement using superlattices in heteroepitaxial GaAs/InP and InP/GaAs grown by chemical beam epitaxy. J. Appl. Phys. 1989, 66, 520–530. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Zhang, H.; Zhang, Z.; Wu, H.; Jin, M.; Wu, C.; Yang, D.; Yin, Y. Lattice-mismatch-induced twinning for seeded growth of anisotropic nanostructures. ACS Nano 2015, 9, 3307–3313. [Google Scholar] [CrossRef] [PubMed]
- Hudgins, J.L.; Simin, G.S.; Santi, E.; Khan, M.A. An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 2003, 18, 907–914. [Google Scholar] [CrossRef]
- Takahashi, K.; Yoshikawa, A.; Sandhu, A. Wide Bandgap Semiconductors; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Rossettos, J.; Shen, X. On the axial and interfacial shear stresses due to thermal mismatch in hybrid composite sheets. Compos. Sci. Technol. 1995, 54, 417–422. [Google Scholar] [CrossRef]
- Alred, J.M.; Zhang, Z.; Hu, Z.; Yakobson, B.I. Interface-induced warping in hybrid two-dimensional materials. Nano Res. 2015, 8, 2015–2023. [Google Scholar] [CrossRef]
- Kopperschmidt, P.; Scholz, R. Interface defects in integrated hybrid semiconductors by wafer bonding. Phys. B Condens. Matter 2001, 308, 1205–1208. [Google Scholar] [CrossRef]
- Du, Y.; Jiang, H.; Zhu, B.; Yan, H.; Chai, Y.; Tsoi, C.C.; Zhang, X.; Wang, C. A Universal Bonding Strategy for Achieving CMOS-Compatible Silicon Heterogeneous Integration. Adv. Mater. Technol. 2025, 10, 2402063. [Google Scholar] [CrossRef]
- Garrity, E.; Ciobanu, T.; Zakutayev, A.; Stevanovic, V. Emerging ultra-wide band gap semiconductors for future high-frequency electronics. arXiv 2025. [Google Scholar] [CrossRef]
- Yang, Y.; Tu, J.; Zhan, G.; Liu, H.; Fan, X.; Chen, X.; Hu, X.; Zhuang, N. Growth Considering Lattice Mismatch and Thermal Expansion and Magneto-Optical Properties of Bismuth-Doped Rare Earth Iron Garnet Crystals. Cryst. Growth Des. 2023, 23, 1598–1602. [Google Scholar] [CrossRef]
- Li, J.; Maidebura, Y.; Zhang, Y.; Wu, G.; Su, Y.; Zhuravlev, K.; Wei, X. AlGaN-Based Ultraviolet PIN Photodetector Grown on Silicon Substrates Using SiN Nitridation Process and Step-Graded Buffers. Crystals 2024, 14, 952. [Google Scholar] [CrossRef]
- Mukherjee, K.; Selvidge, J.; Hughes, E.; Norman, J.; Shang, C.; Herrick, R.; Bowers, J. Kinetically limited misfit dislocations formed during post-growth cooling in III–V lasers on silicon. J. Phys. D Appl. Phys. 2021, 54, 494001. [Google Scholar] [CrossRef]
- Ghosh, S.; Hinz, A.M.; Frentrup, M.; Alam, S.; Wallis, D.J.; Oliver, R.A. Design of step-graded AlGaN buffers for GaN-on-Si heterostructures grown by MOCVD. Semicond. Sci. Technol. 2023, 38, 044001. [Google Scholar] [CrossRef]
- Riah, B.; Camus, J.; Ayad, A.; Rammal, M.; Zernadji, R.; Rouag, N.; Djouadi, M.A. Hetero-Epitaxial Growth of AlN Deposited by DC Magnetron Sputtering on Si(111) Using a AlN Buffer Layer. Coatings 2021, 11, 1063. [Google Scholar] [CrossRef]
- Vura, S.; Muazzam, U.U.; Kumar, V.; Vanjari, S.C.; Muralidharan, R.; Digbijoy, N.; Nukala, P.; Raghavan, S. Monolithic Epitaxial Integration of β-Ga2O3 with 100 Si for Deep Ultraviolet Photodetectors. ACS Appl. Electron. Mater. 2022, 4, 1619–1625. [Google Scholar] [CrossRef]
- Yen, C.-C.; Huang, T.-M.; Chen, P.-W.; Chang, K.-P.; Wu, W.-Y.; Wuu, D.-S. Role of Interfacial Oxide in the Preferred Orientation of Ga2O3 on Si for Deep Ultraviolet Photodetectors. ACS Omega 2021, 6, 29149–29156. [Google Scholar] [CrossRef]
- Roccaforte, F.; Giannazzo, F.; Iucolano, F.; Eriksson, J.; Weng, M.; Raineri, V. Surface and interface issues in wide band gap semiconductor electronics. Appl. Surf. Sci. 2010, 256, 5727–5735. [Google Scholar] [CrossRef]
- Setera, B.; Christou, A. Challenges of overcoming defects in wide bandgap semiconductor power electronics. Electronics 2021, 11, 10. [Google Scholar] [CrossRef]
- Ganose, A.M.; Scanlon, D.O.; Walsh, A.; Hoye, R.L. The defect challenge of wide-bandgap semiconductors for photovoltaics and beyond. Nat. Commun. 2022, 13, 4715. [Google Scholar] [CrossRef]
- Vines, L.; Monakhov, E.; Kuznetsov, A. Defects in semiconductors. J. Appl. Phys. 2022, 132, 190401. [Google Scholar] [CrossRef]
- Shao, G. Work function and electron affinity of semiconductors: Doping effect and complication due to fermi level pinning. Energy Environ. Mater. 2021, 4, 273–276. [Google Scholar] [CrossRef]
- Newman, N.; Spicer, W.; Kendelewicz, T.; Lindau, I. On the Fermi level pinning behavior of metal/III–V semiconductor interfaces. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 1986, 4, 931–938. [Google Scholar] [CrossRef]
- Faschinger, W.; Ferreira, S.; Sitter, H. Doping limitations in wide gap II–VI compounds by Fermi level pinning. J. Cryst. Growth 1995, 151, 267–272. [Google Scholar] [CrossRef]
- Liu, X.; Choi, M.S.; Hwang, E.; Yoo, W.J.; Sun, J. Fermi level pinning dependent 2D semiconductor devices: Challenges and prospects. Adv. Mater. 2022, 34, 2108425. [Google Scholar] [CrossRef] [PubMed]
- Aldalbahi, A.; Li, E.; Rivera, M.; Velazquez, R.; Altalhi, T.; Peng, X.; Feng, P.X. A new approach for fabrications of SiC based photodetectors. Sci. Rep. 2016, 6, 23457. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Wang, Y.; Fu, S.; Xia, D.; Han, Y.; Ma, J.; Xu, H.; Li, B.; Shen, A.; Liu, Y. High-Performance Solar-Blind Ultraviolet Photodetectors Based on β-Ga2O3 Thin Films Grown on p-Si(111) Substrates with Improved Material Quality via an AlN Buffer Layer Introduced by Metal–Organic Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2023, 15, 38612–38622. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Li, F.; Yu, H.; Wang, D.; Sun, H. A van der Waals metal contact for asymmetric GaN-based ultraviolet photodetectors. In Proceedings of the 2024 IEEE Photonics Conference (IPC), Rome, Italy, 10–14 November 2024. [Google Scholar]
- Tsanakas, M.D.; Jaros, A.; Fleming, Y.; Efthimiadou, M.; Voss, T.; Leturcq, R.; Gardelis, S.; Kandyla, M. Wavelength-Selective, High-Speed, Self-Powered Isotype Heterojunction n+-ZnO/n-Si Photodetector with Engineered and Tunable Spectral Response. Adv. Mater. Technol. 2025, 10, 2401740. [Google Scholar] [CrossRef]












Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamal, A.; Hong, S.; Ju, H. Advances in Silicon-Based UV Light Detection. Micromachines 2025, 16, 1130. https://doi.org/10.3390/mi16101130
Kamal A, Hong S, Ju H. Advances in Silicon-Based UV Light Detection. Micromachines. 2025; 16(10):1130. https://doi.org/10.3390/mi16101130
Chicago/Turabian StyleKamal, Arif, Seongin Hong, and Heongkyu Ju. 2025. "Advances in Silicon-Based UV Light Detection" Micromachines 16, no. 10: 1130. https://doi.org/10.3390/mi16101130
APA StyleKamal, A., Hong, S., & Ju, H. (2025). Advances in Silicon-Based UV Light Detection. Micromachines, 16(10), 1130. https://doi.org/10.3390/mi16101130

