Development of Amorphous AlN Thin Films on ITO-Glass and ITO-PET at Low Temperatures by RF Sputtering
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Characterization
3.2. Morphological Characterization
3.3. Optical Characterization
3.4. Electrical Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yarar, E.; Hrkac, V.; Zamponi, C.; Piorra, A.; Kienle, L.; Quandt, E. Low temperature aluminum nitride thin films for sensory applications. AIP Adv. 2016, 6, 075115. [Google Scholar] [CrossRef]
- Ambacher, O. Growth and applications of Group III-nitrides. J. Phys. D Appl. Phys. 1998, 31, 2653. [Google Scholar] [CrossRef]
- Millan, J.; Godignon, P.; Perpina, X.; Perez-Tomas, A.; Rebollo, J. A Survey of Wide Bandgap Power Semiconductor Devices. IEEE Trans. Power Electron. 2014, 29, 2155–2163. [Google Scholar] [CrossRef]
- Paskova, T.; Hanser, D.A.; Evans, K.R. GaN Substrates for III-Nitride Devices. Proc. IEEE 2010, 98, 1324–1338. [Google Scholar] [CrossRef]
- Baliga, B.J. Gallium nitride devices for power electronic applications. Semicond. Sci. Technol. 2013, 28, 074011. [Google Scholar] [CrossRef]
- Thompson, A.G. MOCVD technology for semiconductors. Mater. Lett. 1997, 30, 255–263. [Google Scholar] [CrossRef]
- Zolotukhin, D.; Nechaev, D.; Kuznetsova, N.; Ratnikov, V.; Rouvimov, S.; Jmerik, V.; Ivanov, S. Control of stress and threading dislocation density in the thick GaN/AlN buffer layers grown on Si (111) substrates by low- temperature MBE. J. Phys. Conf. Ser. 2016, 741, 012025. [Google Scholar] [CrossRef]
- Figge, S.; Kröncke, H.; Hommel, D.; Epelbaum, B.M. Temperature dependence of the thermal expansion of AlN. Appl. Phys. Lett. 2009, 94, 101915. [Google Scholar] [CrossRef]
- Zhu, K.; Yang, K. Low temperature deposition of AlN films for flexible electronics. Appl. Phys. A 2022, 128, 1038. [Google Scholar] [CrossRef]
- Kim, J. Low-Temperature Epitaxial Growth of AlN Thin Films on a Mo Electrode/Sapphire Substrate Using Reactive Sputtering. Coatings 2021, 11, 443–450. [Google Scholar] [CrossRef]
- Núñez-Cascajero, A.; Valdueza-Felip, S.; Blasco, R.; de la Mata, M.; Molina, S.I.; González-Herráez, M.; Monroy, E.; Naranjo, F.B. Quality improvement of AlInN/p-Si heterojunctions with AIN buffer layer deposited by RF-sputtering. J. Alloy. Compd. 2018, 769, 824–830. [Google Scholar] [CrossRef]
- Akiyama, M.; Kamohara, T.; Kano, K.; Teshigahara, A.; Takeuchi, Y.; Kawahara, N. Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering. Adv. Mater. 2009, 21, 593–596. [Google Scholar] [CrossRef]
- Sandeep, S.; Pinto, R.M.R.; Rudresh, J.; Gund, V.; Nagaraja, K.K.; Vinayakumar, K.B. Piezoelectric aluminum nitride thin films for CMOS compatible MEMS: Sputter deposition and doping. Crit. Rev. Sol. State Mater. Sci. 2024, 50, 161–188. [Google Scholar] [CrossRef]
- Mwema, F.M.; Akinlabi, E.T.; Oladijo, O.P. A systematic review of magnetron sputtering of AlN thin films for extreme condition sensing. Mater. Today Proc. 2020, 26, 1546–1550. [Google Scholar] [CrossRef]
- Jiao, X.; Shi, Y.; Zhong, H.; Zhang, R.; Yang, J. AlN thin films deposited on different Si-based substrates through RF magnetron sputtering. J. Mater. Sci. Mater. Electron. 2015, 26, 801–808. [Google Scholar] [CrossRef]
- Sandager, M.K.; Kjelde, C.; Popok, V. Growth of Thin AlN Films on Si Wafers by Reactive Magnetron Sputtering: Role of Processing Pressure, Magnetron Power and Nitrogen/Argon Gas Flow Ratio. Crystals 2022, 12, 1379. [Google Scholar] [CrossRef]
- Mpofu, P.; Hafdi, H.; Niiranen, P.; Lauridsen, J.; Larssonb, T.; Pedersen, H. Surface chemistry in atomic layer deposition of AlN thin films from Al(CH3)3 and NH3 studied by mass spectrometry. J. Mater. Chem. C 2024, 12, 12818–12824. [Google Scholar] [CrossRef]
- Bosund, M.; Sajavaara, T.; Laitinen, M.; Huhtio, T.; Putkonen, M.; Airaksinen, V.M.; Lipsanen, H. Properties of AlN grown by plasma enhanced atomic layer deposition. Appl. Surf. Sci. 2011, 257, 7827–7830. [Google Scholar] [CrossRef]
- Valdueza-Felip, S.; Núñez-Cascajero, A.; Blasco, R.; Montero, D.; Grenet, L.; de la Mata, M.; Fernández, S.; Marcos, L.R.-D.; Molina, S.I.; Olea, J.; et al. Influence of the AlN interlayer thickness on the photovoltaic properties of in-rich AlInN on Si heterojunctions deposited by RF sputtering. AIP Adv. 2018, 8, 115315. [Google Scholar] [CrossRef]
- Monteagudo-Lerma, L.; Valdueza-Felip, S.; Núñez-Cascajero, A.; González-Herráez, M.; Monroy, E.; Naranjo, F.B. Two-step method for the deposition of AlN by radio frequency sputtering. Thin Solid Films 2013, 545, 149–153. [Google Scholar] [CrossRef]
- Schroder, D.K. Semiconductor Material and Device Characterization: Schroder/Semiconductor Material and Device Characterization, 3rd ed.; Wiley-Blackwell: Chichester, UK, 2006. [Google Scholar]
- Marauska, S.; Dankwort, T.; Quenzer, H.J.; Wagner, B. Sputtered thin film piezoelectric aluminium nitride as a functional MEMS material and CMOS compatible process integration. Procedia Eng. 2011, 25, 1341–1344. [Google Scholar] [CrossRef]
- Huseynov, E.M. Investigation of thermal parameters of AlN nanoparticles at the different heating rates. Vacuum 2023, 212, 111990. [Google Scholar] [CrossRef]
- Kiessig, H. Untersuchungen zur Totalreflexion von Röntgenstrahlen. Ann. Phys. 1931, 10, 715–768. [Google Scholar] [CrossRef]
- Yasaka, M. X-ray thin-film measurement techniques. Rigaku J. 2010, 26, 1–9. [Google Scholar]
- Kavitha, A.; Kannan, R.; Rajashabala, S. Effect of target power on the physical properties of Ti thin films prepared by DC magnetron sputtering with supported discharge. Mat. Sci.-Pol. 2017, 35, 173–180. [Google Scholar] [CrossRef]
- Amalathas, A.P.; Alkaisi, M.M. Effects of film thickness and sputtering power on properties of ITO thin films deposited by RF magnetron sputtering without oxygen. J. Mater. Sci. 2016, 27, 11064–11071. [Google Scholar] [CrossRef]
- Vashishta, P.; Kalia, R.K.; Nakano, A.; Rino, J.P. Interaction potential for aluminum nitride: A molecular dynamics study of mechanical and thermal properties of crystalline and amorphous aluminum nitride. J. Appl. Phys. 2011, 109, 033514. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Y. Effect of substrate temperature on structural and optical properties of radio-frequency magnetron-sputtered Ce0.97Co0.03O2 thin films. Phys. Status Solidi A 2022, 219, 2100630. [Google Scholar] [CrossRef]
- Mounier, E.; Bertin, F.; Adamik, M.; Pauleau, Y.; Barna, P.B. Effect of the substrate temperature on the physical characteristics of amorphous carbon films deposited by d.c. magnetron sputtering. Diam. Relat. Mater. 1996, 5, 1509–1515. [Google Scholar] [CrossRef]
- Mishra, S.K.; Rupa, P.K.P.; Pathak, L.C. Nucleation and growth of DC magnetron sputtered titanium diboride thin films. Surf. Coat. Technol. 2006, 200, 4078–4081. [Google Scholar] [CrossRef]
- Mazur, M.; Wojcieszak, D.; Wiatrowski, A.; Kaczmarek, D.; Lubańska, A.; Domaradzki, J.; Mazur, P.; Kalisz, M. Analysis of amorphous tungsten oxide thin films deposited by magnetron sputtering for application in transparent electronics. Appl. Surf. Sci. 2021, 570, 151151. [Google Scholar] [CrossRef]
- Besozzi, E.; Dellasega, D.; Russo, V.; Conti, C.; Passoni, M.; Beghi, M.G. Thermomechanical properties of amorphous metallic tungsten-oxygen and tungsten-oxide coatings. Mater. Des. 2019, 165, 107565. [Google Scholar] [CrossRef]
- Thapa, R.; Saha, B.; Goswami, S.; Chattopadhyay, K.K. Study of field emission and dielectric properties of AlN films prepared by DC sputtering technique at different substrate temperatures. Indian J. Phys. 2010, 84, 1347–1354. [Google Scholar] [CrossRef]
- Heslop-Harrison, J.S. Energy dispersive X-ray analysis. In Physical Methods in Plant Sciences; Modern Methods of Plant Analysis; Linskens, H.F., Jackson, J.F., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; Volume 11. [Google Scholar]
- Sahoo, A.K.; Au, W.-C.; Pan, C.-L. Characterization of indium tin oxide (ITO) thin films towards terahertz (THz) functional device applications. Coatings 2024, 14, 895. [Google Scholar] [CrossRef]
- Parkhomenko, R.G.; De Luca, O.; Kołodziejczyk, Ł.; Modin, E.; Rudolf, P.; Martínez, D.M.; Cunha, L.; Knez, M. Amorphous AlN films grown by ALD from trimethylaluminum and monomethylhydrazine. Dalton Trans. 2021, 50, 15062–15070. [Google Scholar] [CrossRef] [PubMed]
- Pigeat, P.; Miska, P.; Bougdira, J.; Easwarakhanthan, T. Surface roughness of AlN films deposited on negatively biased silicon and diamond substrates. Diam. Relat. Mater. 2009, 18, 1393–1400. [Google Scholar] [CrossRef]
- Sorzano, R.; Vera, C.; Ardila, L.C.; Orozco, G.; Aperador, W.A. Influence of target power and temperature on roughness and tribology of vanadium-carbon based coatings. J. Phys. Conf. Ser. 2021, 2046, 012070. [Google Scholar] [CrossRef]
- Núñez-Cascajero, A.; Valdueza-Felip, S.; Monteagudo-Lerma, L.; Monroy, E.; Taylor-Shaw, E.; Martin, R.W.; González-Herráez, M.; Naranjo, F.B. In-rich AlxIn1-xN grown by RF-sputtering on sapphire: From closely-packed columnar to high-surface quality compact layers. J. Phys. D Appl. Phys. 2017, 50, 065101. [Google Scholar] [CrossRef]
- Feng, L.-P.; Su, J.; Liu, Z.-T. Effect of vacancies on structural, electronic and optical properties of monolayer MoS2: A first-principles study. J. Alloy. Compd. 2014, 613, 122–127. [Google Scholar] [CrossRef]
- Khoshman, J.M.; Kordesch, M.E. Optical characterization of sputtered amorphous aluminum nitride thin films by spectroscopic ellipsometry. J. Non-Cryst. Solids 2005, 351, 3334–3340. [Google Scholar] [CrossRef]
- Deucher, T.M. Temperature effects on electrical resistivity of selected ceramics for high-temperature packaging applications. J. Am. Ceram. Soc. 2024, 107, 2295–2303. [Google Scholar] [CrossRef]
PAl (W) | Sapphire 100 °C | Sapphire RT | ITO-Glass 100 °C | ITO-Glass RT |
---|---|---|---|---|
100 | 56 | 52 | 65 | 50 |
125 | 76 | 82 | 85 | 85 |
150 | 109 | 106 | ---- | ---- |
175 | 138 | 131 | 130 | 130 |
PAl (W) | Sapphire 100 °C | Sapphire RT | ITO-Glass 100 °C | ITO-Glass RT |
---|---|---|---|---|
100 | 2.75 | 2.86 | 2.81 | 2.79 |
125 | 2.81 | 2.81 | 2.80 | 2.74 |
150 | 2.71 | 2.69 | 2.65 | 2.69 |
175 | 2.73 | 2.77 | 2.75 | 2.71 |
PAl (W) | Sustrate | Means RMS (nm) at 100 °C | Means RMS (nm) at RT |
---|---|---|---|
100 | Sapphire | 0.5 | 0.3 |
ITO-glass | 4.1 | 4.1 | |
ITO-PET | 2.1 | 1.6 | |
175 | Sapphire | 2 | 0.3 |
ITO-glass | 4.9 | 3.9 | |
ITO-PET | 2.3 | 2.0 |
PAl (W) | Sapphire 100 °C | Sapphire RT |
---|---|---|
100 | 5.47 | 5.83 |
125 | 5.77 | 5.77 |
150 | 5.76 | 5.58 |
175 | 5.82 | 5.93 |
PAl (W) | ITO-Glass 100 °C | ITO-Glass RT | ITO-PET 100 °C | ITO-PET RT |
---|---|---|---|---|
100 | Insulating | Insulating | Insulating | Insulating |
125 | Insulating | 1.30 × 107 | 5.21 × 105 | Insulating |
150 | Insulating | Insulating | 8.31 × 104 | Insulating |
175 | Insulating | Insulating | 1.51 × 103 | Insulating |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cadenas, M.; Sun, M.; Fernández, S.; Valdueza-Felip, S.; Diez-Pascual, A.M.; Naranjo, F.B. Development of Amorphous AlN Thin Films on ITO-Glass and ITO-PET at Low Temperatures by RF Sputtering. Micromachines 2025, 16, 993. https://doi.org/10.3390/mi16090993
Cadenas M, Sun M, Fernández S, Valdueza-Felip S, Diez-Pascual AM, Naranjo FB. Development of Amorphous AlN Thin Films on ITO-Glass and ITO-PET at Low Temperatures by RF Sputtering. Micromachines. 2025; 16(9):993. https://doi.org/10.3390/mi16090993
Chicago/Turabian StyleCadenas, Miriam, Michael Sun, Susana Fernández, Sirona Valdueza-Felip, Ana M. Diez-Pascual, and Fernando B. Naranjo. 2025. "Development of Amorphous AlN Thin Films on ITO-Glass and ITO-PET at Low Temperatures by RF Sputtering" Micromachines 16, no. 9: 993. https://doi.org/10.3390/mi16090993
APA StyleCadenas, M., Sun, M., Fernández, S., Valdueza-Felip, S., Diez-Pascual, A. M., & Naranjo, F. B. (2025). Development of Amorphous AlN Thin Films on ITO-Glass and ITO-PET at Low Temperatures by RF Sputtering. Micromachines, 16(9), 993. https://doi.org/10.3390/mi16090993