Editorial for the Special Issue on the Application of Microfluidic Technology in Bioengineering
1. Introduction
2. Overview of Published Articles
2.1. Clinical Cell Analysis: Liquid Biopsy, Prenatal Testing, and Hematology
2.2. Molecular Diagnostics and Extracellular-Vesicle Analysis
2.3. Interface and Materials Engineering for Robust Microfluidic
2.4. System Modeling and Thermal Engineering
2.5. Methodological Reviews: Microfluidics-Enabled Omics and Impedance Sensing
3. Conclusions
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gopinathan, K.A.; Mishra, A.; Mutlu, B.R.; Edd, J.F.; Toner, M. A Microfluidic Transistor for Automatic Control of Liquids. Nature 2023, 622, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Yafia, M.; Ymbern, O.; Olanrewaju, A.O.; Parandakh, A.; Sohrabi Kashani, A.; Renault, J.; Jin, Z.; Kim, G.; Ng, A.; Juncker, D. Microfluidic Chain Reaction of Structurally Programmed Capillary Flow Events. Nature 2022, 605, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Yu, W.; Sabet, K.A.; Bogumil, M.; Zhao, Y.; Hambalek, J.; Lin, S.; Chandrasekaran, S.; Garner, O.; Di Carlo, D.; et al. Ferrobotic Swarms Enable Accessible and Adaptable Automated Viral Testing. Nature 2022, 611, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Yu, W.; Lin, H.; Wang, Y.; He, X.; Chen, N.; Sun, K.; Lo, D.; Cheng, B.; Yeung, C.; Tan, J.; et al. A Ferrobotic System for Automated Microfluidic Logistics. Sci. Robot. 2020, 5, eaba4411. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, L. Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chem. Rev. 2022, 122, 7010–7060. [Google Scholar] [CrossRef]
- Wan, J.; Zhou, S.; Mea, H.J.; Guo, Y.; Ku, H.; Urbina, B.M. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem. Rev. 2022, 122, 7142–7181. [Google Scholar] [CrossRef]
- Sznitman, J. Revisiting Airflow and Aerosol Transport Phenomena in the Deep Lungs with Microfluidics. Chem. Rev. 2022, 122, 7182–7204. [Google Scholar] [CrossRef]
- Akif Sahin, M.; Werner, H.; Udani, S.; Carlo, D.D.; Destgeer, G. Flow Lithography for Structured Microparticles: Fundamentals, Methods and Applications. Lab. A Chip 2022, 22, 4007–4042. [Google Scholar] [CrossRef]
- Zhang, Q.; Feng, S.; Lin, L.; Mao, S.; Lin, J.-M. Emerging Open Microfluidics for Cell Manipulation. Chem. Soc. Rev. 2021, 50, 5333–5348. [Google Scholar] [CrossRef]
- Grisoni, F.; Huisman, B.J.H.; Button, A.L.; Moret, M.; Atz, K.; Merk, D.; Schneider, G. Combining Generative Artificial Intelligence and On-Chip Synthesis for de Novo Drug Design. Sci. Adv. 2021, 7, eabg3338. [Google Scholar] [CrossRef]
- Mercado-Perez, A.; Beyder, A. Gut Feelings: Mechanosensing in the Gastrointestinal Tract. Phys. Rev. Fluids 2022, 19, 283–296. [Google Scholar] [CrossRef]
- Özkan, A.; LoGrande, N.T.; Feitor, J.F.; Goyal, G.; Ingber, D.E. Intestinal Organ Chips for Disease Modelling and Personalized Medicine. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 751–773. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yuan, Y.; Liu, X.; Tang, T.; Yalikun, Y.; Tanaka, Y. Multiscale Integrated Temperature/Flow Velocity Sensor Patches for Microfluidic Applications. IEEE Sens. J. 2023, 23, 1795–1802. [Google Scholar] [CrossRef]
- Convery, N.; Gadegaard, N. 30 Years of Microfluidics. Micro Nano Eng. 2019, 2, 76–91. [Google Scholar] [CrossRef]
- Zhang, K.S.; Nadkarni, A.V.; Paul, R.; Martin, A.M.; Tang, S.K.Y. Microfluidic Surgery in Single Cells and Multicellular Systems. Chem. Rev. 2022, 122, 7097–7141. [Google Scholar] [CrossRef]
- Dong, H.; Lin, J.; Tao, Y.; Jia, Y.; Sun, L.; Li, W.J.; Sun, H. AI-Enhanced Biomedical Micro/Nanorobots in Microfluidics. Lab. Chip 2024, 24, 1419–1440. [Google Scholar] [CrossRef]
- Zhang, J.; Zhan, K.; Zhang, S.; Shen, Y.; Hou, Y.; Liu, J.; Fan, Y.; Zhang, Y.; Wang, S.; Xie, Y.; et al. Discontinuous Streaming Potential via Liquid Gate. eScience 2022, 2, 615–622. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Han, Y.; Hou, Y.; Fan, Y.; Hou, X. Design of Porous Membranes by Liquid Gating Technology. Acc. Mater. Res. 2021, 2, 407–419. [Google Scholar] [CrossRef]
- Wang, S.; Yang, X.; Wu, F.; Min, L.; Chen, X.; Hou, X. Inner Surface Design of Functional Microchannels for Microscale Flow Control. Small 2020, 16, 1905318. [Google Scholar] [CrossRef]
- Wu, F.; Chen, X.; Wang, S.; Zhou, R.; Wang, C.; Yu, L.; Zheng, J.; Yang, C.; Hou, X. Green Synthesized Liquid-like Dynamic Polymer Chains with Decreased Nonspecific Adhesivity for High-Purity Capture of Circulating Tumor Cells. CCS Chem. 2024, 6, 507–517. [Google Scholar] [CrossRef]
- Wu, F.; Kong, X.; Liu, Y.; Wang, S.; Chen, Z.; Hou, X. Microfluidic-Based Isolation of Circulating Tumor Cells with High-Efficiency and High-Purity. Chin. Chem. Lett. 2024, 35, 109754. [Google Scholar] [CrossRef]
- Ota, N.; Tanaka, N.; Sato, A.; Shen, Y.; Yalikun, Y.; Tanaka, Y. Microenvironmental Analysis and Control for Local Cells under Confluent Conditions via a Capillary-Based Microfluidic Device. Anal. Chem. 2022, 94, 16299–16307. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Tanaka, N.; Yamazoe, H.; Furutani, S.; Nagai, H.; Kawai, T.; Tanaka, Y. Flow Analysis on Microcasting with Degassed Polydimethylsiloxane Micro-Channels for Cell Patterning with Cross-Linked Albumin. PLoS ONE 2020, 15, e0232518. [Google Scholar] [CrossRef]
- Filippi, M.; Yasa, O.; Kamm, R.D.; Raman, R.; Katzschmann, R.K. Will Microfluidics Enable Functionally Integrated Biohybrid Robots? Proc. Natl. Acad. Sci. USA 2022, 119, e2200741119. [Google Scholar] [CrossRef]
- Yuan, H.; Miao, Z.; Wan, C.; Wang, J.; Liu, J.; Li, Y.; Xiao, Y.; Chen, P.; Liu, B.-F. Recent Advances in Centrifugal Microfluidics for Point-of-Care Testing. Lab. Chip 2025, 25, 1015–1046. [Google Scholar] [CrossRef]
- Ren, S.; Liu, D.; Xu, S. Development and Challenges of Pathogen Molecular Point-Of-Care Testing Systems Based on Microfluidic Technology. iLABMED 2025, 3, 21–28. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Goel, S. Recent Advancements in Integrated Microthermofluidic Systems for Biochemical and Biomedical Applications–A Review. Sens. Actuators A Phys. 2022, 341, 113590. [Google Scholar] [CrossRef]
- Hu, J.; Bai, H.; Wang, L.; Li, J.; Shen, Y.; Zhang, L.; Tang, J.; Wang, M.; Liu, Q.; Zhou, J.; et al. Hermetic Microfluidic Device for Point-of-Care Viral Nucleic Acid Testing. Sens. Actuators B Chem. 2024, 411, 135740. [Google Scholar] [CrossRef]
- Lan, Z.; Chen, R.; Zou, D.; Zhao, C. Microfluidic Nanoparticle Separation for Precision Medicine. Adv. Sci. 2025, 12, 2411278. [Google Scholar] [CrossRef]
- Khoo, B.L.; Grenci, G.; Lim, Y.B.; Lee, S.C.; Han, J.; Lim, C.T. Expansion of Patient-Derived Circulating Tumor Cells from Liquid Biopsies Using a CTC Microfluidic Culture Device. Nat. Protoc. 2018, 13, 34–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.I.; Abaci, H.E.; Shuler, M.L. Microfluidic Blood–Brain Barrier Model Provides in Vivo-like Barrier Properties for Drug Permeability Screening. Biotech. Bioeng. 2017, 114, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Fan, S.; Sun, X.; Mo, X.; Yang, G. Novel Microfluidic Device for Measurable Residual Disease Detection in Acute Leukemia. Innov. 2023, 4, 100408. [Google Scholar] [CrossRef]
- Zhai, J.; Liu, Y.; Ji, W.; Huang, X.; Wang, P.; Li, Y.; Li, H.; Wong, A.H.-H.; Zhou, X.; Chen, P.; et al. Drug Screening on Digital Microfluidics for Cancer Precision Medicine. Nat. Commun. 2024, 15, 4363. [Google Scholar] [CrossRef]
- Offord, C.; Cohen, J.; Enserink, M.; Barrett, R.J.; Shirure, V.S.; Bi, Y.; Curtis, M.B.; Lezia, A.; Goedegebuure, M.M.; Goedegebuure, S.P.; et al. Establishment of Colorectal Cancer Organoids in Microfluidic-Based System. Nat. Commun. 2025, 12, 497. [Google Scholar] [CrossRef]
- Xiang, T.; Wang, J.; Li, H. Current Applications of Intestinal Organoids: A Review. Stem Cell Res. Ther. 2024, 15, 155. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, E.Y.; Lai, F.B.L.; Cheung, K.; Radisic, M. Organs-on-a-Chip: A Union of Tissue Engineering and Microfabrication. Trends Biotechnol. 2023, 41, 410–424. [Google Scholar] [CrossRef]
- Haque, M.R.; Wessel, C.R.; Leary, D.D.; Wang, C.; Bhushan, A.; Bishehsari, F. Patient-Derived Pancreatic Cancer-on-a-Chip Recapitulates the Tumor Microenvironment. Microsyst. Nanoeng. 2022, 8, 36. [Google Scholar] [CrossRef]
- de Haan, P.; Santbergen, M.J.C.; van der Zande, M.; Bouwmeester, H.; Nielen, M.W.F.; Verpoorte, E. A Versatile, Compartmentalised Gut-on-a-Chip System for Pharmacological and Toxicological Analyses. Sci. Rep. 2021, 11, 4920. [Google Scholar] [CrossRef]
- Aryal, P.; Hefner, C.; Martinez, B.; Henry, C.S. Microfluidics in Environmental Analysis: Advancements, Challenges, and Future Prospects for Rapid and Efficient Monitoring. Lab. Chip 2024, 24, 1175–1206. [Google Scholar] [CrossRef]
- He, Q.; Wang, B.; Liang, J.; Liu, J.; Liang, B.; Li, G.; Long, Y.; Zhang, G.; Liu, H. Research on the Construction of Portable Electrochemical Sensors for Environmental Compounds Quality Monitoring. Mater. Today Adv. 2023, 17, 100340. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y.; Wang, Y.; Magaud, P.; Liu, Y.; Zeng, F.; Yang, J.; Baldas, L.; Song, Y. Nanocatalysis Meets Microfluidics: A Powerful Platform for Sensitive Bioanalysis. TrAC Trends Anal. Chem. 2023, 158, 116887. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Zhang, Y.; Yang, X.; Guo, L.; Man, C.; Jiang, Y.; Zhang, W.; Zhang, X. Emerging Biosensors Integrated with Microfluidic Devices: A Promising Analytical Tool for on-Site Detection of Mycotoxins. npj Sci. Food 2025, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, R.; Zhang, G.; Shuai, L.; Chang, W.; Hu, X.; Zou, M.; Zhou, X.; An, B.; Qian, D.; et al. Microfluidic Manipulation by Spiral Hollow-Fibre Actuators. Nat. Commun. 2022, 13, 1331. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, O.A.; Navarro-Segarra, M.; Sadeghi, P.; Sabaté, N.; Esquivel, J.P.; Kjeang, E. Microfluidics for Electrochemical Energy Conversion. Chem. Rev. 2022, 122, 7236–7266. [Google Scholar] [CrossRef]
- Zhou, J.; Mukherjee, P.; Gao, H.; Luan, Q.; Papautsky, I. Label-Free Microfluidic Sorting of Microparticles. APL Bioeng. 2019, 3, 041504. [Google Scholar] [CrossRef]
- Yazicigil, R.T.; Bali, A.; Caygara, D.; Densmore, D. Improving Engineered Biological Systems with Electronics and Microfluidics. Nat. Biotechnol. 2025, 43, 1067–1083. [Google Scholar] [CrossRef]
- Shen, Y.; Yuan, Y.; Tang, T.; Ota, N.; Tanaka, N.; Hosokawa, Y.; Yalikun, Y.; Tanaka, Y. Continuous 3D Particles Manipulation Based on Cooling Thermal Convection. Sens. Actuators B Chem. 2022, 358, 131511. [Google Scholar] [CrossRef]
- Ashammakhi, N.; Nasiri, R.; de Barros, N.R.; Tebon, P.; Thakor, J.; Goudie, M.; Shamloo, A.; Martin, M.G.; Khademhosseini, A. Gut-on-a-Chip: Current Progress and Future Opportunities. Biomaterials 2020, 255, 120196. [Google Scholar] [CrossRef]
- Kaden, T.; Alonso-Román, R.; Stallhofer, J.; Gresnigt, M.S.; Hube, B.; Mosig, A.S. Leveraging Organ-on-Chip Models to Investigate Host–Microbiota Dynamics and Targeted Therapies for Inflammatory Bowel Disease. Adv. Healthc. Mater. 2025, 14, 2402756. [Google Scholar] [CrossRef]
- Jomezadeh Kheibary, N.; Abolfazli Esfahani, J.; Mousavi Shaegh, S.A. Analysis of Oxygen Transport in Microfluidic Bioreactors for Cell Culture and Organ-on-chip Applications. Eng. Rep. 2020, 2, e12062. [Google Scholar] [CrossRef]
- Chen, Z.; Lv, Z.; Zhang, Z.; Weitz, D.A.; Zhang, H.; Zhang, Y.; Cui, W. Advanced Microfluidic Devices for Fabricating Multi-structural Hydrogel Microsphere. Exploration 2021, 1, 20210036. [Google Scholar] [CrossRef]
- Li, J.; Jamieson, W.D.; Dimitriou, P.; Xu, W.; Rohde, P.; Martinac, B.; Baker, M.; Drinkwater, B.W.; Castell, O.K.; Barrow, D.A. Building Programmable Multicompartment Artificial Cells Incorporating Remotely Activated Protein Channels Using Microfluidics and Acoustic Levitation. Nat. Commun. 2022, 13, 4125. [Google Scholar] [CrossRef]
- Li, J.; Baxani, D.K.; Jamieson, W.D.; Xu, W.; Rocha, V.G.; Barrow, D.A.; Castell, O.K. Formation of Polarized, Functional Artificial Cells from Compartmentalized Droplet Networks and Nanomaterials, Using One-Step, Dual-Material 3D-Printed Microfluidics. Adv. Sci. 2020, 7, 1901719. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yalikun, Y.; Tanaka, Y. Recent Advances in Microfluidic Cell Sorting Systems. Sens. Actuators B Chem. 2019, 282, 268–281. [Google Scholar] [CrossRef]
- Cai, H.; Ao, Z.; Wu, Z.; Song, S.; Mackie, K.; Guo, F. Intelligent Acoustofluidics Enabled Mini-Bioreactors for Human Brain Organoids. Lab. Chip 2021, 21, 2194–2205. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Yang, S.; Huang, P.-H.; Wang, Z.; Zhang, P.; Gu, Y.; Bachman, H.; Chen, C.; Wu, M.; Xie, Y.; et al. Wave Number–Spiral Acoustic Tweezers for Dynamic and Reconfigurable Manipulation of Particles and Cells. Sci. Adv. 2019, 5, 5. [Google Scholar] [CrossRef]
- Hu, X.; Gao, X.; Chen, S.; Guo, J.; Zhang, Y. DropLab: An Automated Magnetic Digital Microfluidic Platform for Sample-to-Answer Point-of-Care Testing—Development and Application to Quantitative Immunodiagnostics. Microsyst. Nanoeng. 2023, 9, 10. [Google Scholar] [CrossRef]
- Zhou, J.; Dong, J.; Hou, H.; Huang, L.; Li, J. High-Throughput Microfluidic Systems Accelerated by Artificial Intelligence for Biomedical Applications. Lab. Chip 2024, 24, 1307–1326. [Google Scholar] [CrossRef]
- Nelson, M.D.; Goenner, B.L.; Gale, B.K. Utilizing ChatGPT to Assist CAD Design for Microfluidic Devices. Lab. Chip 2023, 23, 3778–3784. [Google Scholar] [CrossRef]
- Liu, H.; Nan, L.; Chen, F.; Zhao, Y.; Zhao, Y. Functions and Applications of Artificial Intelligence in Droplet Microfluidics. Lab. Chip 2023, 23, 2497–2513. [Google Scholar] [CrossRef]
- Siu, D.M.D.; Lee, K.C.M.; Chung, B.M.F.; Wong, J.S.J.; Zheng, G.; Tsia, K.K. Optofluidic Imaging Meets Deep Learning: From Merging to Emerging. Lab. Chip 2023, 23, 1011–1033. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; Han, J. Microfluidics with Machine Learning for Biophysical Characterization of Cells. Annu. Rev. Anal. Chem. 2025, 18, 447–472. [Google Scholar] [CrossRef]
- Liu, L.; Bi, M.; Wang, Y.; Liu, J.; Jiang, X.; Xu, Z.; Zhang, X. Artificial Intelligence-Powered Microfluidics for Nanomedicine and Materials Synthesis. Nanoscale 2021, 13, 19352–19366. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.-Y.; Nguyen, T.N.A.; Wu, A.-Y.; Huang, P.-S.; Huang, K.-L.; Liao, C.-J.; Hsieh, C.-H.; Wu, M.-H. The Utilization of Optically Induced Dielectrophoresis (ODEP)-Based Cell Manipulation in a Microfluidic System for the Purification and Sorting of Circulating Tumor Cells (CTCs) with Different Sizes. Micromachines 2023, 14, 2170. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-Y.; Lin, C.-H.; Hu, Y.-W.; Chien, C.-H.; Huang, M.-C.; Lai, C.-H.; Wu, J.-K.; Tseng, F.-G. Automatic Single-Cell Harvesting for Fetal Nucleated Red Blood Cell Isolation on a Self-Assemble Cell Array (SACA) Chip. Micromachines 2024, 15, 1515. [Google Scholar] [CrossRef]
- Pouraria, H.; Houston, J.P. Elasticity of Carrier Fluid: A Key Factor Affecting Mechanical Phenotyping in Deformability Cytometry. Micromachines 2024, 15, 822. [Google Scholar] [CrossRef]
- Jiang, H.; Li, X.; Liu, Z.; Luo, S.; Huang, J.; Chen, C.; Chen, R.; Li, F. A Microfluidic Approach for Assessing the Rheological Properties of Healthy Versus Thalassemic Red Blood Cells. Micromachines 2025, 16, 957. [Google Scholar] [CrossRef]
- Xian, Q.; Zhang, J.; Wong, Y.C.; Gao, Y.; Song, Q.; Xu, N.; Wen, W. Pico-Scale Digital PCR on a Super-Hydrophilic Microarray Chip for Multi-Target Detection. Micromachines 2025, 16, 407. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, M.; Xiao, Q.; Wang, H.; Chi, C.; Lin, T.; Wang, Y.; Yi, X.; Zhu, L. Recent Advances in Microfluidic-Based Extracellular Vesicle Analysis. Micromachines 2024, 15, 630. [Google Scholar] [CrossRef]
- Wu, F.; Xu, J.; Liu, Y.; Sun, H.; Zhang, L.; Liu, Y.; Wang, W.; Chong, F.; Zou, D.; Wang, S. Rapid Construction of Liquid-like Surfaces via Single-Cycle Polymer Brush Grafting for Enhanced Antifouling in Microfluidic Systems. Micromachines 2024, 15, 1241. [Google Scholar] [CrossRef]
- Ayeni, O.O.; Stretz, H.A.; Vasel-Be-Hagh, A. Effects of Fiber Arrangement on Flow Characteristics Along a Four-Fiber Element of Fiber Extractors. Micromachines 2025, 16, 425. [Google Scholar] [CrossRef]
- Thiem, D.B.; Szabo, G.; Burg, T.P. Model-Based Optimization of Solid-Supported Micro-Hotplates for Microfluidic Cryofixation. Micromachines 2024, 15, 1069. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, N.; Zhang, J.; Yang, B. Advances in Microfluidic Single-Cell RNA Sequencing and Spatial Transcriptomics. Micromachines 2025, 16, 426. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Z.; Ren, T.; Wen, J.; Li, J.; Tang, T. Recent Advances in Microfluidic Impedance Detection: Principle, Design and Applications. Micromachines 2006, 16, 683. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Shen, Y. Editorial for the Special Issue on the Application of Microfluidic Technology in Bioengineering. Micromachines 2025, 16, 1022. https://doi.org/10.3390/mi16091022
Wang S, Shen Y. Editorial for the Special Issue on the Application of Microfluidic Technology in Bioengineering. Micromachines. 2025; 16(9):1022. https://doi.org/10.3390/mi16091022
Chicago/Turabian StyleWang, Shuli, and Yigang Shen. 2025. "Editorial for the Special Issue on the Application of Microfluidic Technology in Bioengineering" Micromachines 16, no. 9: 1022. https://doi.org/10.3390/mi16091022
APA StyleWang, S., & Shen, Y. (2025). Editorial for the Special Issue on the Application of Microfluidic Technology in Bioengineering. Micromachines, 16(9), 1022. https://doi.org/10.3390/mi16091022