Proof-of-Concept Development of a Bioelectric Biosensor Using Arduino for Monitoring Dopaminergic Response in Neuroblastoma Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals, Cell Culture and Cell Immobilization
2.2. Dopamine Treatment
2.3. Bioelectric Biosensor Setup
Variable Resistance Measurement Program
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADHD | Attention-deficit hyperactivity disorder |
BERA | Bioelectric recognition assay |
DA | Dopamine |
FSCV | Fast-scan cyclic voltammetry |
HPLC | High-performance liquid chromatography |
LM | Low melting temperature |
Appendix A. Variable Resistance Measurement Program Code (Sketch Software)
References
- Dunlop, B.W.; Nemeroff, C.B. The role of dopamine in the pathophysiology of depression. Arch. Gen. Psychiatry 2007, 64, 327–337. [Google Scholar] [CrossRef]
- Howes, O.D.; Kapur, S. The dopamine hypothesis of schizophrenia: Version III—The final common pathway. Schizophr. Bull. 2009, 35, 549–562. [Google Scholar] [CrossRef]
- Grace, A.A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci. 2016, 17, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Mefford, I.N. Application of high-performance liquid chromatography with electrochemical detection to neurochemical analysis. J. Neurosci. Methods 1981, 3, 207–224. [Google Scholar] [CrossRef]
- Si, B.; Song, E. Recent Advances in the Detection of Neurotransmitters. Chemosensors 2018, 6, 1. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, J.; Johnson, M.; Mandal, R.; Cruz, M.; Martínez-Huélamo, M.; Andres-Lacueva, C.; Wishart, D.S. A Comprehensive LC–MS Metabolomics Assay for Quantitative Analysis of Serum and Plasma. Metabolites 2024, 14, 622. [Google Scholar] [CrossRef]
- Ahammad, A.J.S.; Lee, J.-J.; Rahman, M.A. Electrochemical Sensors Based on Carbon Nanotubes. Sensors 2009, 9, 2289–2319. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhao, C.; Zhang, J.; Liu, H. Graphene-based biosensors for detection of biomarkers. Microchim. Acta 2020, 187, 60. [Google Scholar] [CrossRef] [PubMed]
- Sakmann, B.; Neher, E. Patch clamp techniques for studying ionic channels in excitable membranes. Annu. Rev. Physiol. 1984, 46, 455–472. [Google Scholar] [CrossRef]
- Grynkiewicz, G.; Poenie, M.; Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 1985, 260, 3440–3450. [Google Scholar] [CrossRef]
- Robinson, D.L.; Venton, B.J.; Heien, M.L.; Wightman, R.M. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin. Chem. 2003, 49, 1763–1773. [Google Scholar] [CrossRef] [PubMed]
- Kintzios, S.; Pistola, E.; Panagiotopoulos, P.; Bomsel, M.; Alexandropoulos, N.; Bem, F.; Ekonomou, G.; Biselis, J.; Levin, R. Bioelectric recognition assay (BERA). Biosens. Bioelectron. 2001, 16, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Apostolou, T.; Moschopoulou, G.; Kolotourou, E.; Kintzios, S. Assessment of in vitro dopamine-neuroblastoma cell interactions with a bioelectric biosensor: Perspective for a novel in vitro functional assay for dopamine agonist/antagonist activity. Talanta 2017, 170, 69–73. [Google Scholar] [CrossRef]
- Caux, M.; Achit, A.; Var, K.; Boitel-Aullen, G.; Rose, D.; Aubouy, A.; Argentieri, S.; Campagnolo, R.; Maisonhaute, E. PassStat, a simple but fast, precise and versatile open source potentiostat. HardwareX 2022, 11, e00290. [Google Scholar] [CrossRef]
- Azimi, S.; Farahani, A.; Docoslis, A.; Vahdatifar, S. Developing an integrated microfluidic and miniaturized electrochemical biosensor for point of care determination of glucose in human plasma samples. Anal. Bioanal. Chem. 2021, 413, 1441–1452. [Google Scholar] [CrossRef]
- Mgenge, L.; Saha, C.; Kumari, P.; Ghosh, S.K.; Singh, H.; Mallick, K. Electrochemical sensing of dopamine using nanostructured silver chromate: Development of an IoT-integrated sensor. Anal. Biochem. 2025, 698, 115726. [Google Scholar] [CrossRef] [PubMed]
- Kintzios, S.; Pistola, E.; Konstas, J.; Bem, F.; Matakiadis, T.; Alexandropoulos, N.; Biselis, I.; Levin, R. The application of the bioelectric recognition assay for the detection of human and plant viruses: Definition of operational parameters. Biosens. Bioelectron. 2001, 16, 467–480. [Google Scholar] [CrossRef]
- Katsanakis, N.; Katsivelis, A.; Kintzios, S. Immobilization of Electroporated Cells for Fabrication of Cellular Biosensors: Physiological Effects of the Shape of Calcium Alginate Matrices and Foetal Calf Serum. Sensors 2009, 9, 378–385. [Google Scholar] [CrossRef]
- Grace, A.A.; Bunney, B.S. The control of firing pattern in nigral dopamine neurons: Burst firing. J. Neurosci. 1984, 4, 2877–2890. [Google Scholar] [CrossRef]
- Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine receptors: From structure to function. Physiol. Rev. 1998, 78, 189–225. [Google Scholar] [CrossRef]
- Doumèche, B.; Küppers, M.; Stapf, S.; Blümich, B.; Hartmeier, W.; Ansorge-Schumacher, M.B. Immobilization of enzymes within agarose gels: Assessment by NMR microscopy. J. Microencapsul. 2004, 21, 565–573. [Google Scholar] [CrossRef]
- Pavlov, G.; Hsu, J.T. Modelling the effect of temperature on the gel-filtration chromatographic protein separation. Comput. Chem. Eng. 2018, 112, 304–315. [Google Scholar] [CrossRef]
- Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef] [PubMed]
- Abdul Ghani, M.A.; Nordin, A.N.; Zulhairee, M.; Che Mohamad Nor, A.; Shihabuddin Ahmad Noorden, M.; Muhamad Atan, M.K.F.; Ab Rahim, R.; Mohd Zain, Z. Portable Electrochemical Biosensors Based on Microcontrollers for Detection of Viruses: A Review. Biosensors 2022, 12, 666. [Google Scholar] [CrossRef] [PubMed]
- Sardini, E.; Serpelloni, M.; Tonello, S. Printed Electrochemical Biosensors: Opportunities and Metrological Challenges. Biosensors 2020, 10, 166. [Google Scholar] [CrossRef] [PubMed]
Parameter | Estimated Range/Value | Comments |
---|---|---|
ADC resolution | 10-bit (4.88 mV steps) | Limited, nonlinear for resistance calculation |
Resistance resolution | ±5–100 Ω (depends on actual R) | Best near R ≈ R1 (1 kΩ) |
Gain | 1 × (no amplification) | Can be modified with op-amp |
Noise floor | ±2–5 ADC counts (~±10–25 mV) | High in noisy environments |
Filter options | Not implemented by default | Add software/hardware filters for better SNR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappa, M.; Kintzios, S. Proof-of-Concept Development of a Bioelectric Biosensor Using Arduino for Monitoring Dopaminergic Response in Neuroblastoma Cells. Micromachines 2025, 16, 951. https://doi.org/10.3390/mi16080951
Pappa M, Kintzios S. Proof-of-Concept Development of a Bioelectric Biosensor Using Arduino for Monitoring Dopaminergic Response in Neuroblastoma Cells. Micromachines. 2025; 16(8):951. https://doi.org/10.3390/mi16080951
Chicago/Turabian StylePappa, Magdalene, and Spyridon Kintzios. 2025. "Proof-of-Concept Development of a Bioelectric Biosensor Using Arduino for Monitoring Dopaminergic Response in Neuroblastoma Cells" Micromachines 16, no. 8: 951. https://doi.org/10.3390/mi16080951
APA StylePappa, M., & Kintzios, S. (2025). Proof-of-Concept Development of a Bioelectric Biosensor Using Arduino for Monitoring Dopaminergic Response in Neuroblastoma Cells. Micromachines, 16(8), 951. https://doi.org/10.3390/mi16080951