Nondestructive Mechanical and Electrical Characterization of Piezoelectric Zinc Oxide Nanowires for Energy Harvesting
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of ZnO Nanowires
2.2. Characterization of ZnO Nanowires
2.2.1. Contact Resonance (CR) Measurement
2.2.2. Electrical Characterization
2.2.3. Piezoelectric Coefficient d33
3. Results and Discussion
3.1. Indentation Modulus of ZnO Nanowires
Sample ID | Diameter, D (µm) | Length, L (µm) | Resonance Frequency, fCR (kHz) | Reduced Young’s Modulus, E* (GPa) | Indentation Modulus, MS (GPa) | |
---|---|---|---|---|---|---|
ZnO NW | Bulk ZnO | |||||
CBD100 | 0.10 ± 0.01 | 2.69 ± 0.05 | 257.7 ± 2.0 | 270.3 ± 2.0 | 60.9 | 96.5 ± 1.9 |
CBD200 | 0.20 ± 0.07 | 1.83 ± 0.14 | 235.0 ± 2.0 | 245.0 ± 2.0 | 62.0 | 99.3 ± 2.2 |
TSG570 | 0.57 ± 0.05 | 27.35 ± 0.31 | 262.7 ± 1.7 | 270.6 ± 1.7 | 64.6 | 106.2 ± 2.0 |
TSG690 | 0.69 ± 0.08 | 51.86 ± 0.82 | 278.2 ± 1.6 | 279.4 ± 2.7 | 70.2 | 122.2 ± 2.3 |
3.2. I-V Characterization
3.3. Piezoelectric Coefficient d33 of ZnO Nanowires
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ZnO | Zinc oxide |
NWA | Nanowire array |
SEM | Scanning electron microscopy |
CR | Contact resonance |
AFM | Atomic force microscopy |
I-V | Current–voltage |
PENG | Piezoelectric nanogenerator |
TSG | Thermo-convective solution growth |
CBD | Chemical bath deposition |
SL | Seed layer |
DC | Direct current |
MEMS | Microelectromechanical systems |
SAG | Selective area growth |
XRD | X-ray diffraction |
VING | Vertically integrated nanogenerator |
ICP | Inductive coupled plasma |
EBIC | Electron beam-induced current |
APT | Advanced probing tool |
VLS | Vapor–liquid–solid |
CRI | Contact resonance imaging |
FWHM | Full width at half maximum |
STM | Scanning tunneling microscope |
References
- Wang, Z.L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef]
- Oliveira, F.F.; Proenca, M.P.; Araújo, J.P.; Ventura, J. Output Potential of ZnO Nanowires: Influence of Geometrical Parameters. J. Nanosci. Nanotechnol. 2016, 16, 8533–8537. [Google Scholar] [CrossRef]
- Serairi, L.; Yu, D.; Leprince-Wang, Y. Numerical modeling and simulation of ZnO nanowire devices for energy harvesting. Phys. Status Solidi C 2016, 13, 683–687. [Google Scholar] [CrossRef]
- Anang, F.E.B.; Refino, A.D.; Harm, G.; Li, D.; Xu, J.; Cain, M.; Brand, U.; Li, Z.; Görke, M.; Garnweitner, G.; et al. Thermo-Convective Solution Growth of Vertically Aligned Zinc Oxide Nanowire Arrays for Piezoelectric Energy Harvesting. Micromachines 2024, 15, 1179. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Bertke, M.; Gad, A.; Yu, F.; Hamdana, G.; Bakin, A.; Peiner, E. Fabrication of ZnO Nanorods on MEMS Piezoresistive Silicon Microcantilevers for Environmental Monitoring. Proceedings 2017, 1, 290. [Google Scholar] [CrossRef]
- Xu, J.; Strempel, K.; Zhou, H.; Waag, A.; Bertke, M.; Schmidt, A.; Peiner, E. Area-Selective Growth of Aligned ZnO Nanorod Arrays for MEMS Device Applications. Proceedings 2018, 2, 887. [Google Scholar] [CrossRef]
- Anang, F.E.B.; Wei, X.; Xu, J.; Cain, M.; Li, Z.; Brand, U.; Peiner, E. Area-Selective Growth of Zinc Oxide Nanowire Arrays for Piezoelectric Energy Harvesting. Micromachines 2024, 15, 261. [Google Scholar] [CrossRef]
- Ou, C.; Sanchez-Jimenez, P.E.; Datta, A.; Boughey, F.L.; Whiter, R.A.; Sahonta, S.-L.; Kar-Narayan, S. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications. ACS Appl. Mater. Interfaces 2016, 8, 13678–13683. [Google Scholar] [CrossRef]
- Tao, R.; Parmer, M.; Ardila, G.; Oliveira, P.; Marques, D.; Montès, L.; Mouis, M. Performance of ZnO based piezo-generators under controlled compression. Semicond. Sci. Technol. 2017, 32, 64003. [Google Scholar] [CrossRef]
- Chakraborty, A.; Orsini, A.; Kar, J.P.; Gatta, F.; Khan, U.; Falconi, C. Ultra-efficient thermo-convective solution-growth of vertically aligned ZnO nanowires. Nano Energy 2022, 97, 107167. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, R.; Ma, W.; Lu, H.; Mo, Y.; Wang, Y.; Bao, R.; Pan, C. Junction Piezotronic Transistor Arrays Based on Patterned ZnO Nanowires for High-Resolution Tactile and Photo Mapping. Sensors 2024, 24, 4775. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Wan, L.; Ding, G.; Wu, P.; Qiu, D.; Pan, J.; He, H. Flexible ZnO nanogenerator for mechanical energy harvesting. In Proceedings of the 2013 14th International Conference on Electronic Packaging Technology, Dalian, China, 11–14 August 2013; pp. 1292–1295. [Google Scholar] [CrossRef]
- Abdulrahman, A.F.; Ahmed, S.M.; Ahmed, N.M.; Almessiere, M.A. Enhancement of ZnO Nanorods Properties Using Modified Chemical Bath Deposition Method: Effect of Precursor Concentration. Crystals 2020, 10, 386. [Google Scholar] [CrossRef]
- Garcia, A.J.L.; Tao, R.; Mouis, M.; Ardila, G. (Eds.) A New Approach to Calculate the Piezoelectric Coefficient of Piezo-Semiconductor Nanowires Integrated in Nanocomposites: Experiment and Simulation. In Proceedings of the 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, 20–25 June 2021; pp. 1056–1059. [Google Scholar] [CrossRef]
- Fathi, S.; Sheikholeslami, T.F.; Zahed, B. Numerical Investigation of Effective Piezoelectric (deff33) Effect on Piezoelectric Nanogenerator Output. In Proceedings of the 5th International Congress on Nanoscience & Nanotechnology (ICNN2014), Tehran, Iran, 2–6 February 2014. [Google Scholar]
- Wang, Z.; Liu, S.; Yang, Z.; Dong, S. Perspective on Development of Piezoelectric Micro-Power Generators. Nanoenergy Adv. 2023, 3, 73–100. [Google Scholar] [CrossRef]
- Ali, T.A.; Pilz, J.; Schäffner, P.; Kratzer, M.; Teichert, C.; Stadlober, B.; Coclite, A.N. Piezoelectric Properties of Zinc Oxide Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition. Phys. Status Solidi (A) 2020, 217, 2000319. [Google Scholar] [CrossRef]
- Jalabert, T.; Pusty, M.; Mouis, M.; Ardila, G. Investigation of the diameter-dependent piezoelectric response of semiconducting ZnO nanowires by Piezoresponse Force Microscopy and FEM simulations. Nanotechnology 2023, 34, 115402. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.J.L.; Mouis, M.; Cresti, A.; Tao, R.; Ardila, G. Influence of slow or fast surface traps on the amplitude and symmetry of the piezoelectric response of semiconducting-nanowire-based transducers. J. Phys. D Appl. Phys. 2022, 55, 405502. [Google Scholar] [CrossRef]
- Hao, J.; Liu, P.; Gao, G.; Gao, Q.; Yang, J.; Liu, L. A coplanar electrode operating mode for piezoelectric energy harvesting and self-powered sensing. Appl. Phys. Lett. 2025, 126, 083903. [Google Scholar] [CrossRef]
- Gu, L.; Cui, N.; Cheng, L.; Xu, Q.; Bai, S.; Yuan, M.; Wu, W.; Liu, J.; Ma, Y.Z.F.; Qin, Y.; et al. Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Lett. 2013, 13, 91–94. [Google Scholar] [CrossRef]
- Zhu, D.; Fu, Y.; Zang, W.; Zhao, Y.; Xing, L.; Xue, X. Piezo/active humidity sensing of CeO2/ZnO and SnO2/ZnO nanoarray nanogenerators with high response and large detecting range. Sens. Actuators B 2014, 205, 12–19. [Google Scholar] [CrossRef]
- Nunez, F.A.; Castro, A.C.H.; de Oliveira, V.L.; Lima, A.C.; Oliveira, J.R.; de Medeiros, G.X.; Sasahara, G.L.; Santos, K.S.; Lanfredi, A.J.C.; Alves, W.A. Electrochemical Immunosensors Based on Zinc Oxide Nanorods for Detection of Antibodies Against SARS-CoV-2 Spike Protein in Convalescent and Vaccinated Individuals. ACS Biomater. Sci. Eng. 2023, 9, 458–473. [Google Scholar] [CrossRef]
- Zhang, X.; Villafuerte, J.; Consonni, V.; Capsal, J.-F.; Cottinet, P.-J.; Petit, L.; Le, M.-Q. Characterizing and Optimizing Piezoelectric Response of ZnO Nanowire/PMMA Composite-Based Sensor. Nanomaterials 2021, 11, 1712. [Google Scholar] [CrossRef]
- Savarimuthu, K.; Rajamanickam, G.; Shankararajan, R.; Perumal, R.; Rayarfrancis, A. Experimental Study on Flexible ZnO Based Nanogenerator Using Schottky Contact for Energy Harvesting Applications. IEEE Trans. Nanotechnol. 2017, 16, 469–476. [Google Scholar] [CrossRef]
- Legardinier, L.; Ardila, G.; Gélard, I.; Jiménez, C.; Weber, M.; Donatini, F.; Consonni, V. Enhancement of the piezoelectric response of ZnO nanowires grown via PLI-MOCVD using post-deposition treatments through adjusted screening and surface effects. Nanoscale 2025, 17, 10835–10849. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Su, W.; Qin, X.; Cheng, K.; Ding, W.; Ma, L.; Cui, Z.; Chen, J.; Rao, J.; Ouyang, H.; et al. Mechanical/Electrical Characterization of ZnO Nanomaterial Based on AFM/Nanomanipulator Embedded in SEM. Micromachines 2021, 12, 248. [Google Scholar] [CrossRef]
- Fan, S.; Bi, S.; Li, Q.; Guo, Q.; Liu, J.; Ouyang, Z.; Jiang, C.; Song, J. Size-dependent Young’s modulus in ZnO nanowires with strong surface atomic bonds. Nanotechnology 2018, 29, 125702. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Fahrbach, M.; Xu, J.; Anang, F.E.B.; Vergin, M.; Meierhofer, F.; Brand, U.; Waag, A.; Peiner, E. Imaging the mechanical properties of nanowire arrays. TM-Tech. Mess. 2024, 91, 268–279. [Google Scholar] [CrossRef]
- Wen, C.; Jing, X.; Hitzel, F.F.; Pan, C.; Benstetter, G.; Lanza, M. In Situ Observation of Current Generation in ZnO Nanowire Based Nanogenerators Using a CAFM Integrated into an SEM. ACS Appl. Mater. Interfaces 2019, 11, 15183–15188. [Google Scholar] [CrossRef]
- Alipour, A.; Arat, K.T.; Alemansour, H.; Montes, L.; Gardiner, J.; Diederichs, J.; Colvin, B.; Amann, A.; Jensen, K.; Neils, W.; et al. A Highly Integrated AFM-SEM Correlative Analysis Platform. Microsc. Today 2023, 31, 17–22. [Google Scholar] [CrossRef]
- Khan, M.A.; Sakrani, S.; Suhaima, S.; Wahab, Y.; Muhammad, R. Synthesis of Cu2O and ZnO Nanowires and their Heterojunction Nanowires by Thermal Evaporation: A Short Review. J. Teknol. 2014, 71, 83–88. [Google Scholar] [CrossRef]
- Joe, S.B.; Shaby, S.M. Characterization and performance analysis of piezoelectric ZnO nanowire for low-frequency energy harvesting applications. Appl. Nanosci. 2023, 13, 971–984. [Google Scholar] [CrossRef]
- Briscoe, J.; Jalali, N.; Woolliams, P.; Stewart, M.; Weaver, P.M.; Cain, M.; Dunn, S. Measurement techniques for piezoelectric nanogenerators. Energy Environ. Sci. 2013, 6, 3035. [Google Scholar] [CrossRef]
- Cain, M.G. Characterisation of Ferroelectric Bulk Materials and Thin Films; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- ESPY33. Available online: https://electrosciences.co.uk/products/piezoelectric-materials-d33-analyser/ (accessed on 2 February 2024).
- Wang, Y.; Xie, W.; Peng, W.; Li, F.; He, Y. Fundamentals and Applications of ZnO-Nanowire-Based Piezotronics and Piezo-Phototronics. Micromachines 2022, 14, 47. [Google Scholar] [CrossRef]
- DIM, AZ 5214 E Product Data Sheet, Image Reversal Photoresist; Clariant GmbH: Wiesbaden, Germany, 2000.
- Niklaus, F.; Enoksson, P.; Kälvesten, E.; Stemme, G. Low-temperature full wafer adhesive bonding. J. Micromech. Microeng. 2001, 11, 100–107. [Google Scholar] [CrossRef]
- Perala, E. Microposit S1818 G2 Positive Photoresist Material Safety Data Sheet; v. 1.2; The DOW Chemical Company: Marlborough, MI, USA, 2013. [Google Scholar]
- Tian, G.; Xiong, D.; Su, Y.; Yang, T.; Gao, Y.; Yan, C.; Deng, W.; Jin, L.; Fan, H.Z.X.; Wang, C.; et al. Understanding the Potential Screening Effect through the Discretely Structured ZnO Nanorods Piezo Array. Nano Lett. 2020, 20, 4270–4277. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, X.; Zheng, X.; Li, Y.; Liu, Y.; Shen, Y.; Ding, Y.; Zhang, Y. Effect of carrier screening on ZnO-based resistive switching memory devices. Nano Res. 2017, 10, 77–86. [Google Scholar] [CrossRef]
- Esfahani, M.N.; Alaca, B.E. A Review on Size-Dependent Mechanical Properties of Nanowires. Adv. Eng. Mater. 2019, 21, 1900192. [Google Scholar] [CrossRef]
- Cain, M. An Electrode for a Device for Measuring Piezoelectricity. UK Patent GB000002572334B, 2 October 2019. [Google Scholar]
- Xu, J.; Refino, A.D.; Delvallée, A.; Seibert, S.; Schwalb, C.; Hansen, P.E.; Foldyna, M.; Siaudinyte, L.; Hamdana, G.; Wasisto, H.S.; et al. Deep-reactive ion etching of silicon nanowire arrays at cryogenic temperatures. Appl. Phys. Rev. 2024, 11, 021411. [Google Scholar] [CrossRef]
- Rabe, U. Atomic force acoustic microscopy. In Applied Scanning Probe Methods II: Scanning Probe Microscopy Techniques; Bhushan, B., Fuchs, H., Eds.; Springer: Berlin, Germany, 2006; pp. 37–90. [Google Scholar]
- Hamdana, G.; Puranto, P.; Langfahl-Klabes, J.; Li, Z.; Pohlenz, F.; Xu, M.; Granz, T.; Bertke, M.; Wasisto, H.S.; Brand, U.; et al. Nanoindentation of crystalline silicon pillars fabricated by soft UV nanoimprint lithography and cryogenic deep reactive ion etching. Sens. Actuators A Phys. 2018, 283, 65–78. [Google Scholar] [CrossRef]
- Fatahilah, M.F.; Puranto, P.; Yu, F.; Langfahl-Klabes, J.; Felgner, A.; Li, Z.; Xu, M.; Pohlenz, F.; Strempel, K.; Peiner, E.; et al. Traceable Nanomechanical Metrology of GaN Micropillar Array. Adv. Eng. Mater. 2018, 20, 1800353. [Google Scholar] [CrossRef]
- Morkoç, H.; Özgür, Ü. Zinc Oxide: Fundamentals, Materials and Device Technology; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- MSE Supplies, MSE PRO ZnO Zinc Oxide Crystal Substrates. Zinc Oxide for Sale–MSE Supplies LLC. Available online: https://www.msesupplies.com/en-de/products/mse-pro-zno-zinc-oxide-crystal-substrates (accessed on 20 December 2024).
- Vlassov, S.; Bocharov, D.; Polyakov, B.; Vahtrus, M.; Šutka, A.; Oras, S.; Zadin, V.; Kyritsakis, A. Critical review on experimental and theoretical studies of elastic properties of wurtzite-structured ZnO nanowires. Nanotechnol. Rev. 2023, 12, 20220505. [Google Scholar] [CrossRef]
- Stan, G.; Ciobanu, C.V.; Parthangal, P.M.; Cook, R.F. Diameter-Dependent Radial and Tangential Elastic Moduli of ZnO Nanowires. Nano Lett. 2007, 7, 3691–3697. [Google Scholar] [CrossRef]
- Song, J.; Wang, X.; Riedo, E.; Wang, Z.L. Elastic property of vertically aligned nanowires. Nano Lett. 2005, 5, 1954–1958. [Google Scholar] [CrossRef]
- Roy, A.; Mead, J.; Wang, S.; Huang, H. Effects of surface defects on the mechanical properties of ZnO nanowires. Sci. Rep. 2017, 7, 9547. [Google Scholar] [CrossRef]
- Lord, A.M.; Maffeis, T.G.; Kryvchenkova, O.; Cobley, R.J.; Kalna, K.; Kepaptsoglou, D.M.; Ramasse, Q.M.; Walton, A.S.; Ward, M.B.; Köble, J.; et al. Controlling the Electrical Transport Properties of Nanocontacts to Nanowires. Nano Lett. 2015, 15, 4248–4254. [Google Scholar] [CrossRef]
- Comjani, F.F.; Willer, U.; Kontermann, S.; Schade, W. Influence of the metal-semiconductor contact by energy harvesting from vertically aligned zinc oxide nanowires. Appl. Phys. Lett. 2014, 104, 143113. [Google Scholar] [CrossRef]
- Liu, M.; Kong, L.; Su, W.; Djoulde, A.; Cheng, K.; Chen, J.; Rao, J.; Wang, Z. Pick-up strategies for and electrical characterization of ZnO nanowires with a SEM-based nanomanipulator. Nano Prec. Eng. 2023, 6, 013003. [Google Scholar] [CrossRef]
- Cossuet, T.; Donatini, F.; Lord, A.M.; Appert, E.; Pernot, J.; Consonni, V. Polarity-Dependent High Electrical Conductivity of ZnO Nanorods and Its Relation to Hydrogen. J. Phys. Chem. C 2018, 122, 22767–22775. [Google Scholar] [CrossRef]
- Song, J.; Zhou, J.; Wang, Z.L. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. Nano Lett. 2006, 6, 1656–1662. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Z.L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 2007, 7, 2499–2505. [Google Scholar] [CrossRef]
- Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter. 2004, 16, R829–R858. [Google Scholar] [CrossRef]
Sample ID | Sputtering Time | ZnO SL (~nm) | Growth Method | Length—L (µm) | Diameter—D (µm) | Aspect Ratio | Density (µm−2) | Vertical Alignment (°) | Remarks |
---|---|---|---|---|---|---|---|---|---|
CBD100 | 20 min in Ar | 20 | CBD: 90 °C; 3 h | 2.69 ± 0.05 | 0.10 ± 0.01 | 27 | 14.6 ± 10.6 | 89.8 ± 0.3 | Magnetic stirring |
CBD200 | 20 min in Ar | 20 | CBD: 90 °C; 3 h | 1.83 ± 0.14 | 0.20 ± 0.07 | 8 | 10.1 ± 0.8 | 90.0 ± 0.9 | Magnetic stirring |
TSG320 | 10 min in Ar | 10 | TSG: 105 °C; 24 h | 12.66 ± 0.24 | 0.32 ± 0.03 | 39 | 4.0 ± 1.0 | 89.6 ± 0.4 | Magnetic stirring |
TSG570 | 10 min in Ar | 10 | TSG: 105 °C; 24 h | 27.35 ± 0.31 | 0.57 ± 0.05 | 48 | 3.8 ± 5.8 | 89.7 ± 0.3 | Still solution |
TSG690 | 10 min in Ar | 10 | TSG: 105 °C; 24 h | 51.86 ± 0.82 | 0.69 ± 0.08 | 75 | 3.3 ± 2.1 | 89.5 ± 0.9 | Air pump |
NW Diameter, D (nm) | NW Length, L (µm) | Polymer/Metallization/Probe | NW Resistance, R (kΩ) | NW Conductivity, σ (kS/m) | Ref. |
---|---|---|---|---|---|
690 ± 0.08 | 52 ± 0.8 | PMMA/Cr/Au/W | 3 ± 3% | 57.1 ± 2.10 | TSG690 |
570 ± 0.05 | 27 ± 0.3 | PMMA/Cr/Au/W | 36 ± 2.5% | 2.22 ± 0.07 | TSG570 |
570 ± 0.05 | 27 ± 0.3 | etched PMMA/no/W | 217 ± 0.5% | 0.37 ± 0.004 | TSG570 |
690 ± 0.08 | 52 ± 0.8 | etched PMMA/no/W | 202 ± 0.5% | 0.83 ± 0.014 | TSG690 |
1060 | 31 ± 3 | no/no/W | - | 0.4809 | [27] * |
420–640 | 3.963 ± 0.060 | no/TiAu/W, Zn-polar | - | 5–25 | CBD, [58] |
no/no/W, Zn-polar | - | ~17 | |||
440–600 | 3.242 ± 0.085 | no/TiAu/W, O-polar | - | 0.2–14.3 | |
no/no/W, O-polar | - | 6–20 |
NW Diameter, D (nm) | NW Length, L (µm) | Polymer | d33 (pC/N) | Ref. |
---|---|---|---|---|
100 ± 10 | 2.69 ± 0.05 | S1818, embedding the NWs, etched by 0.27 µm to remove it from the top | 1.6 ± 0.4, max. | CBD100 |
1.1 ± 0.4, ave. | ||||
200 ± 70 | 1.83 ± 0.14 | SU-8, ~0.1 µm on top of NWA | 1.9 ± 0.5 | [7] |
2.1 ± 0.5 | ||||
3.6 ± 0.5 | ||||
84 ± 16 | 1.031 ± 0.016 | PMMA, 1.5 µm on top of NWA | 3.53 ± 0.33 | [24] |
PMMA, 2 µm on top of NWA | 1.21 ± 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anang, F.E.B.; Cain, M.; Xu, M.; Li, Z.; Brand, U.; Jangid, D.; Seibert, S.; Schwalb, C.; Peiner, E. Nondestructive Mechanical and Electrical Characterization of Piezoelectric Zinc Oxide Nanowires for Energy Harvesting. Micromachines 2025, 16, 927. https://doi.org/10.3390/mi16080927
Anang FEB, Cain M, Xu M, Li Z, Brand U, Jangid D, Seibert S, Schwalb C, Peiner E. Nondestructive Mechanical and Electrical Characterization of Piezoelectric Zinc Oxide Nanowires for Energy Harvesting. Micromachines. 2025; 16(8):927. https://doi.org/10.3390/mi16080927
Chicago/Turabian StyleAnang, Frank Eric Boye, Markys Cain, Min Xu, Zhi Li, Uwe Brand, Darshit Jangid, Sebastian Seibert, Chris Schwalb, and Erwin Peiner. 2025. "Nondestructive Mechanical and Electrical Characterization of Piezoelectric Zinc Oxide Nanowires for Energy Harvesting" Micromachines 16, no. 8: 927. https://doi.org/10.3390/mi16080927
APA StyleAnang, F. E. B., Cain, M., Xu, M., Li, Z., Brand, U., Jangid, D., Seibert, S., Schwalb, C., & Peiner, E. (2025). Nondestructive Mechanical and Electrical Characterization of Piezoelectric Zinc Oxide Nanowires for Energy Harvesting. Micromachines, 16(8), 927. https://doi.org/10.3390/mi16080927