Layered Gradient Rhombic Dodecahedron Composite Structures for Biomimetic Bone Fabricated via Selective Laser Melting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structural Design
2.1.1. Selection of Unit Cells and Gradient Structure Design
2.1.2. Calculation of Porosity Parameters
2.2. Preparation of One-Dimensional Gradient Porous Structures
2.3. Experimental Characterization
2.3.1. Appearance Observation of Porous Structure
2.3.2. Compression Measurement
2.4. Finite Element Meshing and Boundary Conditions
2.4.1. Boundary Conditions for the Compression Perpendicular to the Direction of Structural Gradient of Layered Structure
2.4.2. Boundary Conditions for the Compression Parallel to the Direction of the Structural Gradient of Layered Structure
2.4.3. Boundary Conditions for Shear Stress Acting on the Interface Between the Porous and Solid
3. Results and Discussion
3.1. Microstructure Characterization
3.2. Simulation Result Analysis
3.2.1. The Compression Parallel to the Direction of Structural Gradient of Layered Structure Composed of Two Types of Unit Cells
3.2.2. The Compression Perpendicular to the Direction of Structural Gradient of Layered Structure Composed of Two Types of Unit Cells
3.2.3. Shear Force Acts on the Interface Between the Porous and Solid
3.2.4. Analysis of Compression Simulation Results for Solid and Porous Structures
3.3. Compressive Mechanical Properties and Failure Analysis
3.3.1. Compressive Mechanical Properties and Morphology Analysis of Gradient Perpendicular Porous Structures
3.3.2. Compressive Mechanical Properties and Morphology Analysis of Gradient Parallel Porous Structures
3.3.3. The Influence of Solid Part Thickness of Composite Structures on Compressive Mechanical Properties Perpendicular to the Direction of Structural Gradient of Layered Structure Composed of Two Types of Unit Cells
3.4. Comparison Between Simulation and Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xue, N.; Ding, X.; Huang, R.; Jiang, R.; Huang, H.; Pan, X.; Min, W.; Chen, J.; Duan, J.A.; Liu, P.; et al. Bone Tissue Engineering in the Treatment of Bone Defects. Pharmaceuticals 2022, 15, 879. [Google Scholar] [CrossRef] [PubMed]
- Ekholm, R.; Adami, J.; Tidermark, J.; Hansson, K.; Tornkvist, H.; Ponzer, S. Fractures of the shaft of the humerus. An epidemiological study of 401 fractures. J Bone Jt. Surg. Br. 2006, 88, 1469–1473. [Google Scholar] [CrossRef]
- Volgas, D.A.; Stannard, J.P.; Alonso, J.E. Nonunions of the humerus. Clin. Orthop. Relat. Res. 2004, 419, 46–50. [Google Scholar] [CrossRef]
- Kim, M.; An, S.; Huh, C.; Kim, C. Development of Zirconium-Based Alloys with Low Elastic Modulus for Dental Implant Materials. Appl. Sci. 2019, 9, 5281. [Google Scholar] [CrossRef]
- Subasi, O.; Karaismailoglu, B.; Ashkani-Esfahani, S.; Lazoglu, I. Investigation of lattice infill parameters for additively manufactured bone fracture plates to reduce stress shielding. Comput. Biol. Med. 2023, 161, 107062. [Google Scholar] [CrossRef]
- Sunavala-Dossabhoy, G.; Saba, B.M.; McCarthy, K.J. Debulking of the Femoral Stem in a Primary Total Hip Joint Replacement: A Novel Method to Reduce Stress Shielding. Bioengineering 2024, 11, 393. [Google Scholar] [CrossRef] [PubMed]
- Elhadad, A.A.; Romero-Resendiz, L.; Rossi, M.; Rodríguez-Albelo, L.; Lascano, S.; Afonso, C.R.; Alcudia, A.; Amigó, V.; Torres, Y. Findings and perspectives of β-Ti alloys with biomedical applications: Exploring beyond biomechanical and biofunctional behaviour. J. Mater. Res. Technol. 2024, 33, 3550–3618. [Google Scholar] [CrossRef]
- Feng, P.; Zhao, R.Y.; Tang, W.M.; Yang, F.; Tian, H.F.; Peng, S.P.; Pan, H.; Shuai, C.J. Structural and Functional Adaptive Artificial Bone: Materials, Fabrications, and Properties. Adv. Funct. Mater. 2023, 33, 2214726. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, Y.; Wang, M.; Liu, Z.; Liu, C. Parametric Design of Hip Implant With Gradient Porous Structure. Front. Bioeng. Biotech. 2022, 10, 850184. [Google Scholar] [CrossRef]
- Elfick, A.P.; Bedi, G.; Port, A.; Unsworth, A. Design and validation of a surrogate humerus for biomechanical testing. J. Biomech. 2002, 35, 533–536. [Google Scholar] [CrossRef]
- Majed, A.; Thangarajah, T.; Southgate, D.; Reilly, P.; Bull, A.; Emery, R. Cortical thickness analysis of the proximal humerus. Shoulder Elb. 2019, 11, 87–93. [Google Scholar] [CrossRef]
- Castro-Franco, A.D.; Mendoza-Muñoz, I.; González-Angeles, A.; Cruz-Sotelo, S.E.; Castañeda, A.M.; Siqueiros-Hernández, M. Trends in the Characterization of the Proximal Humerus in Biomechanical Studies: A Review. Appl. Sci. 2020, 10, 6514. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Q.; Zhou, C.C.; Tan, Y.F.; Hui, D.; Zhai, Y. Design and Mechanical Performance Analysis of Ti6Al4V Biomimetic Bone with One-Dimensional Continuous Gradient Porous Structures. J. Mater. Eng. Perform. 2024, 1–24. [Google Scholar] [CrossRef]
- Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y.M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 2016, 83, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.H.; Cossey, A.; Tong, J. Stress shielding in bone of a bone-cement interface. Med. Eng. Phys. 2016, 38, 423–426. [Google Scholar] [CrossRef]
- Zhang, M.K.; Yang, Y.Q.; Wang, D.; Xiao, Z.F.; Song, C.H.; Weng, C.W. Effect of heat treatment on the microstructure and mechanical properties of Ti6Al4V gradient structures manufactured by selective laser melting. Mater. Sci. Eng. A 2018, 736, 288–297. [Google Scholar] [CrossRef]
- Lv, Y.T.; Wang, B.H.; Liu, G.H.; Tang, Y.J.; Liu, J.; Wei, G.J.; Wang, L.Q. Design of bone-like continuous gradient porous scaffold based on triply periodic minimal surfaces. J. Mater. Res. Technol. 2022, 21, 3650–3665. [Google Scholar] [CrossRef]
- Ionescu, F.; Reclaru, L.; Ardelean, L.C.; Blatter, A. Comparative Analysis of the Corrosion Resistance of Titanium Alloys Intended to Come into Direct or Prolonged Contact with Live Tissues. Materials 2019, 12, 2841. [Google Scholar] [CrossRef]
- Shuang, F.; Hu, W.; Shao, Y.; Li, H.; Zou, H. Treatment of Intercondylar Humeral Fractures With 3D-Printed Osteosynthesis Plates. Medicine 2016, 95, e2461. [Google Scholar] [CrossRef]
- Liu, B.; Ma, Z.; Li, J.; Xie, H.; Wei, X.; Wang, B.; Tian, S.; Yang, J.; Yang, L.; Cheng, L.; et al. Experimental study of a 3D printed permanent implantable porous Ta-coated bone plate for fracture fixation. Bioact. Mater. 2022, 10, 269–280. [Google Scholar] [CrossRef]
- Zhao, D.; Huang, S.; Lu, F.; Wang, B.; Yang, L.; Qin, L.; Yang, K.; Li, Y.; Li, W.; Wang, W.; et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials 2016, 81, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Dhandapani, R.; Krishnan, P.D.; Zennifer, A.; Kannan, V.; Manigandan, A.; Arul, M.R.; Jaiswal, D.; Subramanian, A.; Kumbar, S.G.; Sethuraman, S. Additive manufacturing of biodegradable porous orthopaedic screw. Bioact. Mater. 2020, 5, 458–467. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, J.; Wang, S.; Yang, Y.; Chen, M.; Luan, Q.; Liu, X.; Lin, Z.; Hu, J.; Man, K.; et al. Additively manufactured bioceramic scaffolds based on triply periodic minimal surfaces for bone regeneration. J. Tissue Eng. 2024, 15, 20417314241244997. [Google Scholar] [CrossRef]
- Xu, J.; Wu, D.; Ge, B.; Li, M.; Yu, H.; Cao, F.; Wang, W.; Zhang, Q.; Yi, P.; Wang, H.; et al. Selective Laser Melting of the Porous Ta Scaffold with Mg-Doped Calcium Phosphate Coating for Orthopedic Applications. ACS Biomater. Sci. Eng. 2024, 10, 1435–1447. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Gong, C.; Chen, X.H.; Sun, Y.X.; Zhang, J.F.; Cai, L.C.; Zhu, S.Y.; Xie, S.Q. Additive Manufacturing of Customized Metallic Orthopedic Implants: Materials, Structures, and Surface Modifications. Metals 2019, 9, 1004. [Google Scholar] [CrossRef]
- Yao, D.; Zhao, Z.; Wei, Y.; Li, J. Gradient scaffolds developed by parametric modeling with selective laser sintering. Int. J. Mech. Sci. 2023, 248, 108221. [Google Scholar] [CrossRef]
- Sadlik, J.; Kosinska, E.; Bankosz, M.; Tomala, A.; Bruzda, G.; Jampilek, J.; Sobczak-Kupiec, A. Gradient Titanium Alloy with Bioactive Hydroxyapatite Porous Structures for Potential Biomedical Applications. Materials 2024, 17, 5511. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Qian, Y.; Zhao, L. Antibacterial coatings on orthopedic implants. Mater. Today Bio. 2023, 19, 100586. [Google Scholar] [CrossRef]
- Huang, G.; Pan, S.T.; Qiu, J.X. The osteogenic effects of porous Tantalum and Titanium alloy scaffolds with different unit cell structure. Colloids Surf. B Biointerfaces 2022, 210, 112229. [Google Scholar] [CrossRef]
- Munyensanga, P.; Bricha, M.; El Mabrouk, K. Functional characterization of biomechanical loading and biocorrosion resistance properties of novel additively manufactured porous CoCrMo implant: Comparative analysis with gyroid and rhombic dodecahedron. Mater. Chem. Phys. 2024, 316, 129139. [Google Scholar] [CrossRef]
- Zhai, Y.; He, S.B.; Lei, L.; Guan, T.M. Mechanical property of octahedron Ti6Al4V fabricated by selective laser melting. Rev. Adv. Mater. Sci. 2021, 60, 894–911. [Google Scholar] [CrossRef]
- Ziaie, B.; Velay, X.; Saleem, W. Developing porous hip implants implementing topology optimization based on the bone remodelling model and fatigue failure. J. Mech. Behav. Biomed. 2024, 163, 106864. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Sun, Q.; Wang, J.; Zhang, D.; Jin, X.; Yang, Q.; Chen, L.; Yang, J.; Hong, Y. Development and characterization of minimal surface tantalum scaffold with high strength and superior fatigue resistance. J. Mater. Res. Technol. 2025, 36, 1226–1239. [Google Scholar] [CrossRef]
- Ziaie, B.; Niu, L.; Saleem, W.; Ni, L.; Rathore, M.F.; Velay, X. Characterization of selective laser melted Ti6Al4V TPMS porous structures for biomedical applications. J. Alloys Compd. 2025, 1022, 180084. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Tejo-Otero, A.; Fenollosa-Artés, F. Development of AM Technologies for Metals in the Sector of Medical Implants. Metals 2020, 10, 686. [Google Scholar] [CrossRef]
- Tian, X.X.; Zhao, Z.; Wang, H.B.; Liu, X.M.; Song, X.Y. Progresses on the additive manufacturing of functionally graded metallic materials. J. Alloy Compd. 2023, 960, 170687. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, S.; Ding, W.; Du, H.; Li, M.; Li, Z.; Chen, M. Additively-manufactured gradient porous bio-scaffolds: Permeability, cytocompatibility and mechanical properties. Compos. Struct. 2024, 336, 118021. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Liu, Y.; Wu, X.; Liu, X.; Wang, J.; Wang, Q. Fatigue performance of beta titanium alloy topological porous structures fabricated by laser powder bed fusion. J. Mater. Res. Technol. 2024, 29, 4772–4780. [Google Scholar] [CrossRef]
- Dong, L.; Zhu, Q.; Liu, X.; Xing, Y.; Zhang, S.; Jia, Q.; Huang, L.; Zhang, H. 3D printing Al porous metamaterials with triply periodic minimal surfaces (TPMS) for hydrogen generation from Al-water reaction. Int. J. Hydrogen Energy 2024, 49, 1426–1435. [Google Scholar] [CrossRef]
- Cui, J.; Yi, Y.; Zhang, J.; Chai, L.; Jin, H. Preparation and mechanical properties analysis of porous structure for bone tissue engineering. Bio-Med. Mater. Eng. 2022, 33, 465–476. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhang, H.; Liu, T.; Zou, C.; Zhou, C. Mechanical property of Ti6Al4V cylindrical porous structure for dental implants fabricated by selective laser melting. Comput. Method. Biomec. 2024, 28, 679–697. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.J.; Zhou, Y.; Liang, X.W.; Zhang, X.Z.; Zhang, C.K.; Zhu, M.; Tang, K.L.; Lin, J.X. Early bone ingrowth of Cu-bearing CoCr scaffolds produced by selective laser melting: An in vitro and in vivo study. Mater. Des. 2023, 228, 111822. [Google Scholar] [CrossRef]
- Ashby, M.F.; Evans, A.; Fleck, N.A.; Gibson, L.J.; Hutchinson, J.W.; Wadley, H.N.G. Metal foams: A design guide. Appl. Mech. Rev. 2002, 23, 119. [Google Scholar] [CrossRef]
- Yang, L.; Yan, C.Z.; Han, C.J.; Chen, P.; Yang, S.F.; Shi, Y.S. Mechanical response of a triply periodic minimal surface cellular structures manufactured by selective laser melting. Int. J. Mech. Sci. 2018, 148, 149–157. [Google Scholar] [CrossRef]
- Jabran, A.; Peach, C.; Ren, L. Biomechanical analysis of plate systems for proximal humerus fractures: A systematic literature review. BioMed. Eng. OnLine 2018, 17, 47. [Google Scholar] [CrossRef]
- Jacobs, Z.; Schipani, R.; Pastrama, M.; Ahmadi, S.M.; Sajadi, B. Evaluation of biocompatibility and osseointegration of multi-component TiAl6V4 titanium alloy implants. J. Orthop. Res. 2025, 43, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Li, K.M.; Liu, Y.J.; Liu, X.C.; Wu, X.; Zhou, S.F.; Zhang, L.C.; Li, W.; Zhang, W.C. Simultaneous strength-ductility enhancement in as-cast Ti6Al4V alloy by trace Ce. Mater. Des. 2022, 215, 110491. [Google Scholar] [CrossRef]
- Zhao, Z.; Ji, H.; Zhong, Y.; Han, C.; Tang, X. Mechanical Properties and Fracture Behavior of a TC4 Titanium Alloy Sheet. Materials 2022, 15, 8589. [Google Scholar] [CrossRef]
- Kozłowski, M.; Adamek, G.; Siwak, P.; Jakubowicz, J. The Effect of Ta, Mg, and Zn Content on the Properties of Ti-Ta-Mg and Ti-Ta-Zn Alloys Prepared by Mechanical Alloying and Hot Pressing. J. Mater. Eng. Perform. 2023, 32, 9825–9837. [Google Scholar] [CrossRef]
Model | Unit Cell of Rhombic Dodecahedron | Unit Cell of Derived Dodecahedron | Rhombic Dodecahedron | Derived Dodecahedron | |
---|---|---|---|---|---|
H% | |||||
20% | |||||
40% | |||||
50% | |||||
60% | |||||
80% |
Element | Ti | Al | V | Fe | C | N | H | O |
---|---|---|---|---|---|---|---|---|
Content, % | Other | 6.46 | 4.04 | 0.22 | 0.011 | 0.01 | 0.002 | 0.078 |
Unit Cell | H% | 20% | 40% | 50% | 60% | 80% | |
---|---|---|---|---|---|---|---|
Angle of View | |||||||
Rhombic Dodecahe-dron | Top view | ||||||
Front view | |||||||
Derived Dodecahe-dron | Top view | ||||||
Front view |
Stress Distribution | T = 0 s | T = 0.25 s | T = 0.5 s | T = 0.75 s | T = 1 s | |||
---|---|---|---|---|---|---|---|---|
Rhombic Dodecahedron | Non-gradient | |||||||
Gradient | ||||||||
Derived Dodecahedron | Non-gradient | |||||||
Gradient |
Stress Distribution | T = 0 s | T = 0.25 s | T = 0.5 s | T = 0.75 s | T = 1 s | ||
---|---|---|---|---|---|---|---|
Rhombic Dodecahedron | Non-gradient | ||||||
Gradient | |||||||
Derived Dodecahedron | Non-gradient | ||||||
Derived Dodecahedron | Gradient |
Shear elastic modulus G (Gpa) and ratio of rhombic dodecahedron | ||||||||||
20% | 40% | 50% | 60% | 80% | ||||||
ratio | G | ratio | G | ratio | G | ratio | G | ratio | G | |
A1 | 0.059 | 0.0651 | 0.059 | 0.0677 | 0.197 | 0.0841 | 0.059 | 0.033 | 0.059 | 0.0416 |
A2 | 0.071 | 0.1078 | 0.071 | 0.1105 | 0.217 | 0.1438 | 0.071 | 0.0557 | 0.071 | 0.0709 |
A3 | 0.082 | 0.1627 | 0.085 | 0.1546 | 0.237 | 0.2237 | 0.085 | 0.088 | 0.082 | 0.1125 |
A4 | 0.094 | 0.2294 | 0.128 | 0.255 | 0.257 | 0.308 | 0.128 | 0.1282 | 0.094 | 0.1653 |
A5 | 0.107 | 0.2844 | 0.159 | 0.3093 | 0.278 | 0.3876 | 0.159 | 0.171 | 0.107 | 0.2196 |
Shear elastic modulus G (Gpa) and ratio of derived dodecahedron | ||||||||||
20% | 40% | 50% | 60% | 80% | ||||||
ratio | G | ratio | G | ratio | E | ratio | E | ratio | E | |
A1 | 0.095 | 0.1972 | 0.095 | 0.2101 | 0.574 | 0.1533 | 0.095 | 0.1454 | 0.095 | 0.1471 |
A2 | 0.113 | 0.2817 | 0.238 | 0.2995 | 0.609 | 0.2315 | 0.238 | 0.2098 | 0.113 | 0.204 |
A3 | 0.128 | 0.3702 | 0.337 | 0.3941 | 0.639 | 0.3211 | 0.337 | 0.2847 | 0.128 | 0.2931 |
A4 | 0.144 | 0.4634 | 0.416 | 0.4927 | 0.666 | 0.4255 | 0.416 | 0.3592 | 0.144 | 0.3723 |
A5 | 0.160 | 0.5696 | 0.478 | 0.5794 | 0.688 | 0.5185 | 0.478 | 0.4229 | 0.160 | 0.4448 |
Stress Distribution | T = 0 s | T = 0.25 s | T = 0.5 s | T = 0.75 s | T = 1 s | ||
---|---|---|---|---|---|---|---|
Rhombic Dodecahedron | Non-gradient | ||||||
Gradient | |||||||
Derived Dodecahedron | Non-gradient | ||||||
Gradient |
Rhombic Dodecahedron | |||||||||||
Compression perpendicular to the direction of the structural gradient (GPa) | Compression parallel to the direction of the structural gradient (GPa) | Yield strength (MPa) | Compression with the solid thickness (GPa) | Yield strength (MPa) | |||||||
Condition | simulation | experiment | simulation | experiment | perpendicular to the direction of the structural gradient | Condition | simulation | experiment | with the solid thickness | ||
Types of gradient | Thickness | ||||||||||
A1 | 4.7636 | 3.1944 | 0.1248 | 0.087 | 171.4489 | 2 mm | 4.0187 | 2.8926 | 144.4197 | ||
A2 | 4.7831 | 3.2347 | 0.2218 | 0.1145 | 179.2366 | 2.25 mm | 4.4342 | 2.9753 | 163.4112 | ||
A3 | 4.8086 | 3.1299 | 0.367 | 0.1768 | 198.7276 | 2.5 mm | 4.8369 | 3.1198 | 176.0849 | ||
A4 | 4.845 | 3.3964 | 0.5642 | 0.2323 | 181.3885 | 2.75 mm | 5.2282 | 3.2039 | 198.3723 | ||
A5 | 4.8796 | 3.1634 | 0.8036 | 0.3671 | 169.7109 | 3 mm | 5.6063 | 3.0013 | 233.1517 | ||
Derived dodecahedron | |||||||||||
Condition | simulation | experiment | simulation | experiment | perpendicular to the direction of the structural gradient | Condition | simulation | experiment | with the solid thickness | ||
Types of gradient | Thickness | ||||||||||
A1 | 5.116 | 3.3310 | 0.5787 | 0.4821 | 181.0333 | 2 mm | 4.3595 | 2.8258 | 155.1019 | ||
A2 | 5.1505 | 3.0442 | 0.8175 | 0.6844 | 181.0889 | 2.25 mm | 4.9503 | 3.3677 | 181.7916 | ||
A3 | 5.2306 | 3.1326 | 1.1163 | 0.8133 | 188.5991 | 2.5 mm | 5.1655 | 3.1793 | 193.0700 | ||
A4 | 5.2974 | 3.3734 | 1.4791 | 1.0435 | 207.9181 | 2.75 mm | 5.5512 | 3.0440 | 198.3165 | ||
A5 | 5.3497 | 3.4220 | 1.9034 | 1.0122 | 202.2822 | 3 mm | 5.9238 | 3.1758 | 216.0684 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Y.; Zhong, T.; Guo, S.; Lin, S.; Hui, D.; Ma, X. Layered Gradient Rhombic Dodecahedron Composite Structures for Biomimetic Bone Fabricated via Selective Laser Melting. Micromachines 2025, 16, 673. https://doi.org/10.3390/mi16060673
Zhai Y, Zhong T, Guo S, Lin S, Hui D, Ma X. Layered Gradient Rhombic Dodecahedron Composite Structures for Biomimetic Bone Fabricated via Selective Laser Melting. Micromachines. 2025; 16(6):673. https://doi.org/10.3390/mi16060673
Chicago/Turabian StyleZhai, Yun, Tianyuan Zhong, Shuangquan Guo, Sheng Lin, David Hui, and Xiaowei Ma. 2025. "Layered Gradient Rhombic Dodecahedron Composite Structures for Biomimetic Bone Fabricated via Selective Laser Melting" Micromachines 16, no. 6: 673. https://doi.org/10.3390/mi16060673
APA StyleZhai, Y., Zhong, T., Guo, S., Lin, S., Hui, D., & Ma, X. (2025). Layered Gradient Rhombic Dodecahedron Composite Structures for Biomimetic Bone Fabricated via Selective Laser Melting. Micromachines, 16(6), 673. https://doi.org/10.3390/mi16060673