First-Principles Investigation of Excited-State Lattice Dynamics and Mechanical Properties in Diamond
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DFT | Density Functional Theory |
HOCO | Highest Occupied Crystal Orbital |
LUCO | Lowest Unoccupied Crystal Orbital |
PES | Potential Energy Surface |
TD-DFT | Time-Dependent Density Functional Theory |
CDFT | Constrained Density Functional Theory |
EPC | Electron-Phonon Coupling |
SCF | Delta Self-Consistent Field |
References
- Tso, P.L.; Liu, Y.G. Study on PCD machining. Int. J. Mach. Tools Manuf. 2002, 42, 331–334. [Google Scholar] [CrossRef]
- Wort, C.J.; Balmer, R.S. Diamond as an electronic material. Mater. Today 2008, 11, 22–28. [Google Scholar] [CrossRef]
- Koizumi, S.; Umezawa, H.; Pernot, J.; Suzuki, M. Power Electronics Device Applications of Diamond Semiconductors; Woodhead Publishing: Sawston, UK, 2018. [Google Scholar]
- Waldermann, F.; Olivero, P.; Nunn, J.; Surmacz, K.; Wang, Z.; Jaksch, D.; Taylor, R.; Walmsley, I.; Draganski, M.; Reichart, P.; et al. Creating diamond color centers for quantum optical applications. Diam. Relat. Mater. 2007, 16, 1887–1895. [Google Scholar] [CrossRef]
- Zeng, Z.; Zong, Q.; Sun, S.; Wang, Y.; Wu, Y.; Zheng, K.; Zhou, B.; Yu, S. Microwave plasma CVD of diamond films on high concentration alloys: Microstructure, hardness and wear properties. Vacuum 2024, 222, 113078. [Google Scholar] [CrossRef]
- Kidalov, S.V.; Shakhov, F.M. Thermal Conductivity of Diamond Composites. Materials 2009, 2, 2467–2495. [Google Scholar] [CrossRef]
- Isberg, J.; Hammersberg, J.; Johansson, E.; Wikstrom, T.; Twitchen, D.J.; Whitehead, A.J.; Coe, S.E.; Scarsbrook, G.A. High carrier mobility in single-crystal plasma-deposited diamond. Science 2002, 297, 1670–1672. [Google Scholar] [CrossRef]
- Jian, Z.; Xu, J.; Yang, N.; Han, S.; Jiang, X. A perspective on diamond composites and their electrochemical applications. Curr. Opin. Electrochem. 2021, 30, 100835. [Google Scholar] [CrossRef]
- Prawer, S.; Nemanich, R.J. Raman spectroscopy of diamond and doped diamond. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 2004, 362, 2537–2565. [Google Scholar] [CrossRef]
- Hawelek, L.; Brodka, A.; Dore, J.C.; Honkimaki, V.; Tomita, S.; Burian, A. Structural studies of nanodiamond by high-energy X-ray diffraction. Diam. Relat. Mater. 2008, 17, 1186–1193. [Google Scholar] [CrossRef]
- Avdeev, M.V.; Aksenov, V.L.; Tomchuk, O.V.; Bulavin, L.A.; Garamus, V.M.; Ōsawa, E. The spatial diamond–graphite transition in detonation nanodiamond as revealed by small-angle neutron scattering. J. Physics: Condens. Matter 2013, 25, 445001. [Google Scholar] [CrossRef]
- Ulbricht, R.; Loh, Z.H. Excited-state lifetime of the NV- infrared transition in diamond. Phys. Rev. B 2018, 98, 094309. [Google Scholar] [CrossRef]
- Ulbricht, R.; Dong, S.; Gali, A.; Meng, S.; Loh, Z.H. Vibrational relaxation dynamics of the nitrogen-vacancy center in diamond. Phys. Rev. B 2018, 97, 220302. [Google Scholar] [CrossRef]
- Reislöhner, J.; Chen, X.; Kim, D.; Botti, S.; Pfeiffer, A.N. Dynamical Franz-Keldysh effect in diamond in the deep ultraviolet probed by transient absorption and dispersion spectroscopy using a miniature beamline. Phys. Rev. Lett. 2023, 131, 136902. [Google Scholar] [CrossRef]
- Carbery, W.P.; Farfan, C.A.; Ulbricht, R.; Turner, D.B. The phonon-modulated Jahn–Teller distortion of the nitrogen vacancy center in diamond. Nat. Commun. 2024, 15, 8646. [Google Scholar] [CrossRef]
- Domröse, T.; Silva, L.d.C.; Ropers, C. Megahertz cycling of ultrafast structural dynamics enabled by nanosecond thermal dissipation. arXiv 2024, arXiv:2410.02310. [Google Scholar] [CrossRef]
- Medvedev, N.; Ziaja, B. Multistep transition of diamond to warm dense matter state revealed by femtosecond X-ray diffraction. Sci. Rep. 2018, 8, 5284. [Google Scholar] [CrossRef]
- Foulkes, W.M.; Mitas, L.; Needs, R.; Rajagopal, G. Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 2001, 73, 33. [Google Scholar] [CrossRef]
- Doblhoff-Dier, K.; Meyer, J.; Hoggan, P.E.; Kroes, G.J. Quantum Monte Carlo calculations on a benchmark molecule–metal surface reaction: H2+ Cu (111). J. Chem. Theory Comput. 2017, 13, 3208–3219. [Google Scholar] [CrossRef]
- Tobocman, W. Many-body perturbation theory. Phys. Rev. 1957, 107, 203. [Google Scholar] [CrossRef]
- Biswas, T.; Singh, A.K. py GWBSE: A high throughput workflow package for GW-BSE calculations. Npj Comput. Mater. 2023, 9, 22. [Google Scholar] [CrossRef]
- Lin, C.K.; Wang, Y.H.; Chang, H.C.; Hayashi, M.; Lin, S. One-and two-photon absorption properties of diamond nitrogen-vacancy defect centers: A theoretical study. J. Chem. Phys. 2008, 129, 124714. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Govoni, M.; Galli, G. Vibrationally resolved optical excitations of the nitrogen-vacancy center in diamond. Npj Comput. Mater. 2022, 8, 238. [Google Scholar] [CrossRef]
- Vörös, M.; Gali, A. Optical absorption of diamond nanocrystals from ab initio density-functional calculations. Phys. Rev. B—Condensed Matter Mater. Phys. 2009, 80, 161411. [Google Scholar] [CrossRef]
- Tal, A.; Liu, P.; Kresse, G.; Pasquarello, A. Accurate optical spectra through time-dependent density functional theory based on screening-dependent hybrid functionals. Phys. Rev. Res. 2020, 2, 032019. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Schmerwitz, Y.L.; Levi, G.; Jónsson, H. Electronic excitations of the charged nitrogen-vacancy center in diamond obtained using time-independent variational density functional calculations. SciPost Phys. 2023, 15, 009. [Google Scholar] [CrossRef]
- Gali, A.; Janzén, E.; Deák, P.; Kresse, G.; Kaxiras, E. Theory of Spin-Conserving Excitation of the N-V − Center in Diamond. Phys. Rev. Lett. 2009, 103, 186404. [Google Scholar] [CrossRef]
- Sajid, A.; Reimers, J.R.; Ford, M.J. Defect states in hexagonal boron nitride: Assignments of observed properties and prediction of properties relevant to quantum computation. Phys. Rev. B 2018, 97, 064101. [Google Scholar] [CrossRef]
- Reimers, J.R.; Sajid, A.; Kobayashi, R.; Ford, M.J. Convergence of defect energetics calculations. J. Phys. Chem. C 2020, 124, 21178–21183. [Google Scholar] [CrossRef]
- Bulancea-Lindvall, O.; Davidsson, J.; Ivanov, I.G.; Gali, A.; Ivády, V.; Armiento, R.; Abrikosov, I.A. Temperature dependence of the AB lines and optical properties of the carbon–antisite-vacancy pair in 4 H-Si C. Phys. Rev. Appl. 2024, 22, 034056. [Google Scholar] [CrossRef]
- Voigt, W. Lehrbuch der Kristallphysik; BG Teubner: Leipzig, Germany; Berlin, Germany, 1928. [Google Scholar]
- Reuss, A. Berechnung Der Fließgrenze von Mischkristallen Auf Grund Der Plastizitätsbedingung Für Einkristalle. ZAMM-J. Appl. Math. Mech./Z. Für Angew. Math. Und Mech. 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Hom, T.; Kiszenik, W.; Post, B. Accurate lattice constants from multiple reflection measurements. II. Lattice constants of germanium silicon, and diamond. Appl. Crystallogr. 1975, 8, 457–458. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Wu, Z.j.; Zhao, E.j.; Xiang, H.p.; Hao, X.f.; Liu, X.j.; Meng, J. Crystal Structures and Elastic Properties of Superhard IrN2 and IrN3 from First Principles. Phys. Rev. B 2007, 76, 054115. [Google Scholar] [CrossRef]
- McSkimin, H.; Andreatch, P., Jr. Elastic moduli of diamond as a function of pressure and temperature. J. Appl. Phys. 1972, 43, 2944–2948. [Google Scholar] [CrossRef]
- Apostolova, T.; Kurylo, V.; Gnilitskyi, I. Ultrafast Laser Processing of Diamond Materials: A Review. Front. Phys. 2021, 9, 650280. [Google Scholar] [CrossRef]
- Medvedev, N.; Jeschke, H.O.; Ziaja, B. Nonthermal Graphitization of Diamond Induced by a Femtosecond X-Ray Laser Pulse. Phys. Rev. B 2013, 88, 224304. [Google Scholar] [CrossRef]
- Petit, T.; Arnault, J.C.; Girard, H.A.; Sennour, M.; Bergonzo, P. Early Stages of Surface Graphitization on Nanodiamond Probed by X-Ray Photoelectron Spectroscopy. Phys. Rev. B 2011, 84, 233407. [Google Scholar] [CrossRef]
- Romanyuk, O.; Stehlík, Š.; Zemek, J.; Aubrechtová Dragounová, K.; Kromka, A. Utilizing Constant Energy Difference between Sp-Peak and C 1s Core Level in Photoelectron Spectra for Unambiguous Identification and Quantification of Diamond Phase in Nanodiamonds. Nanomaterials 2024, 14, 590. [Google Scholar] [CrossRef] [PubMed]
- Baimova, J.A. An Overview of Mechanical Properties of Diamond-like Phases under Tension. Nanomaterials 2024, 14, 129. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, J.C. Crystal structures at high pressures of metallic modifications of silicon and germanium. Science 1963, 139, 762–764. [Google Scholar] [CrossRef]
- Hu, J.Z.; Merkle, L.D.; Menoni, C.S.; Spain, I.L. Crystal data for high-pressure phases of silicon. Phys. Rev. B 1986, 34, 4679. [Google Scholar] [CrossRef]
- McMahon, M.; Nelmes, R.; Wright, N.; Allan, D. Pressure dependence of the Imma phase of silicon. Phys. Rev. B 1994, 50, 739. [Google Scholar] [CrossRef]
- McBride, E.E.; Krygier, A.; Ehnes, A.; Galtier, E.; Harmand, M.; Konôpková, Z.; Lee, H.; Liermann, H.P.; Nagler, B.; Pelka, A.; et al. Phase transition lowering in dynamically compressed silicon. Nat. Phys. 2019, 15, 89–94. [Google Scholar] [CrossRef]
- Di Cicco, A.; Frasini, A.C.; Minicucci, M.; Principi, E.; Itiè, J.P.; Munsch, P. High-pressure and high-temperature study of phase transitions in solid germanium. Phys. Status Solidi (b) 2003, 240, 19–28. [Google Scholar] [CrossRef]
- Cheng, C.; Huang, W.H.; Li, H. Thermodynamics of uniaxial phase transition: Ab initio study of the diamond-to-β-tin transition in Si and Ge. Phys. Rev. B 2001, 63, 153202. [Google Scholar] [CrossRef]
- Umemoto, K.; Wentzcovitch, R.M.; Saito, S.; Miyake, T. Body-centered tetragonal C 4: A viable sp 3 carbon allotrope. Phys. Rev. Lett. 2010, 104, 125504. [Google Scholar] [CrossRef]
- Xing, M.; Li, X. The physical properties of a novel carbon allotrope in tetragonal symmetry. J. Electron. Mater. 2023, 52, 2071–2079. [Google Scholar] [CrossRef]
- Núñez Valdez, M.; Umemoto, K.; Wentzcovitch, R.M. Elasticity of diamond at high pressures and temperatures. Appl. Phys. Lett. 2012, 101, 171902. [Google Scholar] [CrossRef]
- Zouboulis, E.; Grimsditch, M.; Ramdas, A.; Rodriguez, S. Temperature dependence of the elastic moduli of diamond: A Brillouin-scattering study. Phys. Rev. B 1998, 57, 2889. [Google Scholar] [CrossRef]
- Savvides, N.; Bell, T. Microhardness and Young’s modulus of diamond and diamondlike carbon films. J. Appl. Phys. 1992, 72, 2791–2796. [Google Scholar] [CrossRef]
- Li, H.D.; Wen, Y.; Shen, Y.; Wang, E.P.; Zhang, S.J.; Yuan, Q.L.; Jiang, N.; Bo, Y.; Peng, Q.J. Evolution of mechanical and thermal properties of diamond under external stress. Diam. Relat. Mater. 2025, 151, 111810. [Google Scholar] [CrossRef]
- Yin, Z.; Kutepov, A.; Kotliar, G. Correlation-enhanced electron-phonon coupling: Applications of GW and screened hybrid functional to bismuthates, chloronitrides, and other high-T c superconductors. Phys. Rev. X 2013, 3, 021011. [Google Scholar] [CrossRef]
- Kowalczyk, T.; Yost, S.R.; Voorhis, T.V. Assessment of the ΔSCF density functional theory approach for electronic excitations in organic dyes. J. Chem. Phys. 2011, 134, 054128. [Google Scholar] [CrossRef]
- Vivanco-Benavides, L.E.; Martínez-González, C.L.; Mercado-Zúñiga, C.; Torres-Torres, C. Machine Learning and Materials Informatics Approaches in the Analysis of Physical Properties of Carbon Nanotubes: A Review. Comput. Mater. Sci. 2022, 201, 110939. [Google Scholar] [CrossRef]
Excitation Rate (%) | ||||||
---|---|---|---|---|---|---|
1027.83 | 123.49 | 542.75 | ||||
1050.68 | 126.97 | 560.07 | ||||
0.625 | 1049.96 | 125.21 | 126.51 | 1049.45 | 559.57 | 558.71 |
1.250 | 1049.75 | 126.82 | 124.37 | 1049.76 | 559.69 | 559.69 |
1.875 | 1049.58 | 127.27 | 123.48 | 1049.58 | 559.67 | 559.67 |
2.500 | 1049.40 | 122.59 | 127.67 | 1047.24 | 559.78 | 556.67 |
3.125 | 1046.52 | 128.10 | 128.09 | 1049.20 | 555.92 | 559.70 |
3.750 | 1045.84 | 128.46 | 128.46 | 1049.13 | 555.21 | 559.85 |
4.375 | 1045.29 | 128.72 | 119.78 | 1049.11 | 554.34 | 559.98 |
5.000 | 1044.10 | 129.02 | 129.02 | 1049.17 | 553.10 | 500.17 |
5.625 | 1049.12 | 117.62 | 129.26 | 1044.08 | 500.30 | 552.99 |
6.250 | 1043.33 | 129.69 | 129.68 | 1049.05 | 552.36 | 500.38 |
Experiment [39] | 1079 | 124 | 578 |
Excite Rate (%) | B | G | E | |||||
---|---|---|---|---|---|---|---|---|
424.94 | 424.937 | 506.52 | 502.486 | 424.937 | 504.502 | 1084.369 | 0.075 | |
434.88 | 434.887 | 520.79 | 516.165 | 434.877 | 518.475 | 1113.076 | 0.073 | |
0.625 | 433.98 | 433.981 | 520.31 | 515.764 | 433.981 | 518.038 | 1111.752 | 0.073 |
1.250 | 433.37 | 433.375 | 520.73 | 516.184 | 433.375 | 518.455 | 1111.950 | 0.072 |
1.875 | 433.02 | 433.021 | 520.77 | 516.239 | 433.022 | 518.504 | 1111.776 | 0.072 |
2.500 | 433.54 | 433.544 | 519.79 | 515.230 | 433.544 | 517.508 | 1110.620 | 0.073 |
3.125 | 434.53 | 434.533 | 518.17 | 513.592 | 434.533 | 515.882 | 1108.838 | 0.075 |
3.750 | 434.62 | 434.618 | 517.75 | 513.164 | 434.618 | 515.456 | 1108.244 | 0.075 |
4.375 | 430.69 | 430.692 | 518.49 | 514.198 | 430.693 | 516.346 | 1106.752 | 0.072 |
5.000 | 434.61 | 434.608 | 504.63 | 501.079 | 434.609 | 502.853 | 1088.683 | 0.083 |
5.625 | 432.73 | 432.730 | 495.13 | 492.876 | 432.732 | 494.003 | 1073.506 | 0.086 |
6.250 | 434.87 | 434.865 | 504.13 | 500.587 | 434.866 | 502.359 | 1088.088 | 0.083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Meng, F.; Wu, D.; Yang, D.; Tao, X.; Li, Z.; Tang, J.; Sun, X.; Pan, J. First-Principles Investigation of Excited-State Lattice Dynamics and Mechanical Properties in Diamond. Micromachines 2025, 16, 668. https://doi.org/10.3390/mi16060668
Tian Y, Meng F, Wu D, Yang D, Tao X, Li Z, Tang J, Sun X, Pan J. First-Principles Investigation of Excited-State Lattice Dynamics and Mechanical Properties in Diamond. Micromachines. 2025; 16(6):668. https://doi.org/10.3390/mi16060668
Chicago/Turabian StyleTian, Ying, Fangfang Meng, Duanzheng Wu, Dong Yang, Xiaoma Tao, Zian Li, Jau Tang, Xiang Sun, and Junheng Pan. 2025. "First-Principles Investigation of Excited-State Lattice Dynamics and Mechanical Properties in Diamond" Micromachines 16, no. 6: 668. https://doi.org/10.3390/mi16060668
APA StyleTian, Y., Meng, F., Wu, D., Yang, D., Tao, X., Li, Z., Tang, J., Sun, X., & Pan, J. (2025). First-Principles Investigation of Excited-State Lattice Dynamics and Mechanical Properties in Diamond. Micromachines, 16(6), 668. https://doi.org/10.3390/mi16060668