Validation of Experimental Cooling Performance of Multi-Stage Thin-Film Thermoelectric Devices via Numerical Simulation
Abstract
:1. Introduction
2. Methods
2.1. Device Theoretical Calculation
2.2. Device Simulation and Fabrication
3. Results and Discussion
3.1. Thermodynamic Behavior of In-Plane TE Devices
3.2. Cooling Performance of TE Devices with Different Structural Designs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TE | thermoelectric |
PI | polyimide |
References
- Ma, K.-Q.; Liu, J. Heat-driven liquid metal cooling device for the thermal management of a computer chip. J. Phys. D Appl. Phys. 2007, 40, 4722–4729. [Google Scholar] [CrossRef]
- Nie, X.; Jiang, H.; Sang, X.; Wei, P.; Zhu, W.; Zhao, W.; Zhang, Q. Numerical Simulation and Structural Optimization of Multi-Stage Planar Thermoelectric Coolers. Phys. Status Solidi A 2020, 217, 2000248. [Google Scholar] [CrossRef]
- Shamim, M.S.; Narde, R.S.; Gonzalez-Hernandez, J.-L.; Ganguly, A.; Venkatarman, J.; Kandlikar, S.G. Evaluation of wireless network-on-chip architectures with microchannel-based cooling in 3D multicore chips. Sustain. Comput. Inform. Syst. 2019, 21, 165–178. [Google Scholar] [CrossRef]
- Dong, G.; Feng, J.; Qiu, G.; Yang, Y.; Chen, Q.; Xiong, Y.; Wu, H.; Ling, Y.; Xi, L.; Long, C.; et al. Oriented Bi2Te3-based films enabled high performance planar thermoelectric cooling device for hot spot elimination. Nat. Commun. 2024, 15, 9695. [Google Scholar] [CrossRef]
- Fabis, P.M.; Shum, D.; Windischmann, H. Thermal modeling of diamond-based power electronics packaging. In Proceedings of the Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.99CH36306), Guangzhou, China, 4–7 November 2022; IEEE: San Diego, CA, USA, 1999; pp. 98–104. [Google Scholar]
- Chung, D.D.D.L. Thermal interface Materials. J. Mater. Eng. Perform. 2000, 10, 56–59. [Google Scholar] [CrossRef]
- Nurmawati, M.H.; Siow, K.S.; Rasiah, I.J. Analysis of Phase Change Material for Use as Thermal Interface Material. Int. J. Polym. Anal. Charact. 2004, 9, 213–228. [Google Scholar] [CrossRef]
- Smith, J.; Singh, R.; Hinterberger, M.; Mochizuki, M. Battery thermal management system for electric vehicle using heat pipes. Int. J. Therm. Sci. 2018, 134, 517–529. [Google Scholar] [CrossRef]
- Weragoda, D.M.; Tian, G.; Burkitbayev, A.; Lo, K.-H.; Zhang, T. A comprehensive review on heat pipe based battery thermal management systems. Appl. Therm. Eng. 2023, 224, 120070. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Han, D.; Qiu, A.; Zhu, H.; Deng, Y.; Chen, J.; Zhao, X.; Zuo, W.; Wang, H.; Chen, J.; et al. Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system. Appl. Therm. Eng. 2018, 132, 508–520. [Google Scholar]
- Zhang, F.; Huang, Z.; Li, S.; Sun, S.; Zhao, H. Design and thermal performance analysis of a new micro-fin liquid cooling plate based on liquid cooling channel finning and bionic limulus-like fins. Appl. Therm. Eng. 2024, 237, 121597. [Google Scholar] [CrossRef]
- Meng, F.; Chen, L.; Sun, F. Performance optimization for two-stage thermoelectric refrigerator system driven by two-stage thermoelectric generator. Cryogenics 2009, 49, 57–65. [Google Scholar] [CrossRef]
- Rao, R.V. Multi-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithm. Eng. Appl. Artif. Intell. 2013, 26, 430–445. [Google Scholar]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997. [Google Scholar] [CrossRef]
- Zhao, D.; Tan, G. A review of thermoelectric cooling: Materials, modeling and applications. Appl. Therm. Eng. 2014, 66, 15–24. [Google Scholar] [CrossRef]
- Wu, H.; Liu, X.; Wei, P.; Zhou, H.-Y.; Mu, X.; He, D.-Q.; Zhu, W.-T.; Nie, X.-L.; Zhao, W.-Y.; Zhang, Q.-J. Fabrication and Characterization of Brush-Printed p-Type Bi0.5Sb1.5Te3 Thick Films for Thermoelectric Cooling Devices. J. Electron. Mater. 2017, 46, 2950–2957. [Google Scholar] [CrossRef]
- Kim, M.-Y.; Oh, T.-S. Preparation and Characterization of Bi2Te3/Sb2Te3 Thermoelectric Thin-Film Devices for Power Generation. J. Electron. Mater. 2014, 43, 1933–1939. [Google Scholar] [CrossRef]
- Du, Y.; Xu, J.; Paul, B.; Eklund, P. Flexible thermoelectric materials and devices. Appl. Mater. Today 2018, 12, 366–388. [Google Scholar] [CrossRef]
- He, W.; Zhang, G.; Zhang, X.; Ji, J.; Li, G.; Zhao, X. Recent development and application of thermoelectric generator and cooler. Appl. Energy 2015, 143, 1–25. [Google Scholar] [CrossRef]
- Tritt, T.M.; Subramanian, M.A. Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View. MRS Bull. 2006, 31, 188–198. [Google Scholar] [CrossRef]
- Li, J.-F.; Liu, W.-S.; Zhao, L.-D.; Zhou, M. High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2010, 2, 152–158. [Google Scholar] [CrossRef]
- Sarbu, I.; Dorca, A. A comprehensive review of solar thermoelectric cooling systems. Int. J. Energy Res. 2018, 42, 395–415. [Google Scholar] [CrossRef]
- Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science 2008, 320, 634–638. [Google Scholar] [CrossRef]
- Liang, K.; Li, Z.; Chen, M.; Jiang, H. Comparisons between heat pipe, thermoelectric system, and vapour compression refrigeration system for electronics cooling. Appl. Therm. Eng. 2019, 146, 260–267. [Google Scholar] [CrossRef]
- Guclu, T.; Cuce, E. Thermoelectric Coolers (TECs): From Theory to Practice. J. Electron. Mater. 2019, 48, 211–230. [Google Scholar] [CrossRef]
- Bulman, G.; Barletta, P.; Lewis, J.; Baldasaro, N.; Manno, M.; Bar-Cohen, A.; Yang, B. Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nat. Commun. 2016, 7, 10302. [Google Scholar] [CrossRef]
- Al-Shehri, S.; Saber, H.H. Experimental investigation of using thermoelectric cooling for computer chips. J. King Saud Univ.—Eng. Sci. 2020, 32, 321–329. [Google Scholar] [CrossRef]
- Luo, D.; Wang, R.; Yu, W.; Zhou, W. Parametric study of a thermoelectric module used for both power generation and cooling. Renew. Energy 2020, 154, 542–552. [Google Scholar] [CrossRef]
- Xu, S.; Li, M.; Dai, Y.; Hong, M.; Sun, Q.; Lyu, W.; Liu, T.; Wang, Y.; Zou, J.; Chen, Z.; et al. Realizing a 10 °C Cooling Effect in a Flexible Thermoelectric Cooler Using a Vortex Generator. Adv. Mater. 2022, 34, 2204508. [Google Scholar] [CrossRef]
- Ebling, D.; Jaegle, M.; Bartel, M.; Jacquot, A.; Böttner, H. Multiphysics Simulation of Thermoelectric Systems for Comparison with Experimental Device Performance. J. Electron. Mater. 2009, 38, 1456–1461. [Google Scholar] [CrossRef]
- Choday, S.H.; Lundstrom, M.S.; Roy, K. Prospects of Thin-Film Thermoelectric Devices for Hot-Spot Cooling and On-Chip Energy Harvesting. IEEE Trans. Compon. Packag. Manufact. Technol. 2013, 3, 2059–2067. [Google Scholar] [CrossRef]
- Ruiz-Ortega, P.E.; Olivares-Robles, M.A.; Badillo-Ruiz, C.A. Transient thermal behavior of a segmented thermoelectric cooler with variable cross-sectional areas. Int. J. Energy Res. 2021, 45, 19215–19225. [Google Scholar] [CrossRef]
- Su, Y.; Lu, J.; Huang, B. Free-standing planar thin-film thermoelectric microrefrigerators and the effects of thermal and electrical contact resistances. J. Int. J. Heat Mass Transf. 2018, 117, 436–446. [Google Scholar] [CrossRef]
- Thimont, Y.; Darnige, P. Development, experimental and simulated performance of copper iodide (γ-CuI) uni-track thin film thermoelectric modules. J. Appl. Surf. Sci. 2024, 649, 159071. [Google Scholar] [CrossRef]
- Gong, T.; Li, L.; Shi, M.; Gao, L.; Li, J. Optimization and fabrication of an in-plane radial thin-film thermoelectric cooler for chip hotspot cooling. In Proceedings of the 2022 23rd International Conference on Electronic Packaging Technology (ICEPT), Dalian, China, 10–13 August 2022; IEEE: San Diego, CA, USA, 2022; pp. 1–6. [Google Scholar]
- Wolf, M.; Rybakov, A.; Hinterding, R.; Feldhoff, A. Geometry Optimization of Thermoelectric Modules: Deviation of Optimum Power Output and Conversion Efficiency. Entropy 2020, 22, 1233. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Shi, W. Comprehensive modeling for optimized design of a thermoelectric cooler with non-constant cross-section: Theoretical considerations. Appl. Therm. Eng. 2020, 176, 115384. [Google Scholar] [CrossRef]
- Sabarish, R. Numerical Simulation of Thermoelectric Refrigeration Materials. Indian J. Sci. Technol. 2015, 8, 31. [Google Scholar] [CrossRef]
- Ma, M.; Yu, J.; Chen, J. An investigation on thermoelectric coolers operated with continuous current pulses. Energy Convers. Manag. 2015, 98, 275–281. [Google Scholar] [CrossRef]
- Gong, T.; Li, L.; Shi, M.; Hou, G.; Kang, L.; Gao, L.; Li, J. A novel cascaded thin-film thermoelectric cooler for on-chip hotspot cooling. J. Appl. Therm. Eng. 2023, 231, 120968. [Google Scholar] [CrossRef]
- Tappura, K. A numerical study on the design trade-offs of a thin-film thermoelectric generator for large-area applications. J. Renew. Energy 2018, 120, 78–87. [Google Scholar] [CrossRef]
- Ke, S.; Nie, X.; Wei, P.; Li, L.; Liu, C.; Xu, W.; Chen, T.; Liang, D.; Ye, X.; Zhu, W.; et al. Nanomagnetism Triggering Carriers Double-Resistance Conduction and Excellent Flexible Thermoelectrics. Adv. Mater. 2025, 37, 2414511. [Google Scholar] [CrossRef]
- Goldsmid, H.J.; Sharp, J.W. Estimation of the thermal band gap of a semiconductor from Seebeck measurements. J. Electron. Mater. 1999, 28, 869–872. [Google Scholar] [CrossRef]
- Wu, H.; Cheng, K.; Li, X.; Zhou, J.; Huai, X. Numerical study on flow and heat transfer characteristics in manifold microchannel heat sinks with rectangular restrictors. J. Int. J. Heat Fluid Flow 2025, 114, 109823. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, Y.; Li, L.; Wei, P.; Ke, S.; Zhu, W.; Nie, X.; He, D.; Liu, M.; Zhao, W. Validation of Experimental Cooling Performance of Multi-Stage Thin-Film Thermoelectric Devices via Numerical Simulation. Micromachines 2025, 16, 648. https://doi.org/10.3390/mi16060648
Ning Y, Li L, Wei P, Ke S, Zhu W, Nie X, He D, Liu M, Zhao W. Validation of Experimental Cooling Performance of Multi-Stage Thin-Film Thermoelectric Devices via Numerical Simulation. Micromachines. 2025; 16(6):648. https://doi.org/10.3390/mi16060648
Chicago/Turabian StyleNing, Yu, Longzhou Li, Ping Wei, Shaoqiu Ke, Wanting Zhu, Xiaolei Nie, Danqi He, Mingrui Liu, and Wenyu Zhao. 2025. "Validation of Experimental Cooling Performance of Multi-Stage Thin-Film Thermoelectric Devices via Numerical Simulation" Micromachines 16, no. 6: 648. https://doi.org/10.3390/mi16060648
APA StyleNing, Y., Li, L., Wei, P., Ke, S., Zhu, W., Nie, X., He, D., Liu, M., & Zhao, W. (2025). Validation of Experimental Cooling Performance of Multi-Stage Thin-Film Thermoelectric Devices via Numerical Simulation. Micromachines, 16(6), 648. https://doi.org/10.3390/mi16060648