MXene-Based High-Performance Soft Pressure Sensor Using Gel–Deep Eutectic Solvent Composite
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DES | Deep Eutectic Solvent |
FT-IR | Fourier Transform Infrared Spectroscopy |
PEN | Polyethylene Naphthalate |
PDMS | Polydimethylsiloxane |
PVA | Polyvinyl Alcohol |
PVP | Polyvinylphenol |
SEM | Scanning Electron Microscope |
XRD | X-Ray Diffraction |
References
- Li, X.; Huang, Z.; Shuck, C.E.; Liang, G.; Gogotsi, Y.; Zhi, C. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 2022, 6, 389. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Hadavand, M.; Ganjali, M.R. Exploring the synergistic potential: A comprehensive review of MXene-Based composite electrocatalysts. Mater. Chem. Phys. 2025, 332, 130076. [Google Scholar] [CrossRef]
- Sharma, S.; Chhetry, A.; Sharifuzzaman, M.; Yoon, H.; Park, J.Y. Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition. ACS Appl. Mater. Interfaces 2020, 12, 22212. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, V.; Ashraf, N.; Khalid, M.; Walvekar, R.; Yang, Y.; Kaushik, A.; Mishra, Y.K. Emergence of MXene–Polymer Hybrid Nanocomposites as High-Performance Next-Generation Chemiresistors for Efficient Air Quality Monitoring. Adv. Funct. Mater. 2022, 32, 2112913. [Google Scholar] [CrossRef]
- Li, K.; Zhao, J.; Zhussupbekova, A.; Shuck, C.E.; Hughes, L.; Dong, Y.; Barwich, S.; Vaesen, S.; Shvets, I.V.; Möbius, M.; et al. 4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage. Nat. Commun. 2022, 13, 6884. [Google Scholar] [CrossRef] [PubMed]
- Bashir, T.; Zhou, S.; Yang, S.; Ismail, S.A.; Ali, T.; Wang, H.; Zhao, J.; Gao, L. Progress in 3D-MXene Electrodes for Lithium/Sodium/Potassium/Magnesium/Zinc/Aluminum-Ion Batteries. Electrochem. Energy Rev. 2023, 6, 5. [Google Scholar] [CrossRef]
- Sharma, S.; Chhetry, A.; Maharjan, P.; Zhang, S.; Shrestha, K.; Sharifuzzaman, M.; Bhatta, T.; Shin, Y.; Kim, D.; Lee, S.; et al. Polyaniline-nanospines engineered nanofibrous membrane based piezoresistive sensor for high-performance electronic skins. Nano Energy 2022, 95, 106970. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Jian, M.; Jiang, Q.; Li, X. MXene Key Composites: A New Arena for Gas Sensors. Nano Micro Lett. 2024, 16, 209. [Google Scholar] [CrossRef]
- Lin, C.; Song, X.; Ye, W.; Liu, T.; Rong, M.; Niu, L. Recent Progress in Optical Sensors Based on MXenes Quantum Dots and MXenes Nanosheets. J. Anal. Test. 2024, 8, 95. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Wang, Y.; Jiang, Q.; El-Demellawi, J.K.; Kim, H.; Alshareef, H.N. MXene Printing and Patterned Coating for Device Applications. Adv. Mater. 2020, 32, 1908486. [Google Scholar] [CrossRef]
- Matias, M.L.; Pereira, C.; Almeida, H.V.; Jana, S.; Panigrahi, S.; Menda, U.D.; Nunes, D.; Fortunato, E.; Martins, R.; Nandy, S. 3D printed MXene architectures for a plethora of smart applications. Mater. Today Adv. 2024, 23, 100512. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, S.; Hao, Z.; Liu, X. MXene contact engineering for printed electronics. Adv. Sci. 2023, 10, 2207174. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389. [Google Scholar] [CrossRef]
- Isano, Y.; Takaya, M.; Kurotaki, Y.; Matsuda, R.; Miyake, Y.; Takano, T.; Isoda, Y.; Hamagami, T.; Kuribayashi, K.; Ota, H. Soft intelligent systems based on stretchable hybrid devices integrated with machine learning. Device 2024, 2, 100496. [Google Scholar] [CrossRef]
- Sekine, T.; Wang, Y.F.; Hong, J.; Takeda, Y.; Miura, R.; Watanabe, Y.; Abe, M.; Mori, Y.; Wang, Z.; Kumaki, D.; et al. Artificial Cutaneous Sensing of Object Slippage using Soft Robotics with Closed-Loop Feedback Process. Small Sci. 2021, 1, 2100002. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Lee, P.; Chou, J.B.; Xu, R.; Zhao, R.; Hart, A.J.; Kim, S.G. Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion. ACS Nano 2015, 9, 5929. [Google Scholar] [CrossRef]
- Sekine, T.; Abe, M.; Muraki, K.; Tachibana, S.; Wang, Y.F.; Hong, J.; Takeda, Y.; Kumaki, D.; Tokito, S. Microporous Induced Fully Printed Pressure Sensor for Wearable Soft Robotics Machine Interfaces. Adv. Intell. Syst. 2020, 2, 2000179. [Google Scholar] [CrossRef]
- Gibney, E. The inside story on wearable electronics. Nature 2015, 528, 26. [Google Scholar] [CrossRef]
- Long, S.; Feng, Y.; He, F.; Zhao, J.; Bai, T.; Lin, H.; Cai, W.; Mao, C.; Chen, Y.; Gan, L.; et al. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 2021, 85, 105973. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.; Zhang, S.; Lai, X.; Zeng, X. Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor. Chem. Eng. J. 2021, 425, 130462. [Google Scholar] [CrossRef]
- Tang, Z.; Jia, S.; Zhou, C.; Li, B. 3D Printing of Highly Sensitive and Large-Measurement-Range Flexible Pressure Sensors with a Positive Piezoresistive Effect. ACS Appl. Mater. Interfaces 2020, 12, 28669. [Google Scholar] [CrossRef] [PubMed]
- Ntagios, M.; Nassar, H.; Pullanchiyodan, A.; Navaraj, W.T.; Dahiya, R. Robotic Hands with Intrinsic Tactile Sensing via 3D Printed Soft Pressure Sensors. Adv. Intell. Syst. 2020, 2, 1900080. [Google Scholar] [CrossRef]
- Yasuda, T.; Komine, R.; Nojiri, R.; Takabe, Y.; Nara, K.; Kaneko, T.; Horigome, S.; Takeda, Y.; Wang, Y.F.; Kawaguchi, S.; et al. Ultra-Rapidly Responsive Electret-Based Flexible Pressure Sensor via Functional Polymeric Nanoparticle Synthesis. Adv. Funct. Mater. 2024, 34, 2402064. [Google Scholar] [CrossRef]
- Liu, L.; Yang, J.; Zhang, H.; Ma, J.; Zheng, J.; Wang, C. Recent advances of flexible MXene physical sensor to wearable electronics. Mater. Today Commun. 2023, 35, 106014. [Google Scholar] [CrossRef]
- Du, T.; Han, X.; Yan, X.; Shang, J.; Li, Y.; Song, J. MXene-Based Flexible Sensors: Materials, Preparation, and Applications. Adv. Mater. Technol. 2023, 8, 2202029. [Google Scholar] [CrossRef]
- Achkar, T.E.; Greige-Gerges, H.; Fourmentin, S. Basics and properties of deep eutectic solvents: A review. Environ. Chem. Lett. 2021, 19, 3397. [Google Scholar] [CrossRef]
- Sharma, S.; Pradhan, G.B.; Chhetry, A.; Shrestha, K.; Bhatta, T.; Zhang, S.; Kim, D.; Jeong, S.; Shin, Y.; Zahed, M.A.; et al. Graphene-polymer nanocomposites electrode with ionic nanofibrous membrane for highly sensitive supercapacitive pressure sensor. Nano Today 2023, 48, 101698. [Google Scholar] [CrossRef]
- Lou, Z.; Chen, S.; Wang, L.; Jiang, K.; Shen, G. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 2016, 23, 7. [Google Scholar] [CrossRef]
- Tou, K.; Nara, K.; Sekine, T.; Wang, Y.F.; Takeda, Y.; Kumaki, D.; Tokito, S. Micro-Pore Composed Soft Pressure Sensor with Ether-Surfactant via High-Sensitivity in Wide Range for Robotic Machine Interface Application. Adv. Sensor Res. 2023, 2, 2300045. [Google Scholar] [CrossRef]
- Wang, Y.F.; Sekine, T.; Takeda, Y.; Hong, J.; Yoshida, A.; Matsui, H.; Kumaki, D.; Nishikawa, T.; Shiba, T.; Sunaga, T.; et al. Printed Strain Sensor with High Sensitivity and Wide Working Range Using a Novel Brittle–Stretchable Conductive Network. ACS Appl. Mater. Interfaces 2020, 12, 35282. [Google Scholar] [CrossRef]
- Adelnia, H.; Ensandoost, R.; Moonshi, S.S.; Gavgani, J.N.; Vasafi, E.I.; Ta, H.T. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur. Polym. J. 2022, 164, 110974. [Google Scholar] [CrossRef]
- Tomé, L.I.N.; Baião, V.; da Silva, W.; Brett, C.M.A. Deep eutectic solvents for the production and application of new materials. Appl. Mater. Today 2018, 10, 30. [Google Scholar] [CrossRef]
- Sekine, T.; Sugano, R.; Tashiro, T.; Sato, J.; Takeda, Y.; Matsui, H.; Kumaki, D.; Domingues dos Santos, F.; Miyabo, A.; Tokito, S. Fully Printed Wearable Vital Sensor for Human Pulse Rate Monitoring using Ferroelectric Polymer. Sci. Rep. 2018, 8, 4442. [Google Scholar] [CrossRef]
- Wan, S.; Chen, Y.; Huang, C.; Huang, Z.; Liang, C.; Deng, X.; Cheng, Q. Scalable ultrastrong MXene films with superior osteogenesis. Nature 2024, 634, 1103. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, L.; Lai, X.; Zeng, X.; Li, H. Wearable RGO/MXene Piezoresistive Pressure Sensors with Hierarchical Microspines for Detecting Human Motion. ACS Appl. Mater. Interfaces 2022, 14, 27262. [Google Scholar] [CrossRef]
- Li, W.D.; Ke, K.; Jia, J.; Pu, J.H.; Zhao, X.; Bao, R.Y.; Liu, Z.Y.; Bai, L.; Zhang, K.; Yang, M.B.; et al. Recent Advances in Multiresponsive Flexible Sensors towards E-skin: A Delicate Design for Versatile Sensing. Small 2022, 18, 2103734. [Google Scholar] [CrossRef]
- Wang, X.; Dong, L.; Zhang, H.; Yu, R.; Pan, C.; Wang, Z.L. Recent Progress in Electronic Skin. Adv. Sci. 2015, 2, 1500169. [Google Scholar] [CrossRef]
- Nakamura, H.; Honda, S.; Matsumura, G.; Wakabayashi, S.; Uehara, K.; Nakajima, K.; Takei, K. Flexible electronic brush: Real-time multimodal sensing powered by reservoir computing through whisker dynamics. Sci. Adv. 2025, 11, eads4388. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasaki, R.; Tou, K.; Kamanoi, S.; Yoshida, J.; Takabe, Y.; Miura, Y.; Kamiya, E.; Hirayama, A.; Sekine, T. MXene-Based High-Performance Soft Pressure Sensor Using Gel–Deep Eutectic Solvent Composite. Micromachines 2025, 16, 579. https://doi.org/10.3390/mi16050579
Sasaki R, Tou K, Kamanoi S, Yoshida J, Takabe Y, Miura Y, Kamiya E, Hirayama A, Sekine T. MXene-Based High-Performance Soft Pressure Sensor Using Gel–Deep Eutectic Solvent Composite. Micromachines. 2025; 16(5):579. https://doi.org/10.3390/mi16050579
Chicago/Turabian StyleSasaki, Riku, Kaiin Tou, Shoma Kamanoi, Junya Yoshida, Yoshihito Takabe, Yasuyuki Miura, Eri Kamiya, Ayana Hirayama, and Tomohito Sekine. 2025. "MXene-Based High-Performance Soft Pressure Sensor Using Gel–Deep Eutectic Solvent Composite" Micromachines 16, no. 5: 579. https://doi.org/10.3390/mi16050579
APA StyleSasaki, R., Tou, K., Kamanoi, S., Yoshida, J., Takabe, Y., Miura, Y., Kamiya, E., Hirayama, A., & Sekine, T. (2025). MXene-Based High-Performance Soft Pressure Sensor Using Gel–Deep Eutectic Solvent Composite. Micromachines, 16(5), 579. https://doi.org/10.3390/mi16050579