Research Progress on Micromachining Technologies Used to Fabricate Terahertz Micro-Metallic Rectangular Cavity Structures
Abstract
:1. Introduction
2. Description of Typical Terahertz Metallic Rectangular Cavity Structures
3. Manufacturing Technologies Used to Fabricate Terahertz Metallic Rectangular Cavity Structures
3.1. Deep Reactive Ion Etching
3.2. UV-LIGA Technology
3.3. Micro-Milling Technology
3.4. LTCC Technology
3.5. Three-Dimensional Printing Technology
3.6. Electrochemical Micromachining Technology
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, J.; Li, S.; Le, W. Advances of terahertz technology in neuroscience: Current status and a future perspective. iScience 2021, 24, 103548. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.; Li, S. Development and future prospects of arthritis imaging. Chin. J. Radiol. 2024, 58, 1286–1291. [Google Scholar]
- Jin, Z.; Lou, J.; Shu, F.; Hong, Z.; Qiu, C. Advances in Nanoengineered Terahertz Technology: Generation, Modulation, and Bio-Applications. Research 2025, 8, 0562. [Google Scholar] [CrossRef]
- Li, J.; Deng, X.; Li, Y.; Hu, J.; Miao, W.; Lin, C.; Jiang, J.; Shi, S. Terahertz Science and Technology in Astronomy, Telecommunications, and Biophysics. Research 2025, 8, 0586. [Google Scholar] [CrossRef]
- Wang, H. Light People: Professor Xi-Cheng Zhang. Light Sci. Appl. 2022, 11, 272. [Google Scholar] [CrossRef] [PubMed]
- Masanori, H. Development and future prospects of terahertz technology. Jpn. J. Appl. Phys. 2015, 54, 120101. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.; Hussung, R.; Keil, A.; Leuchs, S.; Krebs, C.; Nüβler, D.; Seewig, J.; Von Freymann, G.; Friederich, F. Compact hand-guided 3D scanning terahertz sensor platforms with 3D-printed aspherical telecentric f-θ lens. Int. J. Microw. Wirel. Technol. 2023, 15, 1027–1037. [Google Scholar] [CrossRef]
- Chow, B.J.; Liu, C.; Yu, M.; Xin Yu Lee, I.; Mehta, J.S.; Wu, Q.Y.S.; Wong Kay Ting, R.; Lin, K.; Liu, Y.C. The Application of Terahertz Technology in Corneas and Corneal Diseases: A Systematic Review. Bioengineering 2025, 12, 45. [Google Scholar] [CrossRef]
- Li, A.; Yang, Y.; Wu, S.; Vogt Wu, T.; Zhang, Y.; Wu, W.; Zhang, H. Study on non-destructive detection technology of water content and defects in construction materials based on transmission terahertz system. J. Build. Eng. 2025, 104, 112452. [Google Scholar] [CrossRef]
- Kikuchi, R.; Nakagawa, S.; Enomoto, Y.; Kuzumi, Y.; Yamada, S.; Maeshima, K.; Yamauchi, Y.; Minami, H.; Kashiwagi, T. Evaluation of the device characteristics of Bi2Sr2CaCu2O8+δ terahertz-wave emitters using wet-etching techniques. J. Appl. Phys. 2025, 137, 043908. [Google Scholar] [CrossRef]
- You, B.; Hsieh, C.C.; Lin, Y.S.; Lu, P.J.; Tsai, H.Y.; Yu, L.C.; Chang, S.Y.; Wu, Y.C.; Liang, Z.Q. Refractive-index sensing based on terahertz cavity-modal confinement of Bragg metal grating structure. Phys. Scr. 2025, 100, 035551. [Google Scholar] [CrossRef]
- Ouchi, A.; Tripathi, S.R. Terahertz Circular Dichroism Spectroscopy of 3D Chiral Metallic Microstructures Fabricated Using High Precision CNC Machining. IEEE J. Microw. 2025, 5, 108–115. [Google Scholar] [CrossRef]
- Sarieddeen, H.; Saeed, N.; Al-Naffouri, T.Y.; Alouini, M.S. Next generation terahertz communications: A rendezvous of sensing, imaging, and localization. IEEE Commun. Mag. 2020, 58, 69–75. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, Y.; Wang, J. From Terahertz Imaging to Terahertz Wireless Communications. Engineering 2023, 22, 106–124. [Google Scholar] [CrossRef]
- Akkaş, M.A. Terahertz wireless data communication. Wirel. Netw. 2019, 25, 145–155. [Google Scholar] [CrossRef]
- Liang, M.; Ren, Z.; Zhang, C. Progress of Terahertz Space Exploration Technology. Laser. Optoelectron. Prog. 2019, 56, 18. [Google Scholar]
- Hosako, I.; Sekine, N.; Patrashin, M.; Saito, S.; Fukunaga, K.; Kasai, Y.; Baron, P.; Seta, T.; Mendrok, J.; Ochiai, S.; et al. At the dawn of a new era in terahertz technology. Proc. IEEE 2007, 95, 1611–1623. [Google Scholar] [CrossRef]
- Satpathy, S.; Khalaf, O.I.; Shukla, D.K.; Algburi, S.; Hamam, H. Consumer electronics based smart technologies for enhanced terahertz healthcare having an integration of split learning with medical imaging. Sci. Rep. 2024, 14, 1–12. [Google Scholar] [CrossRef]
- Pickwell-MacPherson, E.; Wallace, V.P. Terahertz pulsed imaging-A potential medical imaging modality. Photodiagnosis Photodyn. Ther. 2009, 6, 128–134. [Google Scholar] [CrossRef]
- Hernandez-Cardoso, G.G.; Rojas-Landeros, S.C.; Alfaro-Gomez, M.; Hernandez-Serrano, A.I.; Salas-Gutierrez, I.; Lemus-Bedolla, E.; Castillo-Guzman, A.R.; Lopez-Lemus, H.L.; Castro-Camus, E. Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept. Sci. Rep. 2017, 7, 10412. [Google Scholar] [CrossRef]
- Zhan, M.; Wu, J.; Li, Y.; Xu, G.; Zhu, Y. An Adaptive Nonlinear Phase Error Estimation and Compensation Method for Terahertz Radar Imaging System. IEEE J. Miniaturization Air Sp. Syst. 2024, 5, 108–116. [Google Scholar] [CrossRef]
- Cooper, K.B.; Dengler, R.J.; Llombart, N.; Bryllert, T.; Chattopadhyay, G.; Mehdi, I.; Siegel, P.H. An approach for sub-second imaging of concealed objects using terahertz (THz) radar. J. Infrared Millim. Terahertz Waves 2009, 30, 1297–1307. [Google Scholar] [CrossRef]
- Gui, S.; Li, J.; Pi, Y. Security Imaging for Multi-Target Screening Based on Adaptive Scene Segmentation with Terahertz Radar. IEEE Sens. J. 2019, 19, 2675–2684. [Google Scholar] [CrossRef]
- Liu, T.; Pi, Y.; Yang, X. Wide-Angle CSAR Imaging Based on the Adaptive Subaperture Partition Method in the Terahertz Band. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 165–173. [Google Scholar] [CrossRef]
- Guo, C.; Xu, W.; Cai, M.; Duan, S.; Fu, J.; Zhang, X. A Review: Application of Terahertz Nondestructive Testing Technology in Electrical Insulation Materials. IEEE Access 2022, 10, 121547–121560. [Google Scholar] [CrossRef]
- Han, S.T. Application of a Compact Sub-Terahertz Gyrotron for Nondestructive Inspections. IEEE Trans. Plasma Sci. 2020, 48, 3238–3245. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Chen, M.Y.; Dai, Z.J. Review on the terahertz transmission devices and their applications: From metal waveguides to terahertz fibers. Opt. Laser Technol. 2025, 183, 112339. [Google Scholar] [CrossRef]
- Katyba, G.M.; Zaytsev, K.I.; Dolganova, I.N.; Chernomyrdin, N.V.; Ulitko, V.E.; Rossolenko, S.N.; Shikunova, I.A.; Kurlov, V.N. Sapphire waveguides and fibers for terahertz applications. Prog. Cryst. Growth Charact. Mater. 2021, 67, 100523. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Lei, W.; Hu, P.; Guo, J.; Song, R.; Tang, X.; Ma, G.; Chen, H.; Wei, Y. A piecewise sine waveguide for terahertz traveling wave tube. Sci. Rep. 2022, 12, 10449. [Google Scholar] [CrossRef]
- Wang, C.; Wen, P.; Huang, X.; Chen, K.; Xu, K.-D. Terahertz dual-band bandpass filter based on spoof surface plasmon polaritons with wide upper stopband suppression. Opt. Express 2024, 32, 22748. [Google Scholar] [CrossRef]
- Yuan, J.; Ning, T.; Li, H.; Pei, L.; Li, J.; Zheng, J.; Wan, L. Terahertz filters based on subwavelength polymer waveguide. Results Phys. 2019, 13, 102198. [Google Scholar] [CrossRef]
- Liang, J.; Gao, W.; Lees, H.; Withayachumnankul, W. All-Silicon Terahertz Planar Horn Antenna. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 2181–2185. [Google Scholar] [CrossRef]
- Lier, E. Review of soft and hard horn antennas, including metamaterial-based hybrid-mode horns. IEEE Antennas Propag. Mag. 2010, 52, 31–39. [Google Scholar] [CrossRef]
- Wu, G.B.; Chen, J.; Yang, C.; Chan, K.F.; Chen, M.K.; Tsai, D.P.; Chan, C.H. 3-D-Printed Terahertz Metalenses for Next-Generation Communication and Imaging Applications. Proc. IEEE 2024, 112, 1033–1050. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Li, H.; Jiang, B.; Bai, F.; Feng, J. Terahertz Rectangular Waveguides by UV-LIGA with Megasonic Agitation. Micromachines 2022, 13, 1601. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ding, J.Q.; Zhao, Y.; Ge, J.X. W-Band Broadband Waveguide Filter Based on H-Plane Offset Coupling. J. Infrared Millim. Terahertz Waves 2019, 40, 412–418. [Google Scholar] [CrossRef]
- Gao, P.; Lu, Z.; Duan, J.; Zhu, J.; Wang, Z.; Gong, H.; Gong, Y. A Novel Folded Rectangular-Grating Slow Wave Structure for Dual-Beam Traveling Wave Tube. IEEE Trans. Electron Devices 2023, 70, 2730–2737. [Google Scholar] [CrossRef]
- Olivova, J.; Popela, M.; Richterova, M.; Blazek, V. Use of 3D Printing for Sierpinski Fractal Antenna Manufacturing. Electronics 2022, 11, 1539. [Google Scholar] [CrossRef]
- Zheng, Z.; Hu, J.; Liu, S.; Zhang, Y. WR-1.5 band waveguide bandpass dual-mode filter on silicon micromachining technique. In Proceedings of the 2015 IEEE International Conference on Communication Problem-Solving (ICCP), Guilin, China, 16–18 October 2015; pp. 112–114. [Google Scholar]
- Gerhard, M.; Beigang, R.; Rahm, M. Comparative Terahertz Study of Rectangular Metal Waveguides With and Without a Ridge. J. Infrared Millim. Terahertz Waves 2015, 36, 327–334. [Google Scholar] [CrossRef]
- Li, B.; Li, C.; Zhao, Y.; Han, C.; Zhang, Q. Deep reactive ion etching of Z-Cut alpha quartz for MEMS resonant devices fabrication. Micromachines 2020, 11, 724. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, Y.; Kang, X.; Lu, B.; Cui, B. WR-2.8 band micromachined rectangular waveguide filter. J. Infrared Millim. Terahertz Waves 2013, 34, 847–855. [Google Scholar] [CrossRef]
- Jung-Kubiak, C.; Reck, T.J.; Siles, J.V.; Lin, R.; Lee, C.; Gill, J.; Cooper, K.; Mehdi, I.; Chattopadhyay, G. A Multistep DRIE Process for Complex Terahertz Waveguide Components. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 690–695. [Google Scholar] [CrossRef]
- Bagolini, A.; Ronchin, S.; Bellutti, P.; Chistè, M.; Verotti, M.; Belfiore, N.P. Fabrication of Novel MEMS Microgrippers by Deep Reactive Ion Etching With Metal Hard Mask. J. Microelectromechanical Syst. 2017, 26, 926–934. [Google Scholar] [CrossRef]
- Leong, K.M.K.H.; Hennig, K.; Zhang, C.; Elmadjian, R.N.; Zhou, Z.; Gorospe, B.S.; Chang-Chien, P.P.; Radisic, V.; Deal, W.R. WR1.5 silicon micromachined waveguide components and active circuit integration methodology. IEEE Trans. Microw. Theory Tech. 2012, 60, 998–1005. [Google Scholar] [CrossRef]
- Beuerle, B.; Campion, J.; Shah, U.; Oberhammer, J. A Very Low Loss 220-325 GHz Silicon Micromachined Waveguide Technology. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 248–250. [Google Scholar] [CrossRef]
- Hu, J.; Xie, S.; Zhang, Y. Micromachined terahertz rectangular waveguide bandpass filter on silicon-substrate. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 636–638. [Google Scholar] [CrossRef]
- Zhao, X.H.; Bao, J.F.; Shan, G.C.; Du, Y.J.; Zheng, Y.B.; Wen, Y.; Shek, C.H. D-band micromachined silicon rectangular waveguide filter. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 230–232. [Google Scholar] [CrossRef]
- Hruby, J. Liga technologies and applications. MRS Bull. 2001, 26, 337–340. [Google Scholar] [CrossRef]
- Malek, C.K.; Saile, V. Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: A review. Microelectron. J. 2004, 35, 131–143. [Google Scholar] [CrossRef]
- Prakruthi, H.L.; Saara, K. Analytical modeling, fabrication and characterization of a 3-DOF MEMS gyroscope based on UV-LIGA process. J. Opt. 2024, 53, 1068–1078. [Google Scholar] [CrossRef]
- Genolet, G.; Lorenz, H. UV-LIGA: From development to commercialization. Micromachines 2014, 5, 486–495. [Google Scholar] [CrossRef]
- Shang, X.; Tian, Y.; Lancaster, M.J.; Singh, S. A SU8 micromachined WR-1.5 band waveguide filter. IEEE Microw. Wirel. Components Lett. 2013, 23, 300–302. [Google Scholar] [CrossRef]
- Shang, X.; Ke, M.; Wang, Y.; Lancaster, M.J. WR-3 band waveguides and filters fabricated using SU8 photoresist micromachining technology. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 629–637. [Google Scholar] [CrossRef]
- Xin, W.; Binzhen, Z.; Junlin, W.; Junping, D. 100 GHz waveguide band-pass filter employing UV-LIGA micromachining process. Microelectron. J. 2017, 69, 101–105. [Google Scholar] [CrossRef]
- Balázs, B.Z.; Geier, N.; Takács, M.; Davim, J.P. A review on micro-milling: Recent advances and future trends. Int. J. Adv. Manuf. Technol. 2021, 112, 655–684. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, Z.; Yang, Z.; Jiang, Y.; Sun, Y.; Xu, J.; Zhao, W.; Wang, W.; Wang, W.; Ren, Q.; et al. Development, challenges and future trends on the fabrication of micro-textured surfaces using milling technology. J. Manuf. Process. 2024, 126, 285–331. [Google Scholar] [CrossRef]
- Chen, N.; Li, H.N.; Wu, J.; Li, Z.; Li, L.; Liu, G.; He, N. Advances in micro milling: From tool fabrication to process outcomes. Int. J. Mach. Tools Manuf. 2021, 160, 103670. [Google Scholar] [CrossRef]
- Yang, R.; Xu, J.; Yue, L.; Yin, P.; Luo, J.; Yin, H.; Zhao, G.; Guo, G.; Yu, S.; Niu, X.; et al. Design and Experiment of 1 THz Slow Wave Structure Fabricated by Nano-CNC Technology. IEEE Trans. Electron Devices 2022, 69, 2656–2661. [Google Scholar] [CrossRef]
- Yang, H.; Dhayalan, Y.; Shang, X.; Lancaster, M.J.; Liu, B.; Wang, H.; Henry, M.; Huggard, P.G. WR-3 Waveguide Bandpass Filters Fabricated Using High Precision CNC Machining and SU-8 Photoresist Technology. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 100–107. [Google Scholar] [CrossRef]
- Leal-Sevillano, C.A.; Montejo-Garai, J.R.; Ruiz-Cruz, J.A.; Rebollar, J.M. Low-loss elliptical response filter at 100 GHz. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 459–461. [Google Scholar] [CrossRef]
- Xiao, Y.; Shan, P.; Zhu, K.; Sun, H.; Yang, F. Analysis of a Novel Singlet and Its Application in THz Bandpass Filter Design. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 312–3201. [Google Scholar] [CrossRef]
- Ding, J.Q.; Shi, S.C.; Zhou, K.; Liu, D.; Wu, W. Analysis of 220-GHz Low-Loss Quasi-Elliptic Waveguide Bandpass Filter. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 648–650. [Google Scholar] [CrossRef]
- Ding, J.Q.; Zhao, Y.; Shi, S.C. A Full WR-3 Band and Low-Loss 90° Waveguide Twist Based on CNC. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 93–96. [Google Scholar] [CrossRef]
- Gomez, H.C.; Cardoso, R.M.; Schianti, J.D.N.; de Oliveira, A.M.; Gongora-Rubio, M.R. Fab on a package: LTCC microfluidic devices applied to chemical process miniaturization. Micromachines 2018, 9, 285. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Wang, H.; Huang, Y.; Wang, J.; Xu, H. A novel antenna-in-package with LTCC technology for W-band application. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 357–360. [Google Scholar]
- Qian, J.; Tang, M.; Chen, Q.; Zhang, Y.P.; Mao, J. Integration of S/Ka/D-Band Antennas in LTCC with a Cylindrical Radome for Triband Applications. IEEE Trans. Antennas Propag. 2019, 67, 5781–5789. [Google Scholar] [CrossRef]
- Jäger, J.; Ihle, M.; Gläser, K.; Zimmermann, A. Inkjet-printed low temperature co-fired ceramics: Process development for customized LTCC. Flex. Print. Electron. 2024, 9, 025022. [Google Scholar] [CrossRef]
- Ullah, U.; Ain, M.F.; Mahyuddin, N.M.; Othman, M.; Arifin Ahmad, Z.; Abdullah, M.Z.; Marzuki, A. Antenna in LTCC Technologies: A Review and the Current State of the Art. IEEE Antennas Propag. Mag. 2015, 57, 241–260. [Google Scholar] [CrossRef]
- Qian, J.; Tang, M.; Zhang, Y.P.; Mao, J. Heatsink antenna array for millimeter-wave applications. IEEE Trans. Antennas Propag. 2020, 68, 7664–7669. [Google Scholar] [CrossRef]
- Song, H.J. Packages for terahertz electronics. Proc. IEEE 2017, 105, 1121–1138. [Google Scholar] [CrossRef]
- Tajima, T.; Song, H.J.; Ajito, K.; Yaita, M.; Kukutsu, N. 300-GHz step-profiled corrugated horn antennas integrated in LTCC. IEEE Trans. Antennas Propag. 2014, 62, 5437–5444. [Google Scholar] [CrossRef]
- Tajima, T.; Song, H.; Member, S.; Yaita, M. Design and Analysis of LTCC-Integrated Planar. IEEE Trans. Microw. Theory Tech. 2016, 64, 106–114. [Google Scholar] [CrossRef]
- Yuan, B.; Du, Q.; Hao, C.; Zhao, Y.; Yu, Z. A Novel Wideband Transition from LTCC Laminated Waveguide to Air-Filled Rectangular Waveguide for W-band Applications. Micromachines 2023, 14, 52. [Google Scholar] [CrossRef]
- Yu, H.; Liu, J.; Zhang, W.; Zhang, S. Ultra-low sintering temperature ceramics for LTCC applications: A review. J. Mater. Sci. Mater. Electron. 2015, 26, 9414–9423. [Google Scholar]
- Bastola, N.; Jahan, M.P.; Rangasamy, N.; Rakurty, C.S. A Review of the Residual Stress Generation in Metal Additive Manufacturing: Analysis of Cause, Measurement, Effects, and Prevention. Micromachines 2023, 14, 1480. [Google Scholar] [CrossRef]
- Gao, B.; Zhao, H.; Peng, L.; Sun, Z. A Review of Research Progress in Selective Laser Melting (SLM). Micromachines 2023, 14, 57. [Google Scholar] [CrossRef]
- Waller, E.H.; Dix, S.; Gutsche, J.; Widera, A.; von Freymann, G. Functional metallic microcomponents via liquid-phase multiphoton direct laser writing: A review. Micromachines 2019, 10, 827. [Google Scholar] [CrossRef]
- Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164. [Google Scholar] [CrossRef]
- Singh, S.; Ramakrishna, S.; Singh, R. Material issues in additive manufacturing: A review. J. Manuf. Process. 2017, 25, 185–200. [Google Scholar] [CrossRef]
- Xu, R.; Gao, S.; Izquierdo, B.S.; Gu, C.; Reynaert, P.; Standaert, A.; Gibbons, G.J.; Bösch, W.; Gadringer, M.E.; Li, D. A review of broadband low-cost and high-gain low-terahertz antennas for wireless communications applications. IEEE Access 2020, 8, 57615–57629. [Google Scholar] [CrossRef]
- Li, X.; Feng, J. Microfabrication Technologies for Interaction Circuits of THz Vacuum Electronic Devices. Micromachines 2024, 15, 1357. [Google Scholar] [CrossRef]
- D’Auria, M.; Otter, W.J.; Hazell, J.; Gillatt, B.T.W.; Long-Collins, C.; Ridler, N.M.; Lucyszyn, S. 3-D Printed Metal-Pipe Rectangular Waveguides. IEEE Trans. Compon. Packag. Manuf. Technol. 2015, 5, 1339–1349. [Google Scholar] [CrossRef]
- Otter, W.J.; Ridler, N.M.; Yasukochi, H.; Soeda, K.; Konishi, K.; Yumoto, J.; Kuwata-Gonokami, M.; Lucyszyn, S. 3D printed 1.1 THz waveguides. Electron. Lett. 2017, 53, 471–473. [Google Scholar] [CrossRef]
- Von Bieren, A.; De Rijk, E.; Ansermet, J.P.; Macor, A. Monolithic metal-coated plastic components for mm-wave applications. In Proceedings of the 2014 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Tucson, AZ, USA, 14–19 September 2014; p. 1. [Google Scholar]
- Makhlouf, S.; Khani, B.; Lackmann, J.; Dulme, S.; Stöhr, A. Metallic 3D Printed Rectangular Waveguides (WR3) for Rapid Prototyping of THz Packages. In Proceedings of the 2018 First International Workshop on Mobile Terahertz Systems (IWMTS), Duisburg, Germany, 2–4 July 2018. [Google Scholar]
- Zhang, B.; Zirath, H. Metallic 3-D Printed Rectangular Waveguides for Millimeter-Wave Applications. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 6, 796–804. [Google Scholar] [CrossRef]
- Debnath, S.; Doloi, B.; Bhattacharyya, B. Review—Wire Electrochemical Machining Process: Overview and Recent Advances. J. Electrochem. Soc. 2019, 166, E293–E309. [Google Scholar] [CrossRef]
- Li, X.; Ming, P.; Ao, S.; Wang, W. Review of additive electrochemical micro-manufacturing technology. Int. J. Mach. Tools Manuf. 2022, 173, 103848. [Google Scholar] [CrossRef]
- Bi, X.; Meng, L. Research on Integral Fabrication and Inner Surface Metallization of the High-Frequency Terahertz Hollow-Core Metal Rectangular Waveguide Cavity by a Combined Process Based on Wire Electrochemical Micromachining and Electrochemical Deposition. Micromachines 2022, 13, 1346. [Google Scholar] [CrossRef]
- Bi, X.; Meng, L. Combined fabrication of terahertz hollow-core metal rectangular waveguide cavity using electrochemical deposition and selective chemical dissolution. AIP Adv. 2022, 12, 025118. [Google Scholar] [CrossRef]
- Miao, Z.W.; Liu, X.; Hao, Z.C.; Zeng, Y.; Ding, C.Y.; Hong, W. A 0.9-THz Integrally Manufactured High-Precision Waveguide Cavity Filter Using Electrochemical Micromachining Technology. IEEE Trans. Microw. Theory Tech. 2023, 71, 4494–4504. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, X.; Li, X.; Li, B.; Cheng, X. Research Progress on Micromachining Technologies Used to Fabricate Terahertz Micro-Metallic Rectangular Cavity Structures. Micromachines 2025, 16, 518. https://doi.org/10.3390/mi16050518
Bi X, Li X, Li B, Cheng X. Research Progress on Micromachining Technologies Used to Fabricate Terahertz Micro-Metallic Rectangular Cavity Structures. Micromachines. 2025; 16(5):518. https://doi.org/10.3390/mi16050518
Chicago/Turabian StyleBi, Xiaolei, Xuemin Li, Bin Li, and Xueli Cheng. 2025. "Research Progress on Micromachining Technologies Used to Fabricate Terahertz Micro-Metallic Rectangular Cavity Structures" Micromachines 16, no. 5: 518. https://doi.org/10.3390/mi16050518
APA StyleBi, X., Li, X., Li, B., & Cheng, X. (2025). Research Progress on Micromachining Technologies Used to Fabricate Terahertz Micro-Metallic Rectangular Cavity Structures. Micromachines, 16(5), 518. https://doi.org/10.3390/mi16050518