Design, Fabrication, and Application of Large-Area Flexible Pressure and Strain Sensor Arrays: A Review
Abstract
:1. Introduction
2. Preparation Process of Flexible Sensors
3. Mechanism of Flexible Sensors
4. Common Materials for Flexible Sensors
5. Typical Preparation Process of Flexible Sensors
6. Typical Applications of Large-Area Pressure-Based Sensor Arrays
7. Common Applications of Large-Area Strain Sensor Arrays
8. Conclusions and Perspectives
- (1)
- Mass Production Feasibility
- (2)
- Wireless Integration
- (3)
- Real-Time Data Processing
- (4)
- Long-Term Stability and Environmental Adaptability
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, X.; Zhang, Z.; Chen, X.; Wang, F.; Shu, L.; Xu, X.; Tao, X. High-Resolution, High-Speed and Low-Cost Flexible Tactile Sensor Array System. Measurement 2025, 241, 115630. [Google Scholar] [CrossRef]
- Wang, T.; Shang, X.; Wang, H.; Wang, J.; Zhang, C. Porous Nanofibers and Micro-Pyramid Structures Array for High-Performance Flexible Pressure Sensors. Compos. Part A Appl. Sci. Manuf. 2024, 181, 108163. [Google Scholar] [CrossRef]
- Zhen, L.; Cui, M.; Bai, X.; Jiang, J.; Ma, X.; Wang, M.; Liu, J.; Yang, B. Thin, Flexible Hybrid-Structured Piezoelectric Sensor Array with Enhanced Resolution and Sensitivity. Nano Energy 2024, 131, 110188. [Google Scholar] [CrossRef]
- Yin, M.; Guo, Y.; An, J.; Liu, T.; Gou, G.; Li, T.; Chen, G.; Ma, T.; Sun, J.; Han, M.; et al. Flexible Wide-Range, Sensitive Three-Axis Pressure Sensor Array for Robotic Grasping Feedback. Sens. Actuators Rep. 2024, 8, 100250. [Google Scholar] [CrossRef]
- Hernández-Sebastián, N.; Diaz-Alonso, D.; Barrientos-García, B.; Renero-Carrillo, F.J.; Calleja-Arriaga, W. Fabrication of an Integrated, Flexible, Wireless Pressure Sensor Array for the Monitoring of Ventricular Pressure. Micromachines 2024, 15, 1435. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, C.; Zheng, Z. Advancements in Transfer Printing Techniques for Flexible Electronics: Adjusting Interfaces and Promoting Versatility. Int. J. Extrem. Manuf. 2024, 6, 052005. [Google Scholar] [CrossRef]
- Wang, X.; Wu, G.; Zhang, X.; Lv, F.; Yang, Z.; Nan, X.; Zhang, Z.; Xue, C.; Cheng, H.; Gao, L. Traditional Chinese Medicine (TCM)-Inspired Fully Printed Soft Pressure Sensor Array with Self-Adaptive Pressurization for Highly Reliable Individualized Long-Term Pulse Diagnostics. Adv. Mater. 2025, 37, 2410312. [Google Scholar] [CrossRef]
- Nan, X.; Xu, Z.; Cao, X.; Hao, J.; Wang, X.; Duan, Q.; Wu, G.; Hu, L.; Zhao, Y.; Yang, Z.; et al. A Review of Epidermal Flexible Pressure Sensing Arrays. Biosensors 2023, 13, 656. [Google Scholar] [CrossRef]
- Benarrait, R.; Ullah-Khan, M.; Terrien, J.; Al Hajjar, H.; Lamarque, F.; Dietzel, A. A Flexible Double-Sided Curvature Sensor Array for Use in Soft Robotics. Sensors 2024, 24, 3475. [Google Scholar] [CrossRef]
- Wu, L.; Xue, J.; Meng, J.; Shi, B.; Sun, W.; Wang, E.; Dong, M.; Zheng, X.; Wu, Y.; Li, Y.; et al. Self-Powered Flexible Sensor Array for Dynamic Pressure Monitoring. Adv. Funct. Mater. 2024, 34, 2316712. [Google Scholar] [CrossRef]
- Yu, P.; Liu, W.; Gu, C.; Cheng, X.; Fu, X. Flexible Piezoelectric Tactile Sensor Array for Dynamic Three-Axis Force Measurement. Sensors 2016, 16, 819. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shao, J.; Tian, H.; Li, X.; Wang, C.; Luo, Y. Scalable Imprinting of Flexible Multiplexed Sensor Arrays with Distributed Piezoelectricity-Enhanced Micropillars for Dynamic Tactile Sensing. Adv. Mater. Technol. 2020, 5, 2000046. [Google Scholar] [CrossRef]
- Zhao, C.; Li, F.-M.; Pan, X.-Y.; Li, S.; Zhai, Y.-F.; Fahad, S.; Yu, H.-Y.; Wang, M. Half-Encapsulated Rigid Microsphere Arrays for Enhancing the Sensitivity of In-Plane Integrated Pressure Sensor. IEEE Sens. J. 2023, 23, 12607–12617. [Google Scholar] [CrossRef]
- Kim, K.; Choi, J.; Jeong, Y.; Cho, I.; Kim, M.; Kim, S.; Oh, Y.; Park, I. Highly Sensitive and Wearable Liquid Metal-Based Pressure Sensor for Health Monitoring Applications: Integration of a 3D-Printed Microbump Array with the Microchannel. Adv. Healthc. Mater. 2019, 8, 1900978. [Google Scholar] [CrossRef]
- Fleer, S.; Moringen, A.; Klatzky, R.L.; Ritter, H. Learning Efficient Haptic Shape Exploration with a Rigid Tactile Sensor Array. PLoS ONE 2020, 15, e0226880. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, Y.; Zhang, H.; Chen, Z.; Zhao, H.; Wu, G.; Zheng, W.; Xue, C.; Yin, Z.; Gao, L. A Fully Integrated Electronic Fabric-Enabled Multimodal Flexible Sensors for Real-Time Wireless Pressure-Humidity-Temperature Monitoring. Int. J. Extrem. Manuf. 2024, 6, 065502. [Google Scholar] [CrossRef]
- Duan, Y.; He, S.; Wu, J.; Su, B.; Wang, Y. Recent Progress in Flexible Pressure Sensor Arrays. Nanomaterials 2022, 12, 2495. [Google Scholar] [CrossRef]
- Han, Z.; Liu, L.; Zhang, J.; Han, Q.; Wang, K.; Song, H.; Wang, Z.; Jiao, Z.; Niu, S.; Ren, L. High-Performance Flexible Strain Sensor with Bio-Inspired Crack Arrays. Nanoscale 2018, 10, 15178–15186. [Google Scholar] [CrossRef]
- Li, M.; Chen, S.; Fan, B.; Wu, B.; Guo, X. Printed Flexible Strain Sensor Array for Bendable Interactive Surface. Adv. Funct. Mater. 2020, 30, 2003214. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, B.; Jiang, Z.; Li, S.; Lei, J.; Zhang, Z.; Liu, J.; Shi, P.; Lin, Q. Flexible Temperature Sensor with High Sensitivity Ranging from Liquid Nitrogen Temperature to 1200 °C. Int. J. Extrem. Manuf. 2023, 5, 015601. [Google Scholar] [CrossRef]
- Che, Q.; Zhao, Q.; Hu, M.; Qin, R.; Shan, G.; Yang, J. Ag Nanowire-Based Stretchable Electrodes and Wearable Sensor Arrays. ACS Appl. Nano Mater. 2021, 4, 12726–12736. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, G.; Yang, H.; Tong, T.; Xu, S.; Zhang, L.; Luo, J.; Zhang, C.; Xie, G. Dynamic Wear Sensor Array Based on Single-Electrode Triboelectric Nanogenerators. Nano Energy 2020, 68, 104303. [Google Scholar] [CrossRef]
- Su, Q.; Liu, C.; Xue, T.; Zou, Q. Sensitivity-Photo-Patternable Ionic Pressure Sensor Array with a Wearable Measurement Unit. ACS Appl. Mater. Interfaces 2022, 14, 33641–33649. [Google Scholar] [CrossRef]
- Zhi, X.; Ma, S.; Xia, Y.; Yang, B.; Zhang, S.; Liu, K.; Li, M.; Li, S.; Peiyuan, W.; Wang, X. Hybrid Tactile Sensor Array for Pressure Sensing and Tactile Pattern Recognition. Nano Energy 2024, 125, 109532. [Google Scholar] [CrossRef]
- Weichart, J.; Roman, C.; Hierold, C. Tactile Sensing with Scalable Capacitive Sensor Arrays on Flexible Substrates. J. Microelectromech. Syst. 2021, 30, 915–929. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Liu, Q.; Zhu, Y.; Wang, H.; Xie, Z.; Yu, X.; Zi, Y. A Metal-Electrode-Free, Fully Integrated, Soft Triboelectric Sensor Array for Self-Powered Tactile Sensing. Microsyst. Nanoeng. 2020, 6, 59. [Google Scholar] [CrossRef]
- Liao, L.; Zhou, S.; Yang, J.; Wang, Z.; Li, J.; Qiu, Z.; Yu, Z.; Yang, C.; Wang, H.; Wen, L. A Flexible Pressure Sensor Based on an Interlocked Micropillars Array with Secondary Nanoprotrusions for Health Monitoring. IEEE Trans. Instrum. Meas. 2024, 73, 4005709. [Google Scholar] [CrossRef]
- Luo, W.; Sharma, V.; Young, D.J. A Paper-Based Flexible Tactile Sensor Array for Low-Cost Wearable Human Health Monitoring. J. Microelectromech. Syst. 2020, 29, 825–831. [Google Scholar] [CrossRef]
- Shang, J.; Ma, X.; Zou, P.; Huang, C.; Lao, Z.; Wang, J.; Jiang, T.; Fu, Y.; Li, J.; Zhang, S.; et al. A Flexible Catheter-Based Sensor Array for Upper Airway Soft Tissues Pressure Monitoring. Nat. Commun. 2025, 16, 287. [Google Scholar] [CrossRef]
- Hussain, A.M.; Hussain, M.M. Deterministic Integration of Out-of-Plane Sensor Arrays for Flexible Electronic Applications. Small 2016, 12, 5141–5145. [Google Scholar] [CrossRef]
- Rachim, V.P.; Kang, S.; Baek, J.-H.; Park, S.-M. Unobtrusive, Cuffless Blood Pressure Monitoring Using a Soft Polymer Sensor Array with Flexible Hybrid Electronics. IEEE Sens. J. 2021, 21, 10132–10142. [Google Scholar] [CrossRef]
- Lahcen, A.A.; Labib, M.; Caprio, A.; Annabestani, M.; Sanchez-Botero, L.; Hsue, W.; Liu, C.F.; Dunham, S.; Mosadegh, B. Design, Testing, and Validation of a Soft Robotic Sensor Array Integrated with Flexible Electronics for Mapping Cardiac Arrhythmias. Micromachines 2024, 15, 1393. [Google Scholar] [CrossRef]
- Van Nguyen, D.; Song, P.; Manshaii, F.; Bell, J.; Chen, J.; Dinh, T. Advances in Soft Strain and Pressure Sensors. ACS Nano 2025, 19, acsnano.4c15134. [Google Scholar] [CrossRef]
- Basov, M. Schottky Diode Temperature Sensor for Pressure Sensor. Sens. Actuators A Phys. 2021, 331, 112930. [Google Scholar] [CrossRef]
- Han, S.; Peng, H.; Sun, Q.; Venkatesh, S.; Chung, K.; Lau, S.C.; Zhou, Y.; Roy, V.A.L. An Overview of the Development of Flexible Sensors. Adv. Mater. 2017, 29, 1700375. [Google Scholar] [CrossRef]
- Yang, N.; Wu, H.; Wang, S.; Yuan, G.; Zhang, J.; Sokolov, O.; Bichurin, M.I.; Wang, K.; Wang, Y. Ultrasensitive Flexible Magnetoelectric Sensor. APL Mater. 2021, 9, 021123. [Google Scholar] [CrossRef]
- Smocot, S.; Zhang, Z.; Zhang, L.; Guo, S.; Cao, C. Printed Flexible Mechanical Sensors. Nanoscale 2022, 14, 17134–17156. [Google Scholar] [CrossRef]
- Wang, T.; Guo, Y.; Wan, P.; Zhang, H.; Chen, X.; Sun, X. Flexible Transparent Electronic Gas Sensors. Small 2016, 12, 3748–3756. [Google Scholar] [CrossRef]
- Xuan, Y.; Lu, Y.; Honda, S.; Arie, T.; Akita, S.; Takei, K. Active-Matrix-Based Flexible Optical Image Sensor. Adv. Mater. Technol. 2021, 6, 2100259. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, B.; Shu, L.; Tao, X. Flexible Pressure Sensors for Smart Protective Clothing against Impact Loading. Smart Mater. Struct. 2014, 23, 015001. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, B.; Wang, H. Measuring Garment Pressure at any Point Using a Wearable Sensor. J. Eng. Fibers Fabr. 2019, 14, 1558925019879290. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, W.; Tang, K.; Li, S.; Sun, J.; Xu, D.; Li, W.; Hu, X.; Tian, M. Flexible Polyimide-Based Flame-Retardant E-Textile for Fire Damage Warning in Firefighting Clothing. Prog. Org. Coat. 2024, 192, 108517. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, B.; Li, H.; Li, M.; Song, Y.; Wang, R.; Wang, T.; Zhang, H. Flexible Wearable Sensors in Medical Monitoring. Biosensors 2022, 12, 1069. [Google Scholar] [CrossRef]
- Wang, K.; Wu, Z.; Wu, R.; Zang, J.; Lu, B.; Du, C.; Yu, Y. Direct Fabrication of Flexible Strain Sensor with Adjustable Gauge Factor on Medical Catheters. J. Sci. Adv. Mater. Devices 2023, 8, 100558. [Google Scholar] [CrossRef]
- Wang, H.L.; Kuang, S.Y.; Li, H.Y.; Wang, Z.L.; Zhu, G. Large-Area Integrated Triboelectric Sensor Array for Wireless Static and Dynamic Pressure Detection and Mapping. Small 2020, 16, 1906352. [Google Scholar] [CrossRef]
- Zheng, L.; Hou, X.; Xu, M.; Yang, Y.; Gao, J.; Luo, L.; Zhu, Q.; Li, W.; Wang, X. Scalable Manufacturing of Large-Area Pressure Sensor Array for Sitting Posture Recognition in Real Time. ACS Mater. Au 2023, 3, 669–677. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Ji, Z.; Hao, D.; Yan, W.; Ye, Z.; Hu, Y.; Fang, M.; Wang, C.; Ma, L.; et al. Large-Area Periodic Organic–Inorganic Hybrid Perovskite Nanopyramid Arrays for High-Performance Photodetector and Image Sensor Applications. ACS Mater. Lett. 2021, 3, 1189–1196. [Google Scholar] [CrossRef]
- Jiang, T.; Nan, W.; Han, L.; Wei, H.; Wang, M.; Peng, J.; Chen, Y.; Hou, X.; Zhan, D. A Rigidity/Flexibility Compatible Strategy to Improve the Stability and Durability of Flexible Electrochemical Sensor Based on a Polydimethylsiloxane Membrane Supported Prussian Blue@Carbon Nanotube Array. Electroanalysis 2022, 34, 655–658. [Google Scholar] [CrossRef]
- Chen, Z.; Ming, T.; Goulamaly, M.M.; Yao, H.; Nezich, D.; Hempel, M.; Hofmann, M.; Kong, J. Enhancing the Sensitivity of Percolative Graphene Films for Flexible and Transparent Pressure Sensor Arrays. Adv. Funct. Mater. 2016, 26, 5061–5067. [Google Scholar] [CrossRef]
- Gong, X.; Huang, K.; Wu, Y.-H.; Zhang, X.-S. Recent Progress on Screen-Printed Flexible Sensors for Human Health Monitoring. Sens. Actuators A Phys. 2022, 345, 113821. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, J.; Xiao, J.; Kang, Y.; Yu, L.; Jiang, C.; Pan, Y.; Dong, H.; Gao, S.; Wang, Y. A High-Resolution, Ultrabroad-Range and Sensitive Capacitive Tactile Sensor Based on a CNT/PDMS Composite for Robotic Hands. Nanoscale 2021, 13, 18780–18788. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Pyatt, S.; Anthony, C.; Kubba, A.; Kubba, A.; Olatunbosun, O. Flexible Bond Wire Capacitive Strain Sensor for Vehicle Tyres. Sensors 2016, 16, 929. [Google Scholar] [CrossRef] [PubMed]
- Ning, C.; Dong, K.; Cheng, R.; Yi, J.; Ye, C.; Peng, X.; Sheng, F.; Jiang, Y.; Wang, Z.L. Flexible and Stretchable Fiber-Shaped Triboelectric Nanogenerators for Biomechanical Monitoring and Human-Interactive Sensing. Adv. Funct. Mater. 2021, 31, 2006679. [Google Scholar] [CrossRef]
- Zhao, X.; Hua, Q.; Yu, R.; Zhang, Y.; Pan, C. Flexible, Stretchable and Wearable Multifunctional Sensor Array as Artificial Electronic Skin for Static and Dynamic Strain Mapping. Adv. Elect. Mater. 2015, 1, 1500142. [Google Scholar] [CrossRef]
- Liu, B.; Qi, F.; Zhou, D.; Nie, L.; Xian, Y.; Lu, X. A Novel Flexible Plasma Array for Large-Area Uniform Treatment of an Irregular Surface. Plasma Sci. Technol. 2022, 24, 035403. [Google Scholar] [CrossRef]
- Chou, J.-C.; Chen, J.-T.; Liao, Y.-H.; Lai, C.-H.; Chen, R.-T.; Tsai, Y.-L.; Lin, C.-Y.; Chen, J.-S.; Huang, M.-S.; Chou, H.-T. Wireless Sensing System for Flexible Arrayed Potentiometric Sensor Based on XBee Module. IEEE Sens. J. 2016, 16, 5588–5595. [Google Scholar] [CrossRef]
- Gao, L.; Han, Y.; Surjadi, J.U.; Cao, K.; Zhou, W.; Xu, H.; Hu, X.; Wang, M.; Fan, K.; Wang, Y.; et al. Magnetically Induced Micropillar Arrays for an Ultrasensitive Flexible Sensor with a Wireless Recharging System. Sci. China Mater. 2021, 64, 1977–1988. [Google Scholar] [CrossRef]
- Lee, Y.; Jung, G.; Jin, S.W.; Ha, J.S. Flexible Thin-Film Speaker Integrated with an Array of Quantum-Dot Light-Emitting Diodes for the Interactive Audiovisual Display of Multi-Functional Sensor Signals. ACS Appl. Mater. Interfaces 2022, 14, 48844–48856. [Google Scholar] [CrossRef]
- Ouyang, C.; Liu, D.; He, K.; Kang, J. Recent Advances in Touch Sensors for Flexible Displays. IEEE Open J. Nanotechnol. 2023, 4, 36–46. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Liu, S.; Liu, C.; Ma, T.; Luo, Z.; Ge, G. Single-Line Multi-Channel Flexible Stress Sensor Arrays. Micromachines 2023, 14, 1554. [Google Scholar] [CrossRef]
- Shu, Q.; Pang, Y.; Li, Q.; Gu, Y.; Liu, Z.; Liu, B.; Li, J.; Li, Y. Flexible Resistive Tactile Pressure Sensors. J. Mater. Chem. A 2024, 12, 9296–9321. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, M.; Hong, S.; Shi, J.; Xie, S.; Liu, C.; Du, H.; Morin, J.D.; Li, G.; Wang, L.; et al. Data-Driven Inverse Design of Flexible Pressure Sensors. Proc. Natl. Acad. Sci. USA 2024, 121, e2320222121. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Wu, Y.; Asghar, W.; Xia, X.; Liu, C.; Bai, X.; Shang, J.; Liu, Y.; Li, R.-W. Piezo-Capacitive Flexible Pressure Sensor with Magnetically Self-Assembled Microneedle Array. ACS Sens. 2025, 10, acssensors.4c02895. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Xu, Y.; Hu, Y.; Zhang, Q.; Wei, N.; Zeng, W.; Wu, R. Ti3C2Tx MXene Paper-Based Flexible Wearable Pressure Sensor with Wide Pressure Detection Range for Human Motion Detection. J. Alloys Compd. 2025, 1017, 179126. [Google Scholar] [CrossRef]
- Jia, P.; Zhang, Q.; Ren, Z.; Yin, J.; Lei, D.; Lu, W.; Yao, Q.; Deng, M.; Gao, Y.; Liu, N. Self-Powered Flexible Battery Pressure Sensor Based on Gelatin. Chem. Eng. J. 2024, 479, 147586. [Google Scholar] [CrossRef]
- Zhang, Q.; Lei, D.; Liu, N.; Liu, Z.; Ren, Z.; Yin, J.; Jia, P.; Lu, W.; Gao, Y. A Zinc-Ion Battery-Type Self-Powered Pressure Sensor with Long Service Life. Adv. Mater. 2022, 34, 2205369. [Google Scholar] [CrossRef]
- Wang, J.; Cui, X.; Song, Y.; Chen, J.; Zhu, Y. Flexible Iontronic Sensors with High-Precision and High-Sensitivity Detection for Pressure and Temperature. Compos. Commun. 2023, 39, 101544. [Google Scholar] [CrossRef]
- Long, W.; Yao, Y.; Ye, Y.; Zhang, C.; Xu, J.; Zhong, D.; Fu, Z.; Zhang, J.; Liu, X.; Xia, L. Flexible Strain Sensor Based on Carbonized Corn Stalk with Three-Dimensional Network. Ind. Crops Prod. 2025, 225, 120496. [Google Scholar] [CrossRef]
- Chen, X.; Yang, X.; Zhang, Q.; Shu, S.; Han, Z. Bioinspired, Ultrasensitive, Highly Stable Flexible Strain Sensor with Circularly Arranged Cross-Cracks. Chem. Eng. J. 2025, 505, 159370. [Google Scholar] [CrossRef]
- Xiao, T.; Chen, Y.; Li, Q.; Gao, Y.; Pan, L.; Xuan, F. All Digital Light Processing-3D Printing of Flexible Sensor. Adv. Mater. Technol. 2023, 8, 2201376. [Google Scholar] [CrossRef]
- Liu, P.; Tong, W.; Hu, R.; Yang, A.; Tian, H.; Guo, X.; Liu, C.; Ma, Y.; Tian, H.; Song, A.; et al. Ultra-Sensitive Flexible Resistive Sensor Based on Modified PEDOT: PSS Inspired by Earthworm. Chem. Eng. J. 2024, 494, 152984. [Google Scholar] [CrossRef]
- Li, S.; Yang, M.; Wu, Y.; Asghar, W.; Lu, X.; Zhang, H.; Cui, E.; Fang, Z.; Shang, J.; Liu, Y.; et al. A Flexible Dual-Mode Sensor with Decoupled Strain and Temperature Sensing for Smart Robots. Mater. Horiz. 2024, 11, 6361–6370. [Google Scholar] [CrossRef] [PubMed]
- Bijender; Kumar, A. Recent Progress in the Fabrication and Applications of Flexible Capacitive and Resistive Pressure Sensors. Sens. Actuators A Phys. 2022, 344, 113770. [Google Scholar] [CrossRef]
- Ma, J.; Huang, H.; Li, B. Wavy-Shaped Flexible Capacitive Strain Sensor for Multiple Deformations Recognition. Sens. Actuators A Phys. 2024, 366, 115025. [Google Scholar] [CrossRef]
- Yue, X.; Wang, X.; Shao, J.; Wang, H.; Chen, Y.; Zhang, K.; Han, X.; Hong, J. One-Dimensional Flexible Capacitive Sensor with Large Strain and High Stability for Human Motion Monitoring. ACS Appl. Mater. Interfaces 2024, 16, 59412–59423. [Google Scholar] [CrossRef]
- Xu, D.; Bai, N.; Wang, W.; Wu, X.; Liu, K.; Liu, M.; Ping, M.; Zhou, L.; Jiang, P.; Zhao, Y.; et al. 3D Network Spacer-Embedded Flexible Iontronic Pressure Sensor Array with High Sensitivity over a Broad Sensing Range. ACS Appl. Mater. Interfaces 2024, 16, 58780–58790. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, M.; Li, J.; Yang, S.; Li, J.; Wen, Q.; Gao, L.; Li, J. Highly Sensitive Flexible Iontronic Pressure Sensor for Marine Pressure Monitoring. IEEE Electron Device Lett. 2024, 45, 2530–2533. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Luo, Y.; Wang, K.; Feng, X.; Pei, Y.; Wu, H.; Li, Y.; Wang, Z.; Lu, B. A Convenient, Low-Cost Graphene UV-Cured Additive Manufacturing Electronic Process to Achieve Flexible Sensors. Chem. Eng. J. 2023, 451, 138521. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y.; Liu, Y.; Jiang, D.; Wu, Z.; Jiang, B.; Yan, H.; Toktarbay, Z. High-Performance PVA-Based Hydrogels for Ultra-Sensitive and Durable Flexible Sensors. Adv. Compos. Hybrid Mater. 2025, 8, 154. [Google Scholar] [CrossRef]
- Mu, J.; Li, C.; Li, D.; Song, X.; Chen, S.; Xu, F. Self-Gelated Flexible Lignin-Based Ionohydrogels for Efficient Self-Powered Strain Sensors. Chem. Eng. J. 2025, 507, 160750. [Google Scholar] [CrossRef]
- Guo, Z.; Sun, W.; Yang, Z.; Wu, X.; Wu, Y.; Zhang, Y.; Lan, W.; Liao, Y.; Wu, X.; Liu, Y. “One-Step” Preparation Process for the Flexible and Breathable Piezoelectric Sensor. ACS Appl. Electron. Mater. 2023, 5, 4209–4219. [Google Scholar] [CrossRef]
- Xu, K.; Tang, Y. Review: Progress on 3D Printing Technology in the Preparation of Flexible Tactile Sensors. J. Mater. Sci. 2023, 58, 16869–16890. [Google Scholar] [CrossRef]
- Guo, F.; Li, Y.; Ma, G.; Zhang, M.; Fu, J.; Luo, C.; Yuan, L.; Long, Y. Overview of 3D Printing Multimodal Flexible Sensors. ACS Appl. Mater. Interfaces 2024, 16, 65779–65795. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, Y.; Lu, S.; Li, J.; Liu, J.; Huang, X.; Zhang, X.; Zhang, Y.; Dong, G.; Qin, L.; et al. Magnetically Assisted 3D Printing of Ultra-Antiwear Flexible Sensor. Adv. Funct. Mater. 2024, 34, 2406108. [Google Scholar] [CrossRef]
- Zhang, S.; Feng, W.; Jiang, Y.; Li, Y.; Liu, Y.; Yu, D.; Wang, W. Flexible Pressure Sensor Based on 3D Printing MXene@dual-Scale Porous Polymer. Chem. Eng. J. 2024, 498, 155356. [Google Scholar] [CrossRef]
- Wu, G.; Wu, L.; Zhang, H.; Wang, X.; Xiang, M.; Teng, Y.; Xu, Z.; Lv, F.; Huang, Z.; Lin, Y.; et al. Research Progress of Screen-Printed Flexible Pressure Sensor. Sens. Actuators A Phys. 2024, 374, 115512. [Google Scholar] [CrossRef]
- Teng, Y.; Wang, X.; Zhang, Z.; Mei, S.; Nan, X.; Zhao, Y.; Zhang, X.; Xue, C.; Gao, L.; Li, J. Fully Printed Minimum Port Flexible Interdigital Electrode Sensor Arrays. Nanoscale 2024, 16, 7427–7436. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Q.; Mei, S.; Gao, L.; Zhang, X.; Yang, Z.; Nan, X.; Zhang, H.; Xue, C.; Li, J. Wearable Multichannel-Active Pressurized Pulse Sensing Platform. Microsyst. Nanoeng. 2024, 10, 77. [Google Scholar] [CrossRef]
- Wang, C.; Yu, F.; Chen, C.; Xia, J.; Gan, Y.; Li, J.; Yao, J.; Zheng, J.; Chen, X.; Wu, Z.; et al. Laser Etching of On-Chip Ultra-High Stability Flexible Micro MnO2//Zn Batteries. Mater. Today Energy 2024, 41, 101530. [Google Scholar] [CrossRef]
- Xie, H.; Huang, Z.; Wan, J.; Zhou, R.; Chen, T.; Wang, Y.; Cheng, D.; Yang, L.; Ji, J.; Jiang, Y.; et al. Dual-Band Laser Selective Etching for Stretchable and Strain Interference-Free Pressure Sensor Arrays. Adv. Funct. Mater. 2024, 34, 2401532. [Google Scholar] [CrossRef]
- Xue, Y.; Weng, Z.; Xiang, Q.; Liao, N.; Xue, W. Magnetron Sputtering Preparation of Flexible ZnO/AlN Thin-Films Sensors with Hybrid Piezoelectric Effect for Broad-Range Human Motions Detection. Ceram. Int. 2024, 50, 51429–51436. [Google Scholar] [CrossRef]
- Xiang, Q.; Luo, S.; Xue, Y.; Liao, N. Flexible and Sensitive Three-Dimension Structured Indium Tin Oxide/Zinc Aluminum Oxide/Cu Composites Thin-Films Pressure Sensors for Healthcare Monitoring. Surf. Interfaces 2024, 52, 104854. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Zhang, K.; Wang, S.; Bu, X.; Tan, J.; Song, W.; Mu, Z.; Zhang, P.; Huang, L. A Flexible Capacitive Pressure Sensor with Adjustable Detection Range Based on the Inflatable Dielectric Layer for Human–Computer Interaction. ACS Appl. Mater. Interfaces 2024, 16, 40250–40262. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Wang, J.; He, L.; Song, J.; Yang, Z.; Hammad, F.A. High-Performance Multidirectional Flexible Strain Sensor for Human Motion and Health Monitoring. ACS Appl. Mater. Interfaces 2024, 16, 41409–41420. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, X.; Niu, Y.; He, X.; Hu, Y.; Wang, C. Advances in Flexible Sensors with MXene Materials. New Carbon Mater. 2022, 37, 303–320. [Google Scholar] [CrossRef]
- Zhu, Y.; Song, S.; Yang, Y.; Zhang, R.; Xie, D.; Zhang, C.; Song, Y. Regenerated Cellulose Hydrogel with Excellent Mechanical Properties for Flexible Sensors. Ind. Crops Prod. 2024, 210, 118026. [Google Scholar] [CrossRef]
- Dai, W.; Tang, N.; Zhu, Y.; Wang, J.; Hu, W.; Fei, F.; Chai, X.; Tian, H.; Lu, W. Sandwich-Type Self-Healing Sensor with Multilevel for Motion Detection. ACS Appl. Mater. Interfaces 2024, 16, 7927–7938. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, K.; Wu, L.; Ji, W.; Cheng, G.; Ding, J. Flexible Tactile Sensors with Gradient Conformal Dome Structures. ACS Appl. Mater. Interfaces 2024, 16, 52966–52976. [Google Scholar] [CrossRef]
- Yi, L.; Wang, D.; Zhao, Y.; Li, Y.; Lin, K.; Wang, L.; Liu, F. A Multielectrode Layout for High Reliability of Flexible Piezoresistive Sensor: One Stimulus Signal to Three Sensing Signals. ACS Sens. 2024, 9, 3671–3679. [Google Scholar] [CrossRef]
- Feng, Z.; Wen, J.; Meng, F.; Tian, R.; Wang, S.; Wang, K.; Tian, Y. In Situ-Polymerized PANI/WS2 Nanocomposites for Highly Sensitive Flexible Ammonia Gas Sensors and Respiration Monitoring Devices. ACS Appl. Nano Mater. 2024, 7, 3385–3393. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, X.; Huang, X.; Liang, Q.; Deng, S.; Wu, Z.; Yao, Y.; Lu, L. A Deep Learning-Enabled Skin-Inspired Pressure Sensor for Complicated Recognition Tasks with Ultralong Life. Research 2023, 6, 0157. [Google Scholar] [CrossRef]
- Usman, M.; Jamhour, N.; Hettinger, J.; Xue, W. Smart Wearable Flexible Temperature Sensor with Compensation against Bending and Stretching Effects. Sens. Actuators A Phys. 2023, 353, 114224. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, L.; Zhang, C.; Bao, B.; Li, Q.; Wang, L.; Song, Z.; Li, D. Deep-learning Enabled Smart Insole System Aiming for Multifunctional Foot-healthcare Applications. Exploration 2024, 4, 20230109. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Shi, J.; Liu, Z.; Wang, Q.; Guo, C.F. High-Porosity Foam-Based Iontronic Pressure Sensor with Superhigh Sensitivity of 9280 kPa−1. Nano-Micro Lett. 2022, 14, 21. [Google Scholar] [CrossRef]
- Gao, L.; Wang, M.; Wang, W.; Xu, H.; Wang, Y.; Zhao, H.; Cao, K.; Xu, D.; Li, L. Highly Sensitive Pseudocapacitive Iontronic Pressure Sensor with Broad Sensing Range. Nano-Micro Lett. 2021, 13, 140. [Google Scholar] [CrossRef]
- Song, C.; Liu, J.; Cao, Y.; Li, W.; He, C. Efficient Solution Blow Spinning of PAN-CNTs Nanofiber-Based Pressure Sensors with Sandwich Structures. Langmuir 2024, 40, 20515–20525. [Google Scholar] [CrossRef]
- Zhang, X.; Chang, S.; Tong, Z. Facile Fabrication of a Highly Sensitive and Robust Flexible Pressure Sensor with Batten Microstructures. Micromachines 2022, 13, 1164. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, P.; Zhang, K.; Bu, X.; Dou, G.; Huang, L. Fabrication of Flexible Capacitive Pressure Sensors by Adjusting the Height of the Interdigital Electrode. ACS Appl. Electron. Mater. 2024, 6, 4539–4547. [Google Scholar] [CrossRef]
- Yang, S.; Li, C.; Wen, N.; Xu, S.; Huang, H.; Cong, T.; Zhao, Y.; Fan, Z.; Liu, K.; Pan, L. All-Fabric-Based Multifunctional Textile Sensor for Detection and Discrimination of Humidity, Temperature, and Strain Stimuli. J. Mater. Chem. C 2021, 9, 13789–13798. [Google Scholar] [CrossRef]
- Ling, L.; Liu, F.; Li, J.; Zhang, G.; Sun, R.; Wong, C. Self-Healable and Mechanically Reinforced Multidimensional-Carbon/Polyurethane Dielectric Nanocomposite Incorporates Various Functionalities for Capacitive Strain Sensor Applications. Macro Chem. Phys. 2018, 219, 1800369. [Google Scholar] [CrossRef]
- Li, X.; Cao, J.; Li, H.; Yu, P.; Fan, Y.; Xiao, Y.; Yin, Y.; Zhao, X.; Wang, Z.L.; Zhu, G. Differentiation of Multiple Mechanical Stimuli by a Flexible Sensor Using a Dual-Interdigital-Electrode Layout for Bodily Kinesthetic Identification. ACS Appl. Mater. Interfaces 2021, 13, 26394–26403. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Y.; Jiang, P.; Chen, X.; Yu, H. Low-Hysteresis, Pressure-Insensitive, and Transparent Capacitive Strain Sensor for Human Activity Monitoring. Microsyst. Nanoeng. 2022, 8, 113. [Google Scholar] [CrossRef]
- Tu, Z.; Xia, Z.; Luo, W.; Huang, P.; Lin, J. Structural Design of Flexible Interdigital Capacitor Based upon 3D Printing and Spraying Process. Smart Mater. Struct. 2022, 31, 045005. [Google Scholar] [CrossRef]
- Li, X.-D.; Huang, H.-X. Flexible and Multifunctional Pressure/Gas Sensors with Polypyrrole-Coated TPU Hierarchical Array. ACS Appl. Mater. Interfaces 2024, 16, 53072–53082. [Google Scholar] [CrossRef]
- Guo, W.-Y.; Mai, T.; Huang, L.-Z.; Zhang, W.; Qi, M.-Y.; Yao, C.; Ma, M.-G. Multifunctional MXene Conductive Zwitterionic Hydrogel for Flexible Wearable Sensors and Arrays. ACS Appl. Mater. Interfaces 2023, 15, 24933–24947. [Google Scholar] [CrossRef]
- Nitta, R.; Lin, H.-E.; Kubota, Y.; Kishi, T.; Yano, T.; Matsushita, N. CuO Nanostructure-Based Flexible Humidity Sensors Fabricated on PET Substrates by Spin-Spray Method. Appl. Surf. Sci. 2022, 572, 151352. [Google Scholar] [CrossRef]
- Menichelli, M.; Antognini, L.; Aziz, S.; Bashiri, A.; Bizzarri, M.; Calcagnile, L.; Caprai, M.; Caputo, D.; Caricato, A.P.; Catalano, R.; et al. Characterization of Hydrogenated Amorphous Silicon Sensors on Polyimide Flexible Substrate. IEEE Sens. J. 2024, 24, 12466–12471. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Wan, P.; Jiang, M.; Mo, Y.; Pan, C. An Ultrasensitive Perovskite Single-Model Plasmonic Strain Sensor Based on Piezoelectric Effect. Adv. Funct. Mater. 2024, 34, 2403840. [Google Scholar] [CrossRef]
- Sun, H.; Xie, Y.; Liu, X.; Chen, G.; Li, F.; Xu, L.; Yu, B. High-Performance Flexible Strain Sensor Based on Thermoplastic Polyurethane Melt-Blown Nonwoven with Molybdenum Disulfide for Human Motion Monitoring. ACS Appl. Electron. Mater. 2024, 6, 7551–7562. [Google Scholar] [CrossRef]
- Wang, J.; Xia, G.; Xia, L.; Chen, Y.; Li, Q.; Zeng, H.; Yang, W.; Du, Y.; He, W.; Chen, Y. HCNT/AgNPs/PVA/PAM Hydrogel-Based Flexible Pressure Sensor for Physiological Monitoring. J. Mater. Sci. Mater. Electron. 2024, 35, 1931. [Google Scholar] [CrossRef]
- Xiao, W.; Cai, X.; Jadoon, A.; Zhou, Y.; Gou, Q.; Tang, J.; Ma, X.; Wang, W.; Cai, J. High-Performance Graphene Flexible Sensors for Pulse Monitoring and Human–Machine Interaction. ACS Appl. Mater. Interfaces 2024, 16, 32445–32455. [Google Scholar] [CrossRef]
- Huang, L.; Huang, X.; Bu, X.; Wang, S.; Zhang, P. Flexible Strain Sensor Based on PU Film with Three-Dimensional Porous Network. Sens. Actuators A Phys. 2023, 359, 114508. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, S.; Li, Y.; Zhang, W. Screen-Printed Flexible Negative Temperature Coefficient Temperature Sensor Based on Polyvinyl Chloride/Carbon Black Composites. Smart Mater. Struct. 2021, 30, 025035. [Google Scholar] [CrossRef]
- Sui, X.; Mu, Q.; Li, J.; Zhao, B.; Gu, H.; Yu, H.; Du, J.; Ren, L.; Hu, D. High-Performance Flexible PLA/BTO-Based Pressure Sensor for Motion Monitoring and Human–Computer Interaction. Biosensors 2024, 14, 508. [Google Scholar] [CrossRef]
- Li, Y.; Yang, D.; Wu, Z.; Gao, F.-L.; Gao, X.-Z.; Zhao, H.-Y.; Li, X.; Yu, Z.-Z. Self-Adhesive, Self-Healing, Biocompatible and Conductive Polyacrylamide Nanocomposite Hydrogels for Reliable Strain and Pressure Sensors. Nano Energy 2023, 109, 108324. [Google Scholar] [CrossRef]
- Nikoofar, K.; Sadathosainy, M. Phthalic Anhydride (PA): A Valuable Substrate in Organic Transformations. RSC Adv. 2023, 13, 23870–23946. [Google Scholar] [CrossRef]
- Zeng, X.; Gui, Y.; Yang, J.; Jin, G.; Wang, X.; Huang, H. Iron Nanowire/Carbon Microsphere Composite Flexible Fabric Strain Sensor for Human Motion Monitoring. Micro Nanostruct. 2024, 193, 207920. [Google Scholar] [CrossRef]
- Park, C.Y.; Seo, D.; Lee, S.J.; Kim, H.-C.; Lee, I.H. Characteristics of Flexible Pressure Sensor According to Circuit Configuration of MWCNTs/Polydimethylsiloxane Composite and Conductive Layer. Int. J. Precis. Eng. Manuf. 2024, 25, 819–827. [Google Scholar] [CrossRef]
- Zhu, X.; Sun, H.; Yu, B.; Xu, L.; Xiao, H.; Fu, Z.; Gao, T.; Yang, X. A Flexible pH Sensor Based on Polyaniline@oily Polyurethane/Polypropylene Spunbonded Nonwoven Fabric. RSC Adv. 2024, 14, 5627–5637. [Google Scholar] [CrossRef]
- Zhang, R.; Ye, Z.; Gao, M.; Gao, C.; Zhang, X.; Li, L.; Gui, L. Liquid Metal Electrode-Enabled Flexible Microdroplet Sensor. Lab Chip 2020, 20, 496–504. [Google Scholar] [CrossRef]
- Luo, J.; Hu, Y.; Luo, S.; Wang, X.; Chen, S.; Zhang, M.; Jiang, J.; Liu, L.; Qin, H. Strong and Multifunctional Lignin/Liquid Metal Hydrogel Composite as Flexible Strain Sensors. ACS Sustain. Chem. Eng. 2024, 12, 7105–7114. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, C.; Lin, J.; Pan, S.; Wang, Q.; Liao, N.; Yu, P.; Zhang, M. Flexible Strain Sensor Based on Copper/Graphene Composite Films. ACS Appl. Nano Mater. 2024, 7, 358–369. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, W. Flexible and Stretchable Carbon-Based Sensors and Actuators for Soft Robots. Nanomaterials 2023, 13, 316. [Google Scholar] [CrossRef]
- Chaloeipote, G.; Wongchoosuk, C. Flexible Humidity Sensor Based on PEDOT:PSS/Mxene Nanocomposite. Flex. Print. Electron. 2024, 9, 015015. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, F.; Cao, G.; Zhou, D.; Zhang, G.; Feng, J.; Wang, S.; Su, F.; Tian, Y.; Liu, Y.J.; et al. Bifunctional Flexible Electrochromic Energy Storage Devices Based on Silver Nanowire Flexible Transparent Electrodes. Int. J. Extrem. Manuf. 2023, 5, 015503. [Google Scholar] [CrossRef]
- Zhu, B.; Ling, Y.; Yap, L.W.; Yang, M.; Lin, F.; Gong, S.; Wang, Y.; An, T.; Zhao, Y.; Cheng, W. Hierarchically Structured Vertical Gold Nanowire Array-Based Wearable Pressure Sensors for Wireless Health Monitoring. ACS Appl. Mater. Interfaces 2019, 11, 29014–29021. [Google Scholar] [CrossRef]
- Yi, N.; Zhang, C.; Wang, Z.; Zheng, Z.; Zhou, J.; Shang, R.; Zhou, P.; Zheng, C.; You, M.; Chen, H.; et al. Multi-Functional Ti3C2Tx-Silver@Silk Nanofiber Composites with Multi-Dimensional Heterogeneous Structure for Versatile Wearable Electronics. Adv. Funct. Mater. 2025, 35, 2412307. [Google Scholar] [CrossRef]
- Pavel, I.-A.; Lakard, S.; Lakard, B. Flexible Sensors Based on Conductive Polymers. Chemosensors 2022, 10, 97. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Li, Z.; Wang, Y.; Dai, K.; Zheng, G.; Liu, C.; Shen, C. The Effect of Filler Dimensionality on the Electromechanical Performance of Polydimethylsiloxane Based Conductive Nanocomposites for Flexible Strain Sensors. Compos. Sci. Technol. 2017, 139, 64–73. [Google Scholar] [CrossRef]
- Spieser, H.; Tehrani, Z.; Ali, M.M.; Ahmadi, E.D.; Denneulin, A.; Bras, J.; Deganello, D.; Gethin, D. Metal Organic Framework Sensors on Flexible Substrate for Ammonia Sensing Application at Room Temperature. J. Mater. Chem. C 2021, 9, 6332–6343. [Google Scholar] [CrossRef]
- Wei, X.; Liu, Z.; Fang, H.; Cui, Z.; He, S.; Shao, W. Curcumin-Involved Self-Healing Hydrogels as Flexible Sensors. Polymer 2025, 319, 128047. [Google Scholar] [CrossRef]
- Meng, T.; Zhao, G.; Liu, H.; Li, W.; Feng, C.; Hu, W. 3D Flexible Displacement Sensor for Highly Sensitive Movement Measurement Assisted by the Terahertz Imaging System. Front. Mater. 2022, 9, 957909. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, H.; Li, S.; Feng, X.; Aghassi-Hagmann, J.; Azizian, S.; Levkin, P.A. Facile Approach to Conductive Polymer Microelectrodes for Flexible Electronics. ACS Appl. Mater. Interfaces 2021, 13, 21661–21668. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cai, M.; Jia, R.; Xu, X.; Xu, M.; Cheng, G.; Cheng, L.; Dai, F. Flat-Silk-Cocoon-Based Wearable Flexible Piezoresistive Sensor and Its Performance. Polymers 2024, 16, 295. [Google Scholar] [CrossRef]
- Li, P.; Feng, Y.; Ding, C.; Zhong, R.; Yan, W.; Song, J.; Hong, Z.; Hu, B.; Tan, J.; Sun, J.; et al. Magnetointeractive Cr2 Te3-Coated Liquid Metal Droplets for Flexible Memory Arrays and Wearable Sensors. Adv. Mater. 2024, 2414519. [Google Scholar] [CrossRef]
- Wang, J.; Suo, J.; Song, Z.; Li, W.J.; Wang, Z. Nanomaterial-Based Flexible Sensors for Metaverse and Virtual Reality Applications. Int. J. Extrem. Manuf. 2023, 5, 032013. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Liu, G.; Thi Dieu Thuy, N. A Disposable and Flexible Electrochemical Sensor for the Sensitive Detection of Heavy Metals Based on a One-Step Laser-Induced Surface Modification: A New Strategy for the Batch Fabrication of Sensors. Sens. Actuators B Chem. 2022, 350, 130834. [Google Scholar] [CrossRef]
- Bai, N.; Wang, L.; Xue, Y.; Wang, Y.; Hou, X.; Li, G.; Zhang, Y.; Cai, M.; Zhao, L.; Guan, F.; et al. Graded Interlocks for Iontronic Pressure Sensors with High Sensitivity and High Linearity over a Broad Range. ACS Nano 2022, 16, 4338–4347. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, N.; Yang, Z.; Yuan, Y.; Xu, H.; Wu, G.; Zheng, W.; Ji, X.; Bai, N.; Wang, W.; et al. Iontronic Capacitance-Enhanced Flexible Three-Dimensional Force Sensor with Ultrahigh Sensitivity for Machine-Sensing Interface. IEEE Electron Device Lett. 2023, 44, 2023–2026. [Google Scholar] [CrossRef]
- Zheng, W.; Zhao, Y.; Xu, H.; Yuan, Y.; Wang, W.; Gao, L. Stretchable Iontronic Pressure Sensor Array with Low Crosstalk and High Sensitivity for Epidermal Monitoring. IEEE Electron Device Lett. 2023, 44, 516–519. [Google Scholar] [CrossRef]
- Huang, C.; He, O.; Lao, Z.; Liu, H.; Leng, Y.; Xu, X.; Tian, S.; Wang, Y.; Wu, G.; Li, R.; et al. Dynamic Peripheral Hemoperfusion Distribution Monitoring Based on Janus Flexible Sensor System. IEEE Trans. Biomed. Eng. 2024, 71, 2580–2589. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Wang, X.; Li, X.; Wu, G.; Zhao, Y.; Nan, X.; Xue, C.; Gao, L.; Zheng, G. A Dual-Mode Pressure and Temperature Sensor. Micromachines 2024, 15, 179. [Google Scholar] [CrossRef]
- Yang, C.; Liu, H.; Ma, J.; Xu, M. Multimodal Flexible Sensor for the Detection of Pressing–Bending–Twisting Mechanical Deformations. ACS Appl. Mater. Interfaces 2025, 17, 2413–2424. [Google Scholar] [CrossRef]
- Yang, Z.; Duan, Q.; Zang, J.; Zhao, Y.; Zheng, W.; Xiao, R.; Zhang, Z.; Hu, L.; Wu, G.; Nan, X.; et al. Boron Nitride-Enabled Printing of a Highly Sensitive and Flexible Iontronic Pressure Sensing System for Spatial Mapping. Microsyst. Nanoeng. 2023, 9, 68. [Google Scholar] [CrossRef]
- Shi, J.; Dai, Y.; Cheng, Y.; Xie, S.; Li, G.; Liu, Y.; Wang, J.; Zhang, R.; Bai, N.; Cai, M.; et al. Embedment of Sensing Elements for Robust, Highly Sensitive, and Cross-Talk–Free Iontronic Skins for Robotics Applications. Sci. Adv. 2023, 9, eadf8831. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, H.; Zheng, W.; Liu, M.; Li, S.; Yan, J.; Wang, D.; Liu, K.; Zhang, H.; Chen, G.; et al. Bending and Stretching-Insensitive, Crosstalk-Free, Flexible Pressure Sensor Arrays for Human-Machine Interactions. Adv. Mater. Technol. 2024, 9, 2301615. [Google Scholar] [CrossRef]
- Kumaresan, Y.; Ozioko, O.; Dahiya, R. Multifunctional Electronic Skin with a Stack of Temperature and Pressure Sensor Arrays. IEEE Sens. J. 2021, 21, 26243–26251. [Google Scholar] [CrossRef]
- Choi, S.B.; Noh, T.; Jung, S.; Kim, J. Stretchable Piezoresistive Pressure Sensor Array with Sophisticated Sensitivity, Strain-Insensitivity, and Reproducibility. Adv. Sci. 2024, 11, 2405374. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Zhao, C.; Li, W.; Dong, E.; Xu, M.; Huang, H.; Yang, Y.; Li, L.; Zheng, L.; et al. Breaking the Saturation of Sensitivity for Ultrawide Range Flexible Pressure Sensors by Soft-Strain Effect. Adv. Mater. 2024, 36, 2405405. [Google Scholar] [CrossRef]
- Luo, H.; Chen, X.; Li, S.; Xu, J.; Li, X.; Tian, H.; Wang, C.; Li, B.; Zhang, M.; Sun, B.; et al. Bioinspired Suspended Sensing Membrane Array with Modulable Wedged-Conductive Channels for Crosstalk-Free and High-Resolution Detection. Adv. Sci. 2024, 11, 2403645. [Google Scholar] [CrossRef]
- Cao, Y.; Li, P.; Zhu, Y.; Wang, Z.; Tang, N.; Li, Z.; Cheng, B.; Wang, F.; Chen, T.; Sun, L. Artificial Intelligence-Enabled Novel Atrial Fibrillation Diagnosis System Using 3D Pulse Perception Flexible Pressure Sensor Array. ACS Sens. 2025, 10, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Li, K.; Li, Z.; Wang, W.; Yu, X.; Zhang, T.; Yang, X. Flexible Pressure Sensor Arrays with High Sensitivity and High Density Based on Spinous Microstructures for Carved Patterns Recognition. Adv. Funct. Mater. 2024, 2417238. [Google Scholar] [CrossRef]
- Ha, M.; Lim, S.; Cho, S.; Lee, Y.; Na, S.; Baig, C.; Ko, H. Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors. ACS Nano 2018, 12, 3964–3974. [Google Scholar] [CrossRef]
- Xue, F.; Zheng, H.; Peng, Q.; Hu, Y.; Zhao, X.; Xu, L.; Li, P.; Zhu, Y.; Liu, Z.; He, X. An Ultra-Broad-Range Pressure Sensor Based on a Gradient Stiffness Design. Mater. Horiz. 2021, 8, 2260–2272. [Google Scholar] [CrossRef]
- Wang, Y.; Adam, M.L.; Zhao, Y.; Zheng, W.; Gao, L.; Yin, Z.; Zhao, H. Machine Learning-Enhanced Flexible Mechanical Sensing. Nano-Micro Lett. 2023, 15, 55. [Google Scholar] [CrossRef]
- Xu, H.; Zheng, W.; Zhang, Y.; Zhao, D.; Wang, L.; Zhao, Y.; Wang, W.; Yuan, Y.; Zhang, J.; Huo, Z.; et al. A Fully Integrated, Standalone Stretchable Device Platform with in-Sensor Adaptive Machine Learning for Rehabilitation. Nat. Commun. 2023, 14, 7769. [Google Scholar] [CrossRef]
- Matsuda, R.; Mizuguchi, S.; Nakamura, F.; Endo, T.; Isoda, Y.; Inamori, G.; Ota, H. Highly Stretchable Sensing Array for Independent Detection of Pressure and Strain Exploiting Structural and Resistive Control. Sci. Rep. 2020, 10, 12666. [Google Scholar] [CrossRef]
- Cui, J.; Li, X.; Zeng, F.; Bai, H. Study on Contact Stress Distribution Characteristics and Damage of Plug Seedlings Based on Flexible Pressure Sensor. Sensors 2023, 23, 8175. [Google Scholar] [CrossRef]
- Dong, Y.; Xia, T.; Fang, X.; Zhang, Z.; Xi, L. Prognostic and Health Management for Adaptive Manufacturing Systems with Online Sensors and Flexible Structures. Comput. Ind. Eng. 2019, 133, 57–68. [Google Scholar] [CrossRef]
- Mei, S.; Yi, H.; Zhao, J.; Xu, Y.; Shi, L.; Qin, Y.; Jiang, Y.; Guo, J.; Li, Z.; Wu, L. High-Density, Highly Sensitive Sensor Array of Spiky Carbon Nanospheres for Strain Field Mapping. Nat. Commun. 2024, 15, 3752. [Google Scholar] [CrossRef]
- Xu, H.; Zheng, W.; Wang, Y.; Xu, D.; Zhao, N.; Qin, Y.; Yuan, Y.; Fan, Z.; Nan, X.; Duan, Q.; et al. Flexible Tensile Strain-Pressure Sensor with an off-Axis Deformation-Insensitivity. Nano Energy 2022, 99, 107384. [Google Scholar] [CrossRef]
- Kim, S.J.; Mondal, S.; Min, B.K.; Choi, C.-G. Highly Sensitive and Flexible Strain–Pressure Sensors with Cracked Paddy-Shaped MoS2 /Graphene Foam/Ecoflex Hybrid Nanostructures. ACS Appl. Mater. Interfaces 2018, 10, 36377–36384. [Google Scholar] [CrossRef] [PubMed]
Manufacturing Technique | Advantages | Challenges | Suitability for Applications | Cost-Effectiveness | Scalability | Sensor Resolution | Material Compatibility |
---|---|---|---|---|---|---|---|
3D Printing | Complex structures can be manufactured, customised designs, high design freedom. | Slow production speeds, limited choice of materials and restricted mechanical properties of the end product, especially with low modulus materials can lead to performance problems. | Suitable for complex, customised designs, especially in low volume production and sensor applications requiring a high degree of design freedom. | Moderate to high; equipment and materials can be expensive, but small batches and custom designs may reduce cost. | Low to moderate; not ideal for mass production due to slow speed and material limitations | Moderate to high resolution, but dependent on material and printing quality. Can create fine details but may lack high precision. | Limited to specific materials (e.g., thermoplastics, some conductive inks); challenges with high-conductivity or high-temperature materials. |
Screen Printing | Cost-effective, fast production, mass-producible, suitable for relatively simple designs. | Lower resolution, not suitable for complex designs, susceptible to substrate instability leading to pattern misalignment. | Suitable for mass production and low-cost sensor fabrication, it is commonly used in applications such as electronic labels and touch screens. | Low; one of the most cost-effective methods, especially for large-volume production. | High; ideal for mass production with low to moderate design complexity. | Low resolution, suitable for less intricate patterns. | Compatible with a wide range of inks (conductive, non-conductive); limited by the substrate’s flexibility. |
Laser Etching | High precision, suitable for complex patterns, fine machining of micron-sized structures. | May lead to thermal deformation of the material, susceptible to thermal deformation, especially with flexible substrates. | Suitable for high-precision and complex geometry sensor fabrication, especially for applications requiring micron-level accuracy. | Moderate; setup costs for laser systems are high, but precision improves performance and reduces errors. | Moderate; slower process limits scalability for very large production volumes. | Very high resolution (micron-level); excellent for fine and precise features. | Primarily works with metals, thin films, and some polymers; material type and thickness can affect results. |
Sputtering | High precision control of film thickness and uniformity, suitable for high performance applications, stable performance especially in harsh environments. | Slower deposition speeds and limited choice of materials, especially flexible substrates may affect film adhesion. | Suitable for high-performance thin-film sensors, such as high-temperature-resistant and highly conductive sensors, which are widely used in thin-film electronics and optoelectronic devices. | Moderate to high; equipment is costly, but performance and longevity of sensors can justify investment. | Low to moderate; slower deposition rate and material limitations hinder large-scale manufacturing. | High resolution for thin films and uniform deposition. | Compatible with a variety of materials, including metals, alloys, and some dielectrics; material flexibility and film adhesion are critical. |
Molding | High productivity, suitable for mass production, simple process. | Limited by material rheology and mould design, hard materials may affect mould stability. | Suitable for high volume production, commonly used in sensor fabrication on plastic or polymer substrates, such as flexible touchscreens and wearable devices. | High; particularly cost-effective for large batches of simple sensor designs. | Very high; ideal for high-volume production with relatively simple designs. | Moderate resolution; limited by mold design and material flow properties. | Limited by material flow characteristics; works well with thermoplastics and elastomers, but difficult with complex, multilayered materials. |
Materials | Substrate and Package Materials | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Performances | PET | PI | PDMS | PEN | TPU | PVA | PE | PU | PVC | PLA | PAM | PA | Fabrics | |
Flexible | √ | √ | √ | √ | √ | √ | √ | √ | ⅹ | √ | √ | √ | √ | |
Heat-resistant | √ | √ | √ | √ | √ | ⅹ | ⅹ | √ | ⅹ | ⅹ | ⅹ | √ | √ | |
Long-term stability | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |
Interface bonding | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
Materials | Electrode Materials | ||||||
---|---|---|---|---|---|---|---|
Performances | Conductive Silver Paste | Liquid Metals | Copper/Gold Plated | Carbon Based | PEDOT:PSS | Silver Nanowires | |
Flexible | √ | √ | ⅹ | √ | √ | √ | |
Heat-resistant | √ | ⅹ | √ | √ | ⅹ | √ | |
Long-term stability | √ | √ | √ | √ | √ | √ | |
Interface bonding | √ | √ | √ | √ | √ | √ |
Materials | Sensitive Materials | ||||||
---|---|---|---|---|---|---|---|
Performances | Nanofibres | Polymer | Conductive Fillers | Organic Frameworks | Hydrogel | Metals | |
Flexible | √ | √ | √ | √ | √ | ⅹ | |
Heat-resistant | √ | √ | √ | ⅹ | ⅹ | √ | |
Long-term stability | √ | √ | √ | √ | √ | √ | |
Interface bonding | √ | √ | √ | √ | √ | √ |
Materials | Array Size | Sensitivity | Detection Range | Detection Limit | Response Time | Durability |
---|---|---|---|---|---|---|
TPU/h-BN [7] | 6 × 9 | 3.997 kPa−1 | 0–100 kPa | 4.7 Pa | 120 ms | 5000 cycles |
ANF/Ti3C2Tx [150] | 4 × 4 | 521.69 kPa−1 | 0–200 kPa | 0.22 Pa | 17 ms | 10,000 cycles |
TPU/h-BN [154] | 15 × 15 | 261.4 kPa−1 | 0.05–450 kPa | 50 Pa | 15 ms | 5000 cycles |
PDMS/CNT [155] | 28 × 28 | 174 kPa−1 | 0.15 Pa–400 kPa | Not known | 2.74 ms | 10,000 cycles |
PI/Ti3C2Tx/Cu [156] | 8 × 8 | 21.5 kPa−1 | 0.5–410 kPa | 140 Pa | 60 ms | 8000 s |
PDMS/CNT/PEDOT:PSS [157] | 8 × 8 | 2.32 kPa−1 | 0–10 kPa | Not known | 2.5 s | 250 cycles |
PBU/AgNW [158] | 10 × 10 | 888.79 kPa−1 | 1–100 kPa | 0.4608 Pa | 66 ms | 10,000 cycles |
PDMS/PEDOT:PSS [29] | 10 × 1 | 38.1 Ω/mmHg | 0–30 mmHg | Not known | 660 ms | 200 cycles |
PDMS/Ecoflex/Au [159] | 2 × 5 | >5.22 MPa−1 | 45 Pa–4.1 Mpa | Not known | 30 ms | 5000 cycles |
PDMS/CNT [160] | 8 × 8 | 0.19 kPa−1 | 0–400 kPa | Not known | 80 ms | 10,000 cycles |
Ionic gel [161] | 3 × 5 | >0.77 kPa−1 | 0–40 kPa | Not known | Not known | Not known |
PDMS/TPU/Conductive ink [162] | 64 × 64 | 10.50 kPa−1 | 0–130 kPa | 1 Pa | 69 ms | 45,000 cycles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chai, J.; Zhan, Y.; Cui, D.; Wang, X.; Gao, L. Design, Fabrication, and Application of Large-Area Flexible Pressure and Strain Sensor Arrays: A Review. Micromachines 2025, 16, 330. https://doi.org/10.3390/mi16030330
Zhang X, Chai J, Zhan Y, Cui D, Wang X, Gao L. Design, Fabrication, and Application of Large-Area Flexible Pressure and Strain Sensor Arrays: A Review. Micromachines. 2025; 16(3):330. https://doi.org/10.3390/mi16030330
Chicago/Turabian StyleZhang, Xikuan, Jin Chai, Yongfu Zhan, Danfeng Cui, Xin Wang, and Libo Gao. 2025. "Design, Fabrication, and Application of Large-Area Flexible Pressure and Strain Sensor Arrays: A Review" Micromachines 16, no. 3: 330. https://doi.org/10.3390/mi16030330
APA StyleZhang, X., Chai, J., Zhan, Y., Cui, D., Wang, X., & Gao, L. (2025). Design, Fabrication, and Application of Large-Area Flexible Pressure and Strain Sensor Arrays: A Review. Micromachines, 16(3), 330. https://doi.org/10.3390/mi16030330