High Efficiency Dual-Band Dual-Circularly Polarized Transmitarray Antenna
Abstract
:1. Introduction
2. Theory and Design
2.1. Analysis of the Radiation Characteristics of the TA Unit
2.2. Basic Theory and Performance of the Unit
3. Measurement and Simulation Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Yang, B.; Yu, Z.; Lan, J.; Zhang, R.; Zhou, J.; Hong, W. Digital Beamforming-Based Massive MIMO Transceiver for 5G Millimeter-Wave Communications. IEEE Trans. Microw. Theory Tech. 2018, 66, 3403–3418. [Google Scholar] [CrossRef]
- Chen, W.H.; Ye, L.H.; Ding, K.; Jiang, F.; Wu, D.-L. A Broadband Circularly Polarized Antenna Using Characteristic Mode Analysis. IEEE Trans. Antennas Propag. 2024, 72, 9143–9151. [Google Scholar] [CrossRef]
- Wang, K.X.; Teng, W.; Chen, Z.; Wong, H.; Zhang, Q. Design of an Ultrabroadband Circularly Polarized 3-D-Printed Millimeter-Wave Lens Antenna. IEEE Trans. Antennas Propag. 2024, 72, 8980–8990. [Google Scholar] [CrossRef]
- Guo, K.; Sun, X.; Su, T.; Wu, B. Broadband Circularly Polarized Antenna Based on Cross-Fed Configuration. In Proceedings of the 2023 IEEE 11th Asia-Pacific Conference on Antennas and Propagation (APCAP), Guangzhou, China, 22–24 November 2023; Volume 1, pp. 1–2. [Google Scholar]
- Xue, L.; Xu, S.; Wang, M.; Yang, F.; Li, M. Wideband Reconfigurable Transmitarray Antenna Using Tightly Coupling Effect With Wide-Angle Beam Scanning Capability. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 4358–4362. [Google Scholar] [CrossRef]
- Zhu, L.; Guo, X.; Sun, S.; Wu, W. Beam-Scanning Transmitarray With Extended Wide Scanning Range. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 3033–3037. [Google Scholar] [CrossRef]
- Meng, X.; Wang, Y.; Zhang, H.; Wu, T.; Zhang, A.; Chen, X. A Double-Layer Metal-Only Transmitarray for Beam Scanning. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 4782–4786. [Google Scholar] [CrossRef]
- Chen, T.; Song, L.; Liu, Y. A Broadband Dual-Polarized Reconfigurable Transmitarray With Sum and Difference Beam-Steering Capabilities. IEEE Trans. Antennas Propag. 2024, 72, 8052–8057. [Google Scholar] [CrossRef]
- Song, L.; Qin, P.; Du, J.; Guo, Y.J. Multi-Beam Conformal Transmitarray Synthesis for Advanced Wireless Systems. In Proceedings of the 2023 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, 26–31 March 2023; pp. 1–5. [Google Scholar]
- Xi, B.; Xue, Q.; Bi, L.; Wang, Y. Design of Multi-Beam Transmitarray Antenna Using Alternating Projection Method. In Proceedings of the 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), Chengdu, China, 26–28 March 2018; pp. 1–3. [Google Scholar]
- Zeng, L.; Qin, F.; Zhang, H. Bidirectional Multi-Beam Transmit-Folded-Transmit Antenna Based on Polarization Rotating Metasurface. In Proceedings of the 2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP), Xiamen, China, 4–7 November 2022; pp. 1–2. [Google Scholar]
- Wei, F.; Hao, J.-W.; Xu, L.; Shi, X. A Circularly Polarized 3-D Printed Dielectric Transmitarray Antenna at Millimeter-Wave Band. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1264–1268. [Google Scholar] [CrossRef]
- Dai, X.W.; Li, Z.; Ruan, H.; Yu, W.; Liu, L.; Luo, G.Q. An Ultralow-Profile Folded Transmitarray Antenna with Both-Sides Beam Regulate for K-Band Circularly Polarized OAM Waves. IEEE Antennas Wirel. Propag. Lett. 2024, 24, 142–146. [Google Scholar] [CrossRef]
- Li, T.-J.; Wang, G.-M.; Li, H.-P.; Hou, H.-S. Circularly Polarized Double-Folded Transmitarray Antenna Based on Receiver-Transmitter Metasurface. IEEE Trans. Antennas Propag. 2022, 70, 11161–11166. [Google Scholar] [CrossRef]
- Yang, W.; Tang, K.; Zhu, Y.; Chen, K.; Zhao, J.; Jiang, T.; Feng, Y. Wideband Dual-Circularly Polarized Transmit-Reflect-Array Antenna with Energy Allocation Based on Hybrid Metasurface. IEEE Trans. Antennas Propag. 2024. [Google Scholar] [CrossRef]
- Liu, W.; Li, S.; Chen, L.; Zhang, C.; Deng, L. A Broadband High-Efficiency Spin-Decoupled Folded Transmitarray Antenna With Independent Beam Control. IEEE Trans. Antennas Propag. 2024, 72, 8058–8063. [Google Scholar] [CrossRef]
- Zhang, P.-P.; Zhu, X.-C.; Hu, Y.; Hao, Z.-C.; Luo, G.-Q. A Wideband Circularly Polarized Folded Reflectarray Antenna With Linearly Polarized Feed. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 913–917. [Google Scholar] [CrossRef]
- Lei, H.; Liu, Y.; Jia, Y. Dual-Band Dual-Circularly Polarized Folded Transmitarray Antenna Based on Metasurface. In Proceedings of the 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Nanjing, China, 23–26 May 2021; pp. 1–2. [Google Scholar]
- Lei, H.; Liu, Y.; Jia, Y.; Zhong, Y.; Liu, Z.-X. A Low-Profile 2-D Beam-Scanning Circularly Polarized Antenna Combining Reflectarray and Transmitarray. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 4558–4562. [Google Scholar] [CrossRef]
- Cai, Y.-M.; Li, K.; Li, W.; Gao, S.; Yin, Y.; Zhao, L.; Hu, W. Dual-Band Circularly Polarized Transmitarray With Single Linearly Polarized Feed. IEEE Trans. Antennas Propag. 2020, 68, 5015–5020. [Google Scholar] [CrossRef]
- Hu, J.; Wang, C.; Deng, M.; Deng, L.; Wong, H.; Sang, L. A Dual-Channel Linear-to-Circular Polarization Conversion Transmitarray With Independent Wavefront Control Capability. IEEE Trans. Microw. Theory Tech. 2024, 72, 7039–7049. [Google Scholar] [CrossRef]
- Tong, X.; Zeng, W.; Li, Y.; Wu, F.; Jiang, Z.H.; Sauleau, R.; Hong, W. A Dual-Band Dual-Circularly Polarized Transmit-Array Antenna and Its Application for Four-Color Scheme Multibeam Generation. IEEE Trans. Antennas Propag. 2024, 72, 8511–8526. [Google Scholar] [CrossRef]
- Perdigones, F.; Quero, J.M. Printed Circuit Boards: The Layers’ Functions for Electronic and Biomedical Engineering. Micromachines 2022, 13, 460. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Xu, R.; Wu, B.; Wang, L.; Jiang, R. A Wideband Millimeter-Wave Dual-Beam Dielectric Resonator Antenna with Substrate Integration Capability. Micromachines 2024, 15, 1022. [Google Scholar] [CrossRef] [PubMed]
- Ghouse, P.S.B.; John, D.M.; Mane, P.R.; Saha, D.; Balavalikar Shivarama, S.; Pathan, S.; Raghavendra Bhat, B.; Vincent, S.; Ali, T. A Compact MIMO Antenna Based on Modal Analysis for 5G Wireless Applications. Micromachines 2024, 15, 729. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; Zhang, N.; Yang, G.; Li, Y.; Song, R.; Liu, N. A Compact Millimeter-Wave Multilayer Patch Antenna Array Based on a Mixed CPW-Slot-Couple Feeding Network. Micromachines 2024, 15, 535. [Google Scholar] [CrossRef]
- He, W.; Hong, J.; Ren, Y.; Deng, Y.; Wang, X.; Fang, X. A High Gain Circularly Polarized Slot Antenna Array for 5G Millimeter-Wave Applications. Sensors 2024, 24, 6175. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhang, M.; Fan, C.; Chen, J.-X. A Broadband Transmitarray Antenna Using a Metasurface-Based Element for Millimeter-Wave Applications. Micromachines 2024, 15, 383. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yang, F.; Xu, S.; Li, M.; Cao, X.; Gao, J.; Zheng, Y. A Study of Phase Quantization Effects for Reconfigurable Reflectarray Antennas. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 302–305. [Google Scholar] [CrossRef]
- Olver, A.D.; Clarricoats, P.J.; Kishk, A.A.; Shafai, L. Microwave Horns and Feeds; Institution of Engineering and Technology: London, UK, 1994; ISBN 978-0-85296-809-3. [Google Scholar]
- Zheng, B.; Fan, Y.; Cheng, Y.J. Wideband High-Efficiency Circularly Polarized Transmitarray with Linearly Polarized Feed. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1451–1455. [Google Scholar] [CrossRef]
Ref. | Metal Layers | Antenna Features | Frequency (GHz) | Antenna Efficiency (%) 1 | Gain (dBic) | Phase Range |
---|---|---|---|---|---|---|
[17] | 6 | Single band Dual-CP | 27 | 26.6/20.9 | 21.4/20.3 | cons |
[19] | 6 | Dual band Dual-CP | 11.6/14.2 | 23/11.7 | 24.27/23.08 | 2-Bit |
[21] | 3 | Dual band Dual-CP | 12/14.2 | 32.2/28.9 | 23.9/24.5 | cons |
[22] | 5 | Single band Dual-CP | 20 | 25.8/26.4 | 23.6/23.1 | 2-Bit |
[23] 2 | 7 | Dual band Dual-CP | 18/28 19/29 | 26.2/15.6 24.4/15.2 | 27/27 25/25 | cons |
[32] | 3 | Single band Single-CP | 20 | 60.1 | 32.1 | 3-Bit |
This Work | 4 | Dual band Dual-CP | 28/39 | 53/42 | 25.2/26.1 | Over-2-Bit |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Yang, B.; Guo, J.; Shen, Y.; Luo, L.; Chen, L. High Efficiency Dual-Band Dual-Circularly Polarized Transmitarray Antenna. Micromachines 2025, 16, 260. https://doi.org/10.3390/mi16030260
Zhang T, Yang B, Guo J, Shen Y, Luo L, Chen L. High Efficiency Dual-Band Dual-Circularly Polarized Transmitarray Antenna. Micromachines. 2025; 16(3):260. https://doi.org/10.3390/mi16030260
Chicago/Turabian StyleZhang, Tianling, Boxiang Yang, Jiayin Guo, Yuanjun Shen, Liangqin Luo, and Lei Chen. 2025. "High Efficiency Dual-Band Dual-Circularly Polarized Transmitarray Antenna" Micromachines 16, no. 3: 260. https://doi.org/10.3390/mi16030260
APA StyleZhang, T., Yang, B., Guo, J., Shen, Y., Luo, L., & Chen, L. (2025). High Efficiency Dual-Band Dual-Circularly Polarized Transmitarray Antenna. Micromachines, 16(3), 260. https://doi.org/10.3390/mi16030260