Channel-Free Micro-Well–Template-Assisted Magnetic Particle Trapping for Efficient Single-Particle Isolation
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication
2.2. Magnetic Particle Trapping Method
3. Results and Discussion
3.1. Fabrication Results
3.2. Magnetic Particle Trapping Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agarwal, G.; Servi, A.; Eid, F.; Livermore, C. Selective self-assembly of polymer structures using templated assembly by selective removal. IEEE Trans. Nanotechnol. 2010, 10, 617–625. [Google Scholar] [CrossRef]
- Malaquin, L.; Kraus, T.; Schmid, H.; Delamarche, E.; Wolf, H. Controlled particle placement through convective and capillary assembly. Langmuir 2007, 23, 11513–11521. [Google Scholar] [CrossRef] [PubMed]
- Pioli, R.; Fernández-Rodríguez, M.A.; Grillo, F.; Álvarez, L.; Stocker, R.; Isa, L.; Secchi, E. Sequential capillarity-assisted particle assembly in a microfluidic channel. Lab Chip 2021, 21, 888–895. [Google Scholar] [CrossRef]
- Winkleman, A.; Gates, B.D.; McCarty, L.S.; Whitesides, G.M. Directed self-assembly of spherical particles on patterned electrodes by an applied electric field. Adv. Mater. 2005, 17, 1507–1511. [Google Scholar] [CrossRef]
- Prevo, B.G.; Hwang, D.K.; Zacharia, N.S.; Prasad, V.; Velev, O.D. Engineered deposition of coatings from nano- and micro-particles: A brief review of convective assembly at high volume fraction. Colloids Surf. A Physicochem. Eng. Asp. 2007, 311, 2–10. [Google Scholar] [CrossRef]
- Rissin, D.M.; Kan, C.W.; Campbell, T.G.; Howes, S.C.; Fournier, D.R.; Song, L.; Piech, T.; Patel, P.P.; Chang, L.; Rivnak, A.J.; et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 2010, 28, 595–599. [Google Scholar] [CrossRef]
- Kim, S.H.; Iwai, S.; Araki, S.; Sakakihara, S.; Iino, R.; Noji, H. Large-scale femtoliter droplet array for digital counting of single biomolecules. Lab Chip 2012, 12, 4986–4991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gu, H.; Xu, H. Recent progress on digital immunoassay: How to achieve ultrasensitive, multiplex and clinical accessible detection? Sens. Diagn. 2024, 3, 9–27. [Google Scholar] [CrossRef]
- Su, Y.; Tian, J.; Zhou, L. Review of single-molecule immunoassays: Non-chip and chip-based digital assays. Anal. Chim. Acta 2024, 1322, 342885. [Google Scholar] [CrossRef]
- Wu, C.; Garden, P.M.; Walt, D.R. Ultrasensitive detection of attomolar protein concentrations by dropcast single molecule assays. J. Am. Chem. Soc. 2020, 142, 12314–12323. [Google Scholar] [CrossRef]
- Wang, W.; Peng, Y.; Wu, J.; Zhang, M.; Li, Q.; Zhao, Z.; Liu, M.; Wang, J.; Cao, G.; Bai, J.; et al. Ultrasensitive automatic detection of small molecules by membrane imaging of single molecule assays. ACS Appl. Mater. Interfaces 2022, 14, 54914–54923. [Google Scholar] [CrossRef]
- Hu, H.; Larson, R.G. Analysis of the effects of Marangoni stress on the microflow in an evaporating sessile droplet. Langmuir 2005, 21, 3972–3980. [Google Scholar] [CrossRef]
- Yunker, P.J.; Still, T.; Lohr, M.A.; Yodh, A.G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 2011, 476, 308–311. [Google Scholar] [CrossRef]
- Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-Marzán, L.M. Directed self-assembly of nanoparticles. ACS Nano 2010, 4, 3591–3605. [Google Scholar] [CrossRef]
- Xu, G.; Chen, A.; Feng, F.; Wu, Y.; Wang, X. Multiscale Mass Transport Across Membranes: From Molecular Scale to Nanoscale to Micron Scale. ACS Nano 2024, 18, 35347–35355. [Google Scholar] [CrossRef]
- Sharma, H.; Yadav, V.; Burchett, A.; Shi, T.; Senapati, S.; Datta, M.; Chang, H.-C. A Mem-dELISA platform for dual color and ultrasensitive digital detection of colocalized proteins on extracellular vesicles. Biosens. Bioelectron. 2025, 267, 116848. [Google Scholar] [CrossRef]
- Zandi Shafagh, R.; Decrop, D.; Ven, K.; Vanderbeke, A.; Hanusa, R.; Breukers, J.; Pardon, G.; Haraldsson, T.; Lammertyn, J.; van der Wijngaart, W. Reaction injection molding of hydrophilic-in-hydrophobic femtolitre-well arrays. Microsyst. Nanoeng. 2019, 5, 25. [Google Scholar] [CrossRef]
- Tripodi, L.; Ven, K.; Kil, D.; Rutten, I.; Puers, R.; Lammertyn, J. Teflon-on-Glass Molding Enables High-Throughput Fabrication of Hydrophilic-in-Hydrophobic Microwells for Bead-Based Digital Bioassays. Materials 2018, 11, 2154. [Google Scholar] [CrossRef]
- Curtin, K.; Fike, B.J.; Binkley, B.; Godary, T.; Li, P. Recent Advances in Digital Biosensing Technology. Biosensors 2022, 12, 673. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.; Ranasinghe, R.T.; Smith, C.A.; Ibrahim, S.M.; Hollfelder, F.; Huck, W.T.S.; Klenerman, D.; Abell, C. Ultrarapid generation of femtoliter microfluidic droplets for single-molecule-counting immunoassays. ACS Nano 2013, 7, 5955–5964. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.; Cui, N.; Cai, Y.; Garden, P.M.; Li, X.; Weitz, D.A.; Walt, D.R. Single-molecule protein detection with attomolar sensitivity using droplet digital enzyme-linked immunosorbent assay. ACS Nano 2020, 14, 9491–9501. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Fang, X.; Sun, T.; Yi, J.; Kuang, X.; Guo, Q.; Wang, Y.; Gu, H.; Xu, H. Breaking through the Poisson distribution: A compact high-efficiency droplet microfluidic system for single-bead encapsulation and digital immunoassay detection. Biosens. Bioelectron. 2022, 211, 114384. [Google Scholar] [CrossRef]
- Rissin, D.M.; Kan, C.W.; Campbell, T.G.; Howes, S.C.; Fournier, D.R.; Song, L.; Patel, P.P.; Chang, L.; Rivnak, A.J.; Patel, P.P.; et al. Simultaneous detection of single molecules and singulated ensembles of molecules enables immunoassays with broad dynamic range. Anal. Chem. 2011, 83, 2279–2285. [Google Scholar] [CrossRef]
- Witters, D.; Knez, K.; Ceyssens, F.; Puers, R.; Lammertyn, J. Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab Chip 2013, 13, 2047–2054. [Google Scholar] [CrossRef]
- Kan, C.W.; Rivnak, A.J.; Campbell, T.G.; Piech, T.; Rissin, D.M.; Mösl, M.; Peterca, A.; Niederberger, H.-P.; Minnehan, K.A.; Patel, P.P.; et al. Isolation and detection of single molecules on paramagnetic beads using sequential fluid flows in microfabricated polymer array assemblies. Lab Chip 2012, 12, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Kan, C.W.; Tobos, C.I.; Rissin, D.M.; Wiener, A.D.; Meyer, R.E.; Svancara, D.M.; Comperchio, A.; Warwick, C.; Millington, R.; Collier, N.; et al. Digital enzyme-linked immunosorbent assays with sub-attomolar detection limits based on low numbers of capture beads combined with high efficiency bead analysis. Lab Chip 2020, 20, 2122–2135. [Google Scholar] [CrossRef]
- Yari, P.; Rezaei, B.; Dey, C.; Chugh, V.K.; Veerla, N.V.R.K.; Wang, J.-P.; Wu, K. Magnetic particle spectroscopy for point-of-care: A review on recent advances. Sensors 2023, 23, 4411. [Google Scholar] [CrossRef]
- Demirörs, A.F.; Johnson, P.M.; van Kats, C.M.; van Blaaderen, A.; Imhof, A. Directed self-assembly of colloidal dumbbells with an electric field. Langmuir 2010, 26, 14466–14471. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.; Wang, C.; Shao, N.; Dong, P.; Xiao, R.; Wang, S. Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of Staphylococcus aureus Based on Aptamer Recognition. ACS Appl. Mater. Interfaces 2015, 7, 20919–20929. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Feng, X.; Ma, G.; Yao, L.; Ge, M. Amphiphilic Janus Particles Generated via a Combination of Diffusion-Induced Phase Separation and Magnetically Driven Dewetting and Their Synergistic Self-Assembly. Adv. Mater. 2016, 28, 3131–3137. [Google Scholar] [CrossRef] [PubMed]
- Colosqui, C.E.; Morris, J.F.; Stone, H.A. Hydrodynamically driven colloidal assembly in dip coating. Phys. Rev. Lett. 2013, 110, 188302. [Google Scholar] [CrossRef] [PubMed]
- Shillingford, C.; Lee, D.; Bertin, V.; Sauret, A.; Dressaire, E. Capillary assembly of liquid particles. Small 2020, 16, 1907523. [Google Scholar] [CrossRef]
- Yu, H.S.C.; Conde-Rubio, A.; Wang, H.-C.; Martin, O.J.F.; Boero, G.; Brugger, J. Precise capillary-assisted nanoparticle assembly in reusable templates. Part. Part. Syst. Charact. 2022, 39, 2100288. [Google Scholar] [CrossRef]
- Ni, S.; Isa, L.; Wolf, H. Capillary assembly as a tool for the heterogeneous integration of micro- and nanoscale objects. Soft Matter 2018, 14, 2978–2995. [Google Scholar] [CrossRef]
- Wang, X.; Hou, Y.; Yao, L.; Gao, M.; Ge, M. Generation, Characterization, and Application of Hierarchically Structured Self-Assembly Induced by the Combined Effect of Self-Emulsification and Phase Separation. J. Am. Chem. Soc. 2016, 138, 2090–2093. [Google Scholar] [CrossRef]
- Chang, L.; Rissin, D.M.; Fournier, D.R.; Piech, T.; Patel, P.P.; Wilson, D.H.; Duffy, D.C. Single molecule enzyme-linked immunosorbent assays. J. Immunol. Methods 2012, 378, 102–115. [Google Scholar] [CrossRef]
- He, L.; Tessier, D.R.; Briggs, K.; Tsangaris, M.; Charron, M.; McConnell, E.M.; Lomovtsev, D.; Tabard-Cossa, V. Digital immunoassay for biomarker concentration quantification using solid-state nanopores. Nat. Commun. 2021, 12, 5348. [Google Scholar] [CrossRef]
- Huang, Q.; Li, N.; Zhang, H.; Che, C.; Sun, F.; Xiong, Y.; Canady, T.D.; Cunningham, B.T. Critical Review: Digital resolution biomolecular sensing for diagnostics and life science research. Lab Chip 2020, 20, 2816–2840. [Google Scholar] [CrossRef] [PubMed]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-Y.; Nam, K.-T.; Nam, Y.-H.; Kim, Y.-K.; Lee, S.-K.; Park, J.-H. Channel-Free Micro-Well–Template-Assisted Magnetic Particle Trapping for Efficient Single-Particle Isolation. Micromachines 2025, 16, 1397. https://doi.org/10.3390/mi16121397
Park J-Y, Nam K-T, Nam Y-H, Kim Y-K, Lee S-K, Park J-H. Channel-Free Micro-Well–Template-Assisted Magnetic Particle Trapping for Efficient Single-Particle Isolation. Micromachines. 2025; 16(12):1397. https://doi.org/10.3390/mi16121397
Chicago/Turabian StylePark, Jin-Yeong, Kyeong-Taek Nam, Young-Ho Nam, Yong-Kweon Kim, Seung-Ki Lee, and Jae-Hyoung Park. 2025. "Channel-Free Micro-Well–Template-Assisted Magnetic Particle Trapping for Efficient Single-Particle Isolation" Micromachines 16, no. 12: 1397. https://doi.org/10.3390/mi16121397
APA StylePark, J.-Y., Nam, K.-T., Nam, Y.-H., Kim, Y.-K., Lee, S.-K., & Park, J.-H. (2025). Channel-Free Micro-Well–Template-Assisted Magnetic Particle Trapping for Efficient Single-Particle Isolation. Micromachines, 16(12), 1397. https://doi.org/10.3390/mi16121397
