Design of a UWB Interference-Rejection LNA Based on a Q-Enhanced Notch Filter
Abstract
1. Introduction
2. Design of the Q-Enhanced Notch Filter
3. Design of the Interference-Rejection Broadband LNA
4. Measurement Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems; ET Docket No. 98-153, First Report and Order, 17 FCC Rcd 7435, 7441-46; Federal Communications Commission: Washington, DC, USA, 2022.
- Batra, A.; Balakrishnan, J.; Aiello, G.R.; Foerster, J.R.; Dabak, A. Design of a multiband OFDM system for realistic UWB channel environments. IEEE Trans. Microw. Theory Tech. 2004, 52, 2123–2138. [Google Scholar] [CrossRef]
- Lee, G.; Park, J.; Jang, J.; Jung, T.; Kim, T.W. An IR-UWB CMOS transceiver for high-data-rate, low-power, and short-range communication. IEEE J. Solid-State Circuits 2019, 54, 2163–2174. [Google Scholar] [CrossRef]
- Lee, F.S.; Chandrakasan, A.P. A BiCMOS ultra-wideband 3.1–10.6-GHz front-end. IEEE J. Solid-State Circuits 2006, 41, 1784–1791. [Google Scholar] [CrossRef]
- Cusmai, G.; Brandolini, M.; Rossi, P.; Svelto, F. A 0.18-μm C M O S selective receiver front-end for UWB applications. IEEE J. Solid-State Circuits 2006, 41, 1764–1771. [Google Scholar] [CrossRef]
- Medepalli, K.; Gopalakrishnan, P.; Famolari, D.; Kodama, T. Voice capacity of IEEE 802.11b, 802.11a and 802.11g wireless LANs. In Proceedings of the IEEE Global Telecommunications Conference, Dallas, TX, USA, 29 November–3 December 2004; IEEE: New York, NY, USA. [Google Scholar]
- Hedayati, H.; Entesari, K. A 90-nm CMOS UWB impulse radio transmitter with 30-dB in-band notch at IEEE 802.11a system. IEEE Trans. Microw. Theory Tech. 2013, 61, 4220–4232. [Google Scholar] [CrossRef]
- Koirala, N.; Pokharel, R.K.; Galal, A.I.A.; Kanaya, H.; Yoshida, K. Design of a Low Noise Amplifier with integrated notch filter for interference rejection in ultra-wideband systems. In Proceedings of the 2011 China-Japan Joint Microwave Conference, Hangzhou, China, 20–22 April 2011; pp. 1–4. [Google Scholar]
- Zhang, J.; Zhao, D.; You, X. Analysis and Design of a CMOS LNA with Transformer-Based Integrated Notch Filter for Ku-Band Satellite Communications. IEEE Trans. Microw. Theory Tech. 2022, 70, 790–800. [Google Scholar] [CrossRef]
- Gao, L.; Ma, Q.; Rebeiz, G.M. A 20–44-GHz image-rejection receiver with >75-dB image-rejection ratio in 22-nm CMOS FD-SOI for 5G applications. IEEE Trans. Microw. Theory Tech. 2020, 68, 2823–2832. [Google Scholar] [CrossRef]
- Xie, H.; Cheng, Y.J.; Fan, Y. A K-band high interference-rejection GaAs low-noise amplifier using multizero control method for satellite communication. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 1069–1072. [Google Scholar] [CrossRef]
- Lee, J.; Nguyen, C. A K-/Ka-band concurrent dual-band single-ended Input to differential output low-noise amplifier employing a novel transformer feedback dual-band load. IEEE Trans. Circuits Syst. I Reg. Pap. 2018, 65, 2679–2690. [Google Scholar] [CrossRef]
- Mohammadi, L.; Koh, K.-J. Integrated synthetic bandstop filters for blocker rejection at RF and microwave frequency bands. IEEE Trans. Microw. Theory Tech. 2016, 64, 3557–3567. [Google Scholar] [CrossRef]
- Park, B.; Choi, S.; Hong, S. A low-noise amplifier with tunable interference rejection for 3.1- to 10.6-GHz UWB systems. IEEE Microw. Wirel. Compon. Lett. 2010, 20, 40–42. [Google Scholar] [CrossRef]
- Liang, C.-P.; Rao, P.-Z.; Huang, T.-J.; Chung, S.-J. Analysis and design of two low-power ultra-wideband CMOS low-noise amplifiers with out-band rejection. IEEE Trans. Microw. Theory Tech. 2010, 58, 277–286. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Chiou, H.-K. Power-constrained third-order active notch filter applied in IR-LNA for UWB standards. IEEE Trans. Circuits Syst. II Exp. Briefs 2011, 58, 11–15. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Huang, Z.; Tan, T.; Chen, D.; Cao, C.; Qi, Z. A Novel Low-Power Notch-Enhanced Active Filter for Ultrawideband Interferer Rejected LNA. IEEE Trans. Microw. Theory Tech. 2021, 69, 1684–1697. [Google Scholar] [CrossRef]
- Nguyen, T.-K.; Oh, N.-J.; Cha, C.-Y.; Oh, Y.-H.; Ihm, G.-J.; Lee, S.-G. Image-rejection CMOS low-noise amplifier design optimization techniques. IEEE Trans. Microw. Theory Tech. 2005, 53, 538–547. [Google Scholar] [CrossRef]
- Chun, Y.-H.; Lee, J.-R.; Yun, S.-W.; Rhee, J.-K. Design of an RF low-noise bandpass filter using active capacitance circuit. IEEE Trans. Microw. Theory Tech. 2005, 53, 687–695. [Google Scholar] [CrossRef]
- Li, J.; Yuan, Y.; Zeng, J.; He, D.; Yu, Z. A Broadband LNA With Multiple Bandwidth Enhancement Techniques. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 551–554. [Google Scholar] [CrossRef]
- Chen, W.-L.; Chang, S.-F.; Huang, G.-W.; Jean, Y.-S.; Yeh, T.-H. A Ku-Band Interference-Rejection CMOS Low-Noise Amplifier Using Current-Reused Stacked Common-Gate Topology. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 718–720. [Google Scholar] [CrossRef]











| Parameters | C1 | L1 | Rf1 | Lf1 | Cf1 |
| Values | 47 fF | 824 pH | 340 Ω | 2.11 nH | 1.89 pF |
| Parameters | Cn1 | TLn1 | Ln2 | Mc | Rd |
| Values | 0.11 pF | 130 μm | 2.74 nH | 4 × 29 μm | 62 Ω |
| Parameters | Cd | Ld | Rf2 | Lf2 | Cf2 |
| Values | 0.33 fF | 1.41 nH | 237 Ω | 2.81 nH | 1.73 pF |
| Parameters | M1 | M2 | VD | VG | C2 |
| Values | 4 × 75 μm | 4 × 100 μm | 3 V | −0.6 V | 46.8 fF |
| Ref. | Technology | Filter Type | Frequency (GHz) | Gain * (dB) | NF (dB) | OP1dB (dBm) | Suppression # (dB) | Pdc (mW) | Area (mm2) |
|---|---|---|---|---|---|---|---|---|---|
| [14] | 0.18 μm CMOS | Tunable active notch filter | 3.1–10.6 | 13.2 | 6.2 | −11 | 8.2@ 5.2 GHz | 12.8 | 1.41 |
| [15] | 0.18 μm CMOS | Dual-band notch filter | 2.8–6.2 | 11.5 | 3.8 | 6 | 25@ 1.8 GHz 32@ 8.5 GHz | 2.5 | 0.62 |
| [16] | 0.18 μm CMOS | Third-order active notch filter | 1.2–9.5 | 14.7 | 5.3 | --- | 35.7@ 5.8 GHz | 16 | 0.51 |
| [17] | 0.13 μm CMOS | Feedback notch-enhanced technique | 3.3–10.1 | 16.05 | 3.7 | --- | 40.9@ 5.77 GHz | 10.2 | 0.88 |
| [21] | 0.13 μm CMOS | Inter-stage parallel resonator | 14–16 | 10.8 | 4.2 | --- | 38.5@ 24.3 GHz | 5.2 | --- |
| This work | 0.15 μm GaAs | Q-enhanced active notch filter | 3–15 | 24.5 | 2.6 | 11.82 | 35.2@ 5.8 GHz | 168 | 1.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Fan, Y.; Meng, F. Design of a UWB Interference-Rejection LNA Based on a Q-Enhanced Notch Filter. Micromachines 2025, 16, 1389. https://doi.org/10.3390/mi16121389
Li J, Fan Y, Meng F. Design of a UWB Interference-Rejection LNA Based on a Q-Enhanced Notch Filter. Micromachines. 2025; 16(12):1389. https://doi.org/10.3390/mi16121389
Chicago/Turabian StyleLi, Jiaxuan, Yuxin Fan, and Fan Meng. 2025. "Design of a UWB Interference-Rejection LNA Based on a Q-Enhanced Notch Filter" Micromachines 16, no. 12: 1389. https://doi.org/10.3390/mi16121389
APA StyleLi, J., Fan, Y., & Meng, F. (2025). Design of a UWB Interference-Rejection LNA Based on a Q-Enhanced Notch Filter. Micromachines, 16(12), 1389. https://doi.org/10.3390/mi16121389

