Fabrication of Nanostructures on Surface of Micro-Lens Arrays Using Reactive Ion Etching
Abstract
1. Introduction
2. Experimental Details
2.1. Fabrication of Nanostructured Hybrid MLA
2.2. Fabrication of Organic Light-Emitting Diodes
2.3. Electroluminescence Characterization and Measurement
3. Results and Discussion
3.1. Nanostructure Characteristics
3.2. EL Characteristics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, S.-M.; Kwon, J.H.; Kwon, S.; Choi, K.C. A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans. Electron Devices 2017, 64, 1922–1931. [Google Scholar] [CrossRef]
- Tang, C.W.; VanSlyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913–915. [Google Scholar] [CrossRef]
- Salehi, A.; Fu, X.; Shin, D.H.; So, F. Recent advances in OLED optical design. Adv. Funct. Mater. 2019, 29, 1808803. [Google Scholar] [CrossRef]
- Bauri, J.; Choudhary, R.B.; Mandal, G. Recent advances in efficient emissive materials-based OLED applications: A review. J. Mater. Sci. 2021, 56, 18837–18866. [Google Scholar] [CrossRef]
- Danz, N.; Michaelis, D.; Wächter, C. (Eds.) Light extraction from OLEDs: The waveguide perspective. In Proceedings of the Integrated Optics: Devices, Materials, and Technologies XI, San Jose, CA, USA, 22–24 January 2007; SPIE: Bellingham, WA, USA, 2007. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, D.; Choi, K.C. Analysis of out-coupling mechanism in organic light-emitting diodes. IEEE Photonics Technol. Lett. 2014, 26, 896–899. [Google Scholar] [CrossRef]
- Gather, M.C.; Reineke, S. Recent advances in light outcoupling from white organic light-emitting diodes. J. Photonics Energy 2015, 5, 057607. [Google Scholar] [CrossRef]
- Shinar, R.; Shinar, J. Light extraction from organic light emitting diodes (OLEDs). J. Phys. Photonics 2022, 4, 032002. [Google Scholar] [CrossRef]
- Kang, K.; Byeon, I.; Kim, Y.G.; Choi, J.R.; Kim, D. Nanostructures in Organic Light-Emitting Diodes: Principles and Recent Advances in the Light Extraction Strategy. Laser Photonics Rev. 2024, 18, 2400547. [Google Scholar] [CrossRef]
- Qu, Z.-H.; Wang, Y.; Song, M.; Liu, W.-Z.; Yan, J.; Meng, S.-G.; Li, M.-T.; Li, S.-N.; Zhou, D.-Y.; Chi, Y.; et al. Lithographic convex pattern as a wavelength-independent light extraction structure for efficient organic light-emitting diodes. J. Mater. Chem. C 2024, 12, 3474–3481. [Google Scholar] [CrossRef]
- Chang, H.-W.; Lee, J.; Hofmann, S.; Hyun Kim, Y.; Müller-Meskamp, L.; Lüssem, B.; Wu, C.-C.; Leo, K.; Gather, M.C. Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells. J. Appl. Phys. 2013, 113, 204502. [Google Scholar] [CrossRef]
- Kim, J.-W.; Jang, J.-H.; Oh, M.-C.; Shin, J.-W.; Cho, D.-H.; Moon, J.-H.; Lee, J.-I. FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer. Opt. Express 2014, 22, 498–507. [Google Scholar] [CrossRef]
- Shin, C.-H.; Shin, E.Y.; Kim, M.-H.; Lee, J.-H.; Choi, Y. Nanoparticle scattering layer for improving light extraction efficiency of organic light emitting diodes. Opt. Express 2015, 23, A133–A139. [Google Scholar] [CrossRef]
- Lin, B.-Y.; Lin, Y.-Y.; Chen, S.-H.; Wei, M.-K.; Chiu, T.-L.; Lin, S.-J.; Chen, C.-H.; Lee, J.-H. Highly efficient OLED achieved by periodic corrugations using facile fabrication. J. Lumin. 2024, 269, 120482. [Google Scholar] [CrossRef]
- Shim, Y.S.; Hwang, J.H.; Park, C.H.; Jung, S.-G.; Park, Y.W.; Ju, B.-K. An extremely low-index photonic crystal layer for enhanced light extraction from organic light-emitting diodes. Nanoscale 2016, 8, 4113–4120. [Google Scholar] [CrossRef]
- Park, S.; Kang, B.; Lee, S.; Bi, J.C.; Park, J.; Hwang, Y.H.; Park, J.-Y.; Hwang, H.; Park, Y.W.; Ju, B.-K. Hollow Microcavity Electrode for Enhancing Light Extraction. Mi-Cromachines 2024, 15, 328. [Google Scholar] [CrossRef]
- Fleetham, T.; Ecton, J.; Li, G.; Li, J. Improved out-coupling efficiency from a green microcavity OLED with a narrow band emission source. Org. Electron. 2016, 37, 141–147. [Google Scholar] [CrossRef]
- Han, S.; Sung, B.; Jang, H.; Lee, J.; Woo, S.; Kim, D.; Kim, J.; Joe, H.-R.; Han, J.W.; Kim, Y.H.; et al. Spontaneously formed cellulose-based random micro-textured film for light extraction in organic light-emitting diodes. J. Inf. Disp. 2024, 25, 341–348. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, C.; Zhao, B.; Zhang, S.; Yang, X.; Zhang, Q.; Kabe, R.; Li, X. In-situ fabricated hexagonal PDMS microsphere arrays for sub-strate-mode light extraction in blue fluorescent organic light emitting diodes. Polymer 2024, 315, 127796. [Google Scholar] [CrossRef]
- Kim, A.; Huseynova, G.; Lee, J.; Lee, J.-H. Enhancement of out-coupling efficiency of flexible organic light-emitting diodes fabricated on an MLA-patterned parylene substrate. Org. Electron. 2019, 71, 246–250. [Google Scholar] [CrossRef]
- Kumar, P.; Khanna, A.; Son, S.-Y.; Lee, J.S.; Singh, R.K. Analysis of light out-coupling from microlens array. Opt. Commun. 2011, 284, 4279–4282. [Google Scholar] [CrossRef]
- Ye, X.; Jiang, X.; Huang, J.; Geng, F.; Sun, L.; Zu, X.; Wu, W.; Zheng, W. Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching. Sci. Rep. 2015, 5, 13023. [Google Scholar] [CrossRef]
- Riekerink, M.O. Structural and Chemical Modification of Polymer Surfaces by Gas Plasma Etching; Printpartners Ipskamp: Enschede, The Netherlands, 2001; Available online: https://ris.utwente.nl/ws/portalfiles/portal/6074345/t0000037.pdf (accessed on 27 October 2025).
- Vesel, A.; Semenic, T. Etching rates of different polymers in oxygen plasma. Mater. Technol. 2012, 46, 227–231. [Google Scholar]
- Dhahi, T.S.; Hashim, U.; Ahmed, N. Improvement in processing of micro and nano structure fabrication using O2 plasma. Int. J. Nanoelectron. Mater. 2011, 4, 37–48. [Google Scholar]
- Hwang, J.H.; Lee, H.J.; Shim, Y.S.; Park, C.H.; Jung, S.-G.; Kim, K.N.; Park, Y.W.; Ju, B.-K. Enhanced light out-coupling efficiency of organic light-emitting diodes with an extremely low haze by plasma treated nanoscale corrugation. Nanoscale 2015, 7, 2723–2728. [Google Scholar] [CrossRef] [PubMed]
- Kwack, J.H.; Hwang, H.; Choi, J.; Choi, Y.; Park, Y.W.; Ju, B.-K. Improving the optical properties of organic light-emitting diodes using random nanoscale rods with a double refractive index. Nanotechnology 2020, 31, 335205. [Google Scholar] [CrossRef] [PubMed]
- Kwack, J.H.; Choi, J.; Park, C.H.; Hwang, H.; Park, Y.W.; Ju, B.-K. Simple method for fabricating scattering layer using random nanoscale rods for improving optical properties of organic light-emitting diodes. Sci. Rep. 2018, 8, 14311. [Google Scholar] [CrossRef]
- Schmelz, D.; Käsebier, T.; Shi, Z.; Cheng, Q.; Sergeev, N.; Schelle, D.; Zeitner, U. Investigations on black silicon nanostructures fabricated by reactive ion etching on highly curved surfaces. Mater. Sci. Semicond. Process. 2023, 165, 107646. [Google Scholar] [CrossRef]






| Height (nm)/Aspect Ratio | ||||||
|---|---|---|---|---|---|---|
| Gas/Time (s) | 12.5 | 25 | 50 | 100 | 200 | 400 |
| O2 | 99/4.3 | 177/4.2 | 182/5.3 | 218/7.6 | 453/11.2 | 856/26.3 |
| CHF3 | 22/1.4 | 35/1.4 | 41/1.3 | 66/1.6 | 96/1.7 | 139/1.3 |
| Ar | 16/1.4 | 56/1.9 | 60/1.8 | 169/1.9 | 280/1.8 | 445/1.9 |
| CF4 | 55/1.8 | 65/1.7 | 164/5.3 | 258/4.2 | 398/4.8 | 819/4.4 |
| EQE at 20 mA/cm2 (%) Reference: 1.10 Bare MLA: 1.60 | ||||||
|---|---|---|---|---|---|---|
| Gas/Time (s) | 12.5 | 25 | 50 | 100 | 200 | 400 |
| O2 | 1.58 | 1.60 | 1.63 | 1.61 | 1.6 | 1.57 |
| CHF3 | 1.56 | 1.54 | 1.59 | 1.50 | 1.49 | 1.48 |
| Ar | 1.57 | 1.56 | 1.56 | 1.58 | 1.54 | 1.51 |
| CF4 | 1.62 | 1.59 | 1.58 | 1.55 | 1.53 | 1.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, T.J.; Bae, E.J.; Choi, G.-S.; Park, Y.W. Fabrication of Nanostructures on Surface of Micro-Lens Arrays Using Reactive Ion Etching. Micromachines 2025, 16, 1306. https://doi.org/10.3390/mi16121306
Hwang TJ, Bae EJ, Choi G-S, Park YW. Fabrication of Nanostructures on Surface of Micro-Lens Arrays Using Reactive Ion Etching. Micromachines. 2025; 16(12):1306. https://doi.org/10.3390/mi16121306
Chicago/Turabian StyleHwang, Tae Jeong, Eun Jeong Bae, Geun-Su Choi, and Young Wook Park. 2025. "Fabrication of Nanostructures on Surface of Micro-Lens Arrays Using Reactive Ion Etching" Micromachines 16, no. 12: 1306. https://doi.org/10.3390/mi16121306
APA StyleHwang, T. J., Bae, E. J., Choi, G.-S., & Park, Y. W. (2025). Fabrication of Nanostructures on Surface of Micro-Lens Arrays Using Reactive Ion Etching. Micromachines, 16(12), 1306. https://doi.org/10.3390/mi16121306

