High-Power Single-Frequency Continuous-Wave Tunable 1064/532 nm Dual-Wavelength Laser
Abstract
1. Introduction
2. Experimental Setup
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huo, M.; Qin, J.; Cheng, J.; Yan, Z.; Qin, Z.; Su, X.; Jia, X.; Xie, C.; Peng, K. Deterministic quantum teleportation through fiber channels. Sci. Adv. 2018, 4, eaas9401. [Google Scholar] [CrossRef]
- Jia, X.; Yan, Z.; Duan, Z.; Su, X.; Wang, H.; Xie, C.; Peng, K. Experimental Realization of Three-Color Entanglement at Optical Fiber Communication and Atomic Storage Wavelengths. Phys. Rev. Lett. 2012, 109, 253604. [Google Scholar] [CrossRef]
- Ni, K.K.; Ospelkaus, S.; Wang, D.; Quéméner, G.; Neyenhuis, B.; Miranda, M.H.G.D.; Bohn, J.L.; Ye, J.; Jin, D.S. Dipolar collisions of polar molecules in the quantum regime. Nature 2010, 464, 1324–1328. [Google Scholar] [CrossRef]
- Markov, B.N.; Babin, S.A.; Blaszczak, Z.; Gangrsky, Y.P.; Kobtsev, S.M.; Penionzhkevich, Y.E. High-Resolution Laser Spectrometer for Fundamental and Applied Research. Bull. Russ. Acad. Sci. Phys. 2007, 71, 844–847. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Tanioka, S.; Wu, B.; Ballmer, S.W. Experimental demonstration of frequency-downconverted arm-length stabilization for a future upgraded gravitational wave detector. Opt. Lett. 2024, 49, 5763–5766. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Bian, G.; Shan, B.; Chen, L.; Meng, Z.; Wang, P.; Huang, L.; Zhang, J. Achieving ultracold Bose–Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap. Chin. Phys. B 2022, 31, 080306. [Google Scholar] [CrossRef]
- Shan, B.; Huang, L.; Zhao, Y.; Bian, G.; Wang, P.; Han, W.; Zhang, J. Chiral Raman coupling for spin-orbit coupling in ultracold atomic gases. Phys. Rev. A 2025, 111, 023323. [Google Scholar] [CrossRef]
- Owyoung, A.; Esherick, P. Stress-induced tuning of a diode-laser-excited monolithic Nd:YAG laser. Opt. Lett. 1987, 12, 999–1001. [Google Scholar] [CrossRef] [PubMed]
- Gui, K.; Zhang, Z.; Xing, Y.; Zhang, H.; Zhao, C. Frequency Difference Thermally and Electrically Tunable Dual-Frequency Nd:YAG/LiTaO3 Microchip Laser. Appl. Sci. 2019, 9, 1969. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, H.; Yin, Q.; Su, J. Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm. Appl. Opt. 2014, 53, 6371–6374. [Google Scholar] [CrossRef]
- Harrison, J.; Finch, A.; Flint, J.; Moulton, P. Broad-band rapid tuning of a single-frequency diode-pumped neodymium laser. IEEE J. Quantum Electron. 1992, 28, 1123–1130. [Google Scholar] [CrossRef]
- Abram, R.H.; Gardner, K.S.; Riis, E.; Ferguson, A.I. Narrow linewidth operation of a tunable optically pumped semiconductor laser. Opt. Express 2004, 12, 5434–5439. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lu, H.; Su, J.; Peng, K. Broadband tunable single-frequency Nd:YVO4/LBO green laser with high output power. Appl. Opt. 2013, 52, 2279–2285. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Jiao, M.; Liu, Y. Design and Experimental Study of Electro-Optically Tunable Single Frequency Nd:YAG Laser at 1064 nm. Chin. J. Lasers 2014, 41, 0302007. [Google Scholar] [CrossRef]
- Radnatarov, D.; Kobtsev, S.; Khripunov, S.; Lunin, V. 240-GHz continuously frequency-tuneable Nd:YVO4/LBO laser with two intra-cavity locked etalons. Opt. Express 2015, 23, 27322–27327. [Google Scholar] [CrossRef]
- Martin, K.I.; Clarkson, W.A.; Hanna, D.C. Self-suppression of axial mode hopping by intracavity second-harmonic generation. Opt. Lett. 1997, 22, 375–377. [Google Scholar] [CrossRef]
- Jin, P.; Lu, H.; Yin, Q.; Su, J.; Peng, K. Expanding Continuous Tuning Range of a CW Single-Frequency Laser by Combining an Intracavity Etalon With a Nonlinear Loss. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1600505. [Google Scholar] [CrossRef]
- Zheng, Y.; Lu, H.; Li, Y.; Zhang, K.; Peng, K. Broadband and Rapid Tuning of an All-Solid-State Single-Frequency Nd:YVO4 Laser. Appl. Phys. B 2008, 90, 485–488. [Google Scholar] [CrossRef]
- Murdoch, K.M.; Clubley, D.A.; Snadden, M.J. A mode-hop-free tunable single-longitudinal-mode Nd:YVO4 laser with 25 W of power at 1064 nm. In Proceedings of the Solid State Lasers XVIII: Technology and Devices, San Jose, CA, USA, 24–29 January 2009; Clarkson, W.A., Hodgson, N., Shori, R.K., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2009; Volume 7193, p. 71930P. [Google Scholar] [CrossRef]
- Feng, T.; Zhang, X.; Ren, Z.; Sun, M.; Zhu, J. Frequency Stabilization Laser Based on Non-Planar Ring Oscillator. Acta Opt. Sin. 2013, 33, 1014001. [Google Scholar] [CrossRef]
- Jin, P.; Cui, Y.; Su, J.; Lu, H.; Peng, K. Continuously tunable CW single-frequency Nd:YAP/LBO laser with dual-wavelength output. Chin. Opt. Lett. 2023, 21, 021403. [Google Scholar] [CrossRef]
- Lu, H.; Su, J.; Zheng, Y.; Peng, K. Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers. Opt. Lett. 2014, 39, 1117–1120. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Jin, P.; Li, F.; Su, J.; Lu, H.; Peng, K. A Review of the High-Power All-Solid-State Single-Frequency Continuous-Wave Laser. Micromachines 2021, 12, 1426. [Google Scholar] [CrossRef]
- Chen, Y.F. Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers. J. Opt. Soc. Am. B 2000, 17, 1835–1840. [Google Scholar] [CrossRef]







| Year | Output Power | Tuning Range | Continuous Tuning |
|---|---|---|---|
| 1987 [9] | 1 mW@1064 nm | 76.5 GHz | Yes |
| 1992 [12] | 64 mW@1064 nm | 227 MHz | Yes |
| 1997 [17] | 1.3 W@532 nm | 80 GHz | No |
| 2008 [19] | 480 mW@1064 nm | 17.2 GHz | No |
| 2009 [20] | 25 W@1064 nm & 2.5 W@532 nm | 3.2 GHz | Yes |
| 2013 [21] | 1.254 W@1064 nm | 18 GHz | No |
| 2013 [14] | 10.5 W@532 nm | 1.2 GHz | Yes |
| 2014 [11] | 33.7 W@1064 nm & 1.13 W@532 nm | — | — |
| 2014 [15] | 27.6 mW@1064 nm | 142.2 GHz | No |
| 2015 [16] | 1.5 W@532 nm | 240 GHz | Yes |
| 2018 [18] | 2.12 W@532 nm | 222.4 GHz | Yes |
| 2019 [10] | 34 mW@1064 nm | 27 GHz | Yes |
| 2023 [22] | 2.39 W@1080 nm & 4.18 W@540 nm | 157 GHz | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, W.; Jin, P.; Su, J.; Wei, J.; Lu, H. High-Power Single-Frequency Continuous-Wave Tunable 1064/532 nm Dual-Wavelength Laser. Micromachines 2025, 16, 1201. https://doi.org/10.3390/mi16111201
Peng W, Jin P, Su J, Wei J, Lu H. High-Power Single-Frequency Continuous-Wave Tunable 1064/532 nm Dual-Wavelength Laser. Micromachines. 2025; 16(11):1201. https://doi.org/10.3390/mi16111201
Chicago/Turabian StylePeng, Weina, Pixian Jin, Jing Su, Jiao Wei, and Huadong Lu. 2025. "High-Power Single-Frequency Continuous-Wave Tunable 1064/532 nm Dual-Wavelength Laser" Micromachines 16, no. 11: 1201. https://doi.org/10.3390/mi16111201
APA StylePeng, W., Jin, P., Su, J., Wei, J., & Lu, H. (2025). High-Power Single-Frequency Continuous-Wave Tunable 1064/532 nm Dual-Wavelength Laser. Micromachines, 16(11), 1201. https://doi.org/10.3390/mi16111201

