Influence of LPCVD-Si3N4 Thickness on Polarization Coulomb Field Scattering in AlGaN/GaN Metal–Insulator–Semiconductor High-Electron-Mobility Transistors
Abstract
1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Ma, X.; Zhang, Y.; Xu, C. Design of a High-Power, High-Efficiency GaN Power Amplifier for W-Band Applications. Micromachines 2025, 16, 985. [Google Scholar] [CrossRef]
- Wang, Z.; Nan, J.; Tian, Z.; Liu, P.; Wu, Y.; Zhang, J. Review on Main Gate Characteristics of P-Type GaN Gate High-Electron-Mobility Transistors. Micromachines 2024, 15, 80. [Google Scholar] [CrossRef]
- Xia, Y.; Zhu, Y.; Liu, C.; Wei, H.; Zhang, T.; Lee, Y.; Zhu, T.; Wang, M.; Yi, L.; Ge, M. Effects of the cap layer on the properties of AlN barrier HEMT grown on 6-inch Si(111) substrate. Mater. Res. Express 2020, 7, 065902. [Google Scholar] [CrossRef]
- Meneghini, M.; De Santi, C.; Abid, I.; Buffolo, M.; Cioni, M.; Khadar, R.A.; Nela, L.; Zagni, N.; Chini, A.; Medjdoub, F.; et al. GaN-based power devices: Physics, reliability, and perspectives. J. Appl. Phys. 2021, 130, 181101. [Google Scholar] [CrossRef]
- Huang, J.-W.; Chen, P.-H.; Yeh, T.-H.; Tsai, X.-Y.; Wu, P.-Y. Analysis of the Extraction Method and Mechanism of Hot Carrier Degradation in Al2O3/Si3N4 Bilayer Gate Dielectric AlGaN/GaN MIS-HEMTs. IEEE Trans. Device Mater. Reliab. 2023, 23, 510–515. [Google Scholar] [CrossRef]
- Xiao, W.; Sun, X.; Huang, L.; Li, J. Investigation of Enhancement-Mode AlGaN/GaN MIS-HEMT with Recessed Gate Structure. Semiconductors 2024, 58, 637–644. [Google Scholar] [CrossRef]
- Soma, U. Enhancing AlGaN/GaN HEMT Performance through Gate-All-Around AlN Passivation: A Comparative Study with a Planar MIS-HEMT. J. Electron. Mater. 2024, 53, 2477–2487. [Google Scholar] [CrossRef]
- Visvakarma, A.K.; Sehra, K.; Laishram, R.; Rawal, D.S.; Saxena, M. Advances in DC/RF Performance of AlGaN/GaN MIS-HEMT by Incorporating Dual Metal Gate Architecture. IETE Tech. Rev. 2022, 39, 301–309. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, K.; Zhang, Y.C.; Chen, X.J.; Huang, S.; Yin, H.B.; Liu, G.G.; Yuan, T.T.; Zheng, Y.K.; Wang, X.H.; et al. Well-suppressed interface states and improved transport properties of AlGaN/GaN MIS-HEMTs with PEALD SiN gate dielectric. Vacuum 2021, 191, 110359. [Google Scholar] [CrossRef]
- Guo, H.; Shao, P.; Bai, H.; Zhou, J.; Peng, Y.; Li, S.; Xie, Z.; Liu, B.; Chen, D.; Lu, H.; et al. Low-temperature characteristics and gate leakage mechanisms of LPCVD-SiNx/AlGaN/GaN MIS-HEMTs. J. Phys. D Appl. Phys. 2022, 55, 424002. [Google Scholar] [CrossRef]
- Huang, S.; Yang, S.; Roberts, J.; Chen, K.J. Threshold Voltage Instability in Al2O3GaN/AlGaN/GaN Metal–Insulator–Semiconductor High-Electron Mobility Transistors. Jpn. J. Appl. Phys. 2011, 50. [Google Scholar] [CrossRef]
- Zhao, R.; Huang, S.; Wang, X.; Li, Y.; Shi, J.; Zhang, Y.; Fan, J.; Yin, H.; Chen, X.; Wei, K.; et al. Interface charge engineering in down-scaled AlGaN (<6 nm)/GaN heterostructure for fabrication of GaN-based power HEMTs and MIS-HEMTs. Appl. Phys. Lett. 2020, 116, 103502. [Google Scholar] [CrossRef]
- Huang, S.; Wang, X.; Yao, Y.; Deng, K.; Yang, Y.; Jiang, Q.; Liu, X.; Guo, F.; Shen, B.; Chen, K.J.; et al. Threshold voltage instability in III-nitride heterostructure metal–insulator–semiconductor high-electron-mobility transistors: Characterization and interface engineering. Appl. Phys. Rev. 2024, 11, 021325. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Sun, Y.; Yang, L.; Hu, K.; Huang, Z.; Liang, K.; Xing, Z.; Wang, H.; Zhang, M.; et al. Effect of in-situ SiNx grown with different carrier gas on structural and electrical properties of GaN-based MISHEMTs. Appl. Phys. Lett. 2023, 122, 173501. [Google Scholar] [CrossRef]
- Yatabe, Z.; Asubar, J.T.; Hashizume, T. Insulated gate and surface passivation structures for GaN-based power transistors. J. Phys. D Appl. Phys. 2016, 49, 393001. [Google Scholar] [CrossRef]
- Asubar, J.T.; Yatabe, Z.; Gregusova, D.; Hashizume, T. Controlling surface/interface states in GaN-based transistors: Surface model, insulated gate, and surface passivation. J. Appl. Phys. 2021, 129, 121102. [Google Scholar] [CrossRef]
- Fernandes Paes Pinto Rocha, P.; Vauche, L.; Pimenta-Barros, P.; Ruel, S.; Escoffier, R.; Buckley, J. Recent Developments and Prospects of Fully Recessed MIS Gate Structures for GaN on Si Power Transistors. Energies 2023, 16, 2978. [Google Scholar] [CrossRef]
- Su, C.Y.; Tsai, M.C.; Johari, A.; Gupta, A.; Singh, R.; Wu, T.L. Investigations of Performances in RF GaN MIS-HEMTs and T-gate Schottky HEMTs with Leakage Current Analysis Using Emission Microscopy. In Proceedings of the 2024 International VLSI Symposium on Technology, Systems and Applications (VLSI TSA), Hsinchu, Taiwan, 22–25 April 2024; pp. 1–2. [Google Scholar]
- Yao, Y.; Zhang, Y.; Zhu, J.; Dang, K.; Su, C.; Ma, J.; Chen, K.; Wang, B.; Liu, W.; Xu, S.; et al. Study of the AlPN/GaN high electron mobility transistors with improved transconductance linearity. Appl. Phys. Lett. 2023, 123, 202104. [Google Scholar] [CrossRef]
- Jiang, G.; Cui, P.; Liu, Y.; Yang, G.; Lv, Y.; Fu, C.; Zhang, G.; Lin, Z. Influence of polarization Coulomb field scattering on the electrical properties of normally-off recessed gate AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistor with ALD-Al2O3 gate dielectric stack. Solid-State Electron. 2023, 201, 108579. [Google Scholar] [CrossRef]
- Wang, M.; Lv, Y.; Zhou, H.; Wen, Z.; Cui, P.; Liu, C.; Lin, Z. A Hybrid Simulation Technique to Investigate Bias-Dependent Electron Transport and Self-Heating in AlGaN/GaN HFETs. IEEE Trans. Electron. Devices 2023, 70, 5479–5483. [Google Scholar] [CrossRef]
- Jiang, G.; Lv, Y.; Lin, Z.; Yang, Y.; Liu, Y.; Guo, S.; Zhou, Y. Polarization Coulomb field scattering with the electron systems in AlGaN/GaN heterostructure field-effect transistors. AIP Adv. 2020, 10, 075212. [Google Scholar] [CrossRef]
- Hung, T.-H.; Esposto, M.; Rajan, S. Interfacial charge effects on electron transport in III-Nitride metal insulator semiconductor transistors. Appl. Phys. Lett. 2011, 99, 162104. [Google Scholar] [CrossRef]
- Huang, S.; Wang, X.; Liu, X.; Li, Y.; Fan, J.; Yin, H.; Wei, K.; Zheng, Y.; Sun, Q.; Shen, B. Interface Charge Effects on 2-D Electron Gas in Vertical-Scaled Ultrathin-Barrier AlGaN/GaN Heterostructure. IEEE Trans. Electron. Devices 2021, 68, 36. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, S.; Bao, Q.; Wang, X.; Wei, K.; Jiang, H.; Cui, H.; Li, J.; Zhao, C.; Liu, X.; et al. Investigation of the interface between LPCVD-SiNx gate dielectric and III-nitride for AlGaN/GaN MIS-HEMTs. J. Vac. Sci. Technol. B 2016, 34, 041202. [Google Scholar] [CrossRef]
- Jiang, G.; Lv, Y.; Lin, Z.; Yang, Y.; Liu, Y.; Zhou, Y. The mechanism of the enhanced intensity for polarization Coulomb field scattering in AlN/GaN heterostructure field effect transistors with submicron gate length. Solid-State Electron. 2021, 186, 108164. [Google Scholar] [CrossRef]
- Rrustemi, B.; Triozon, F.; Jaud, M.-A.; Vandendaele, W.; Ghibaudo, G. Calculation of the mobility in Al2O3/GaN electron channel: Effect of p-doping and comparison with experiments. Solid-State Electron. 2022, 198, 108470. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, X.-H.; Yang, L.; Mi, M.; Hou, B.; He, Y.; Wu, S.; Lu, Y.; Zhang, H.-S.; Zhu, Q.; et al. Influence of Fin Configuration on the Characteristics of AlGaN/GaN Fin-HEMTs. IEEE Trans. Electron Devices 2018, 65, 1745–1752. [Google Scholar] [CrossRef]
- Sonmez, F.; Arslan, E.; Ardali, S.; Tiras, E.; Ozbay, E. Determination of scattering mechanisms in AlInGaN/GaN heterostructures grown on sapphire substrate. J. Alloys Compd. 2021, 864, 158895. [Google Scholar] [CrossRef]
- Luan, C.; Lin, Z.; Lv, Y.; Zhao, J.; Wang, Y.; Chen, H.; Wang, Z. Theoretical model of the polarization Coulomb field scattering in strained AlGaN/AlN/GaN heterostructure field-effect transistors. J. Appl. Phys. 2014, 116, 044507. [Google Scholar] [CrossRef]
- Huang, Z.; Xiong, S.; Dong, N.; Zhang, L.; Lin, X. A Study of the Gate-Stack Small-Signal Model and Determination of Interface Traps in GaN-Based MIS-HEMTs. IEEE Trans. Electron. Devices 2021, 68, 1507–1512. [Google Scholar] [CrossRef]
- Riaz, M.; Kanwal, N. An improved parallel-plate capacitor apparatus for the estimation of dielectric constants of solid materials. Eur. J. Phys. 2019, 40, 025502. [Google Scholar] [CrossRef]
- Touré, A.; Halidou, I.; Benzarti, Z.; Fouzri, A.; Bchetnia, A.; El Jani, B. Characterization of low Al content AlxGa1−xN epitaxial films grown by atmospheric-pressure MOVPE. Phys. Status Solidi A 2012, 209, 977–983. [Google Scholar] [CrossRef]
- Gurusinghe, M.N.; Davidsson, S.K.; Andersson, T.G. Two-dimensional electron mobility limitation mechanisms in AlxGa1-xN/GaN heterostructures. Phys. Rev. B 2005, 72, 045316. [Google Scholar] [CrossRef]
- Cui, P.; Liu, H.; Lin, W.; Lin, Z.; Cheng, A.; Yang, M.; Liu, Y.; Fu, C.; Lv, Y.; Luan, C. Influence of Different Gate Biases and Gate Lengths on Parasitic Source Access Resistance in AlGaN/GaN Heterostructure FETs. IEEE Trans. Electron. Devices 2017, 64, 1038–1044. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, G.; Li, W.; Luo, X.; Liu, Y.; Fu, C.; Zhang, Q.; Zhang, G.; Lin, Z.; Cui, P. Influence of LPCVD-Si3N4 Thickness on Polarization Coulomb Field Scattering in AlGaN/GaN Metal–Insulator–Semiconductor High-Electron-Mobility Transistors. Micromachines 2025, 16, 1147. https://doi.org/10.3390/mi16101147
Jiang G, Li W, Luo X, Liu Y, Fu C, Zhang Q, Zhang G, Lin Z, Cui P. Influence of LPCVD-Si3N4 Thickness on Polarization Coulomb Field Scattering in AlGaN/GaN Metal–Insulator–Semiconductor High-Electron-Mobility Transistors. Micromachines. 2025; 16(10):1147. https://doi.org/10.3390/mi16101147
Chicago/Turabian StyleJiang, Guangyuan, Weikang Li, Xin Luo, Yang Liu, Chen Fu, Qingying Zhang, Guangyuan Zhang, Zhaojun Lin, and Peng Cui. 2025. "Influence of LPCVD-Si3N4 Thickness on Polarization Coulomb Field Scattering in AlGaN/GaN Metal–Insulator–Semiconductor High-Electron-Mobility Transistors" Micromachines 16, no. 10: 1147. https://doi.org/10.3390/mi16101147
APA StyleJiang, G., Li, W., Luo, X., Liu, Y., Fu, C., Zhang, Q., Zhang, G., Lin, Z., & Cui, P. (2025). Influence of LPCVD-Si3N4 Thickness on Polarization Coulomb Field Scattering in AlGaN/GaN Metal–Insulator–Semiconductor High-Electron-Mobility Transistors. Micromachines, 16(10), 1147. https://doi.org/10.3390/mi16101147