Recent Progress in Flexible Wearable Sensors for Real-Time Health Monitoring: Materials, Devices, and System Integration
Abstract
1. Introduction
2. Materials for Flexible and Wearable Sensors
2.1. Substrate Materials
2.2. Functional Materials
2.3. Biocompatibility and Long-Term Stability
3. Sensor Mechanisms and Device Architectures
3.1. Mechanical Sensors
3.2. Temperature and Electrophysiological Sensors
3.3. Biochemical Sensors
4. System-Level Sensor Integration and Applications
4.1. Vital Signs Monitoring
4.2. Motion and Activity Tracking
4.3. Chronic Disease and Rehabilitation
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Yu, H.; Kold, S.; Rahbek, O.; Bai, S. Wearable Sensors for Activity Monitoring and Motion Control: A Review. Biomim. Intell. Robot. 2023, 3, 100089. [Google Scholar] [CrossRef]
- Golsanamlou, Z.; Mahmoudpour, M.; Soleymani, J.; Jouyban, A. Applications of Advanced Materials for Non-Enzymatic Glucose Monitoring: From Invasive to the Wearable Device. Crit. Rev. Anal. Chem. 2023, 53, 1116–1131. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L. Trends and Advances in Wearable Plasmonic Sensors Utilizing Surface-Enhanced Raman Spectroscopy (SERS): A Comprehensive Review. Sensors 2025, 25, 1367. [Google Scholar] [CrossRef]
- Molahalli, V.; Soman, G.; Sharma, A.; Bijapur, K.; Chattham, N.; Pai, R.K.; Alodhayb, A.; Hegde, G. Flexing the Future: Strategic Insights into Wearable Sensor Development. ChemNanoMat 2025, 11, e202500063. [Google Scholar] [CrossRef]
- Ali, S.M.; Noghanian, S.; Khan, Z.U.; Alzahrani, S.; Alharbi, S.; Alhartomi, M.; Alsulami, R. Wearable and Flexible Sensor Devices: Recent Advances in Designs, Fabrication Methods, and Applications. Sensors 2025, 25, 1377. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.G.; Silva, A.P.; Nunes-Pereira, J. Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sens. 2024, 9, 1104–1133. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, B.; Hua, Z.; Zhang, J.; Guo, P.; Hao, D.; Gao, Y.; Huang, J. Recent Advancements in Flexible and Wearable Sensors for Biomedical and Healthcare Applications. J. Phys. D Appl. Phys. 2022, 55, 134001. [Google Scholar] [CrossRef]
- Zhan, J.L.; Lu, W.B.; Ding, C.; Sun, Z.; Yu, B.Y.; Ju, L.; Liang, X.H.; Chen, Z.M.; Chen, H.; Jia, Y.H.; et al. Flexible and Wearable Battery-Free Backscatter Wireless Communication System for Colour Imaging. NPJ Flex. Electron. 2024, 8, 19. [Google Scholar] [CrossRef]
- Zheng, C.; Yong, C.; Wei, Q.; Qiao, F. Flexible Wearable Heart Rate Monitoring System and Low-Power Design: A Review. Sensors 2025, 25, 4913. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Q.; Chen, S.; Li, J. Ultrathin, Lightweight Materials Enabled Wireless Data and Power Transmission in Chip-Less Flexible Electronics. ACS Mater. Au 2025, 5, 45–56. [Google Scholar] [CrossRef]
- Kong, L.; Li, W.; Zhang, T.; Ma, H.; Cao, Y.; Wang, K.; Zhou, Y.; Shamim, A.; Zheng, L.; Wang, X.; et al. Wireless Technologies in Flexible and Wearable Sensing: From Materials Design, System Integration to Applications. Adv. Mater. 2024, 36, e2400333. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Mc Caffrey, C.; Silven, O.; Kogler, M. Physically Flexible Ultralow-Power Wireless Sensor. IEEE Trans. Instrum. Meas. 2022, 71, 9505207. [Google Scholar] [CrossRef]
- Chen, S.; Qi, J.; Fan, S.; Qiao, Z.; Yeo, J.C.; Lim, C.T. Flexible Wearable Sensors for Cardiovascular Health Monitoring. Adv. Healthc. Mater. 2021, 10, 2100116. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Hoseyni, S.M.; Das, R.; Awais, M.; Basdogan, I.; Beker, L. A Flexible and Biodegradable Piezoelectric-Based Wearable Sensor for Non-Invasive Monitoring of Dynamic Human Motions and Physiological Signals. Adv. Mater. Technol. 2023, 8, 2300347. [Google Scholar] [CrossRef]
- Yang, Y.; Cui, T.; Li, D.; Ji, S.; Chen, Z.; Shao, W.; Liu, H.; Ren, T.L. Breathable Electronic Skins for Daily Physiological Signal Monitoring. Nano-Micro Lett. 2022, 14, 161. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Bai, Y.; Zhang, J.; Liu, H.; Zhu, W. Recent Progress in Flexible Wearable Sensors for Vital Sign Monitoring. Sensors 2020, 20, 4009. [Google Scholar] [CrossRef]
- Sun, W.; Guo, Z.; Yang, Z.; Wu, Y.; Lan, W.; Liao, Y.; Wu, X.; Liu, Y. A Review of Recent Advances in Vital Signals Monitoring of Sports and Health via Flexible Wearable Sensors. Sensors 2022, 22, 7784. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. A Review on Flexible Wearables—Recent Developments in Non-Invasive Continuous Health Monitoring. Sens. Actuators A Phys. 2024, 366, 114993. [Google Scholar] [CrossRef]
- Tang, H.Y.; Tan, S.H.; Su, T.Y.; Chiang, C.J.; Chen, H.H. Upper Body Posture Recognition Using Inertial Sensors and Recurrent Neural Networks. Appl. Sci. 2021, 11, 12101. [Google Scholar] [CrossRef]
- Lyu, Y.; Gan, S.; Bao, Y.; Zhong, L.; Xu, J.; Wang, W.; Liu, Z.; Ma, Y.; Yang, G.; Niu, L. Solid-Contact Ion-Selective Electrodes: Response Mechanisms, Transducer Materials and Wearable Sensors. Membranes 2020, 10, 128. [Google Scholar] [CrossRef]
- Di Tocco, J.; Carnevale, A.; Presti, D.L.; Bravi, M.; Bressi, F.; Miccinilli, S.; Sterzi, S.; Longo, U.G.; Denaro, V.; Schena, E.; et al. Wearable Device Based on a Flexible Conductive Textile for Knee Joint Movements Monitoring. IEEE Sens. J. 2021, 21, 26655–26664. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, K.; Suo, J.; Cheng, C.Y.M.; Chen, M.; Lai, K.W.C.; Or, C.K.; Hu, Y.; Roy, V.A.L.; Lam, C.L.K.; et al. Porous-Structure Flexible Muscle Sensor for Monitoring Muscle Function and Mass. ACS Sens. 2025, 10, 5484–5494. [Google Scholar] [CrossRef]
- Zhu, Z.; Su, Y.; Chen, J.; Zhang, J.; Liang, L.; Nie, Z.; Tang, W.; Liang, Y.; Li, H. PEDOT:PSS-Based Wearable Flexible Temperature Sensor and Integrated Sensing Matrix for Human Body Monitoring. ACS Appl. Mater. Interfaces 2024, 16, 56082–56094. [Google Scholar] [CrossRef] [PubMed]
- Arquilla, K.; Webb, A.K.; Anderson, A.P. Textile Electrocardiogram (Ecg) Electrodes for Wearable Health Monitoring. Sensors 2020, 20, 1013. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.L.; Reaz, M.B.I.; Crespo, M.L.; Cicuttin, A.; Bin Shapiai, M.I.; Bin Md Ali, S.H.; Binti Kamal, N.; Chowdhury, M.E.H. A Flexible Capacitive Electromyography Biomedical Sensor for Wearable Healthcare Applications. IEEE Trans. Instrum. Meas. 2023, 72, 4007213. [Google Scholar] [CrossRef]
- Homayounfar, S.Z.; Andrew, T.L. Wearable Sensors for Monitoring Human Motion: A Review on Mechanisms, Materials, and Challenges. SLAS Technol. 2020, 25, 9–24. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q.; Bi, Y.; Lin, J.; Yang, W.; Deng, C.; Guo, S.; Liao, M. Analyzing Human Muscle State with Flexible Sensors. J. Sens. 2022, 2022, 1–11. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X. A Focused Review on the Flexible Wearable Sensors for Sports: From Kinematics to Physiologies. Micromachines 2022, 13, 1356. [Google Scholar] [CrossRef]
- Wang, L.; Xu, T.; Zhang, X. Multifunctional Conductive Hydrogel-Based Flexible Wearable Sensors. TrAC Trends Anal. Chem. 2021, 134, 116130. [Google Scholar] [CrossRef]
- Xu, Z.; Song, J.; Liu, B.; Lv, S.; Gao, F.; Luo, X.; Wang, P. A Conducting Polymer PEDOT:PSS Hydrogel Based Wearable Sensor for Accurate Uric Acid Detection in Human Sweat. Sens. Actuators B Chem. 2021, 348, 130674. [Google Scholar] [CrossRef]
- Gong, T.; Li, Z.N.; Liang, H.; Li, Y.; Tang, X.; Chen, F.; Hu, Q.; Wang, H.Q. High-Sensitivity Wearable Sensor Based On a MXene Nanochannel Self-Adhesive Hydrogel. ACS Appl. Mater. Interfaces 2023, 15, 19349–19361. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, X.; Ma, Y.; Guo, S.; Qin, Y.; Liao, M. Human Posture Tracking with Flexible Sensors for Motion Recognition. Comput. Animat. Virtual Worlds 2021, 32, e1993. [Google Scholar] [CrossRef]
- Li, J.; Zhou, G.; Hong, Y.; He, W.; Wang, S.; Chen, Y.; Wang, C.; Tang, Y.; Sun, Y.; Zhu, Y. Highly Sensitive, Flexible and Wearable Piezoelectric Motion Sensor Based on PT Promoted β-Phase PVDF. Sens. Actuators A Phys. 2022, 337, 113415. [Google Scholar] [CrossRef]
- Cao, M.; Leng, M.; Pan, W.; Wang, Y.; Tan, S.; Jiao, Y.; Yu, S.; Fan, S.; Xu, T.; Liu, T.; et al. 3D Wearable Piezoresistive Sensor with Waterproof and Antibacterial Activity for Multimodal Smart Sensing. Nano Energy 2023, 112, 108492. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L.; Lin, G.; Feng, Y. Recent Progress in the Fabrication of Flexible Materials for Wearable Sensors. Biomater. Sci. 2022, 10, 614–632. [Google Scholar] [CrossRef]
- Lin, M.; Hu, H.; Zhou, S.; Xu, S. Soft Wearable Devices for Deep-Tissue Sensing. Nat. Rev. Mater. 2022, 7, 850–869. [Google Scholar] [CrossRef]
- He, T.; Lee, C. Evolving Flexible Sensors, Wearable and Implantable Technologies towards BodyNET for Advanced Healthcare and Reinforced Life Quality. IEEE Open J. Circuits Syst. 2021, 2, 702–720. [Google Scholar] [CrossRef]
- Zhang, T.; Yao, C.; Xu, X.; Liu, Z.; Liu, Z.; Sun, T.; Huang, S.; Huang, X.; Farah, S.; Shi, P.; et al. Nanopores-Templated CNT/PDMS Microcolumn Substrate for the Fabrication of Wearable Triboelectric Nanogenerator Sensors to Monitor Human Pulse and Blood Pressure. Adv. Mater. Technol. 2025, 10, 2400749. [Google Scholar] [CrossRef]
- Shu, Y.; Shang, Z.; Su, T.; Zhang, S.; Lu, Q.; Xu, Q.; Hu, X. A Highly Flexible Ni-Co MOF Nanosheet Coated Au/PDMS Film Based Wearable Electrochemical Sensor for Continuous Human Sweat Glucose Monitoring. Analyst 2022, 147, 1440–1448. [Google Scholar] [CrossRef] [PubMed]
- Masihi, S.; Panahi, M.; Maddipatla, D.; Hanson, A.J.; Bose, A.K.; Hajian, S.; Palaniappan, V.; Narakathu, B.B.; Bazuin, B.J.; Atashbar, M.Z. Highly Sensitive Porous PDMS-Based Capacitive Pressure Sensors Fabricated on Fabric Platform for Wearable Applications. ACS Sens. 2021, 6, 938–949. [Google Scholar] [CrossRef]
- Wu, W.Y.; Hsu, Y.H.; Chen, Y.F.; Wu, Y.R.; Liu, H.W.; Tu, T.Y.; Chao, P.P.C.; Tan, C.S.; Horng, R.H. Wearable Devices Made of a Wireless Vertical-Type Light-Emitting Diode Package on a Flexible Polyimide Substrate with a Conductive Layer. ACS Appl. Electron. Mater. 2021, 3, 979–987. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Xiao, C.; Xiao, S.; Wang, C.; Nie, Q.; Xu, P.; Chen, J.; You, R.; Zhang, G.; et al. Flexible SERS Wearable Sensor Based on Nanocomposite Hydrogel for Detection of Metabolites and PH in Sweat. Chem. Eng. J. 2023, 474, 145953. [Google Scholar] [CrossRef]
- Kim, S.; Kang, J.; Lee, I.; Jang, J.; Park, C.B.; Lee, W.; Bae, B.S. An Intrinsically Stretchable Multi-Biochemical Sensor for Sweat Analysis Using Photo-Patternable Ecoflex. NPJ Flex. Electron. 2023, 7, 33. [Google Scholar] [CrossRef]
- Jeung, J.; Yun, I.; Kim, Y.; Seong, S.; Chung, Y. Hierarchically Structured Flexible Electrode on Polyimide for Highly Sensitive and Reliable Biosignal Acquisition. IEEE Access 2022, 10, 19710–19719. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Z.; Zhang, G.; Wang, L.; Chen, L.; Yang, J.; Wang, Z. Flexible Sensors Array Based on Frosted Microstructured Ecoflex Film and TPU Nanofibers for Epidermal Pulse Wave Monitoring. Sensors 2023, 23, 3717. [Google Scholar] [CrossRef]
- Qaiser, N.; Al-Modaf, F.; Khan, S.M.; Shaikh, S.F.; El-Atab, N.; Hussain, M.M. A Robust Wearable Point-of-Care CNT-Based Strain Sensor for Wirelessly Monitoring Throat-Related Illnesses. Adv. Funct. Mater. 2021, 31, 2103375. [Google Scholar] [CrossRef]
- Lin, M.; Zheng, Z.; Yang, L.; Luo, M.; Fu, L.; Lin, B.; Xu, C. A High-Performance, Sensitive, Wearable Multifunctional Sensor Based on Rubber/CNT for Human Motion and Skin Temperature Detection. Adv. Mater. 2022, 34, 2107309. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Gu, Y.; Wang, S.; Wang, J.; Yu, L. Nanowire-Based Flexible Sensors for Wearable Electronics, Brain–Computer Interfaces, and Artificial Skins. Electron 2025, 3, e77. [Google Scholar] [CrossRef]
- He, Y.; Zhao, L.; Zhang, J.; Liu, L.; Liu, H.; Liu, L. A Breathable, Sensitive and Wearable Piezoresistive Sensor Based on Hierarchical Micro-Porous PU@CNT Films for Long-Term Health Monitoring. Compos. Sci. Technol. 2020, 200, 108419. [Google Scholar] [CrossRef]
- Zhang, H.; He, R.; Niu, Y.; Han, F.; Li, J.; Zhang, X.; Xu, F. Graphene-Enabled Wearable Sensors for Healthcare Monitoring. Biosens. Bioelectron. 2022, 197, 113777. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Lee, J.H.; Shen, X.; Chen, X.; Kim, J.K. Graphene-Based Wearable Piezoresistive Physical Sensors. Mater. Today 2020, 36, 158–179. [Google Scholar] [CrossRef]
- An, T.; Anaya, D.V.; Gong, S.; Yap, L.W.; Lin, F.; Wang, R.; Yuce, M.R.; Cheng, W. Self-Powered Gold Nanowire Tattoo Triboelectric Sensors for Soft Wearable Human-Machine Interface. Nano Energy 2020, 77, 105295. [Google Scholar] [CrossRef]
- Lo, L.W.; Zhao, J.; Wan, H.; Wang, Y.; Chakrabartty, S.; Wang, C. An Inkjet-Printed PEDOT:PSS-Based Stretchable Conductor for Wearable Health Monitoring Device Applications. ACS Appl. Mater. Interfaces 2021, 13, 21693–21702. [Google Scholar] [CrossRef]
- Li, Q.F.; Chen, X.; Wang, H.; Liu, M.; Peng, H.L. Pt/MXene-Based Flexible Wearable Non-Enzymatic Electrochemical Sensor for Continuous Glucose Detection in Sweat. ACS Appl. Mater. Interfaces 2023, 15, 13290–13298. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Q.; Dong, Y.; Gong, J.; Li, Z.; Zhang, J. Washable Patches with Gold Nanowires/Textiles in Wearable Sensors for Health Monitoring. ACS Appl. Mater. Interfaces 2022, 14, 18884–18900. [Google Scholar] [CrossRef]
- Li, L.; Pan, J.; Chang, L.; Liu, Z.; Wu, G.; Hu, Y. A MXene Heterostructure-Based Piezoionic Sensor for Wearable Sensing Applications. Chem. Eng. J. 2024, 482, 148988. [Google Scholar] [CrossRef]
- Raza, T.; Tufail, M.K.; Ali, A.; Boakye, A.; Qi, X.; Ma, Y.; Ali, A.; Qu, L.; Tian, M. Wearable and Flexible Multifunctional Sensor Based on Laser-Induced Graphene for the Sports Monitoring System. ACS Appl. Mater. Interfaces 2022, 14, 54170–54181. [Google Scholar] [CrossRef]
- Liu, G.; Lv, Z.; Batool, S.; Li, M.Z.; Zhao, P.; Guo, L.; Wang, Y.; Zhou, Y.; Han, S.T. Biocompatible Material-Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems. Small 2023, 19, e2207879. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Kong, X.; Zhou, X.; Gao, Y.; Wang, Y.J.; Gao, G.; Qu, W.; Shi, K. Ionic Conductive Soluble Starch Hydrogels for Biocompatible and Anti-Freezing Wearable Sensors. Eur. Polym. J. 2024, 210, 112949. [Google Scholar] [CrossRef]
- Du, Y.; Kim, J.H.; Kong, H.; Li, A.A.; Jin, M.L.; Kim, D.H.; Wang, Y. Biocompatible Electronic Skins for Cardiovascular Health Monitoring. Adv. Healthc. Mater. 2024, 13, e2303461. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Najafikhoshnoo, S.; Das, P.; Noh, S.; Hoang, E.; Kim, T.; Esfandyarpour, R. All-3D-Printed, Flexible, and Hybrid Wearable Bioelectronic Tactile Sensors Using Biocompatible Nanocomposites for Health Monitoring. Adv. Mater. Technol. 2022, 7, 2101034. [Google Scholar] [CrossRef]
- Cheng, H.; Keerthika Devi, R.; Huang, K.Y.; Ganesan, M.; Ravi, S.K.; Lin, C.C. Highly Biocompatible Antibacterial Hydrogel for Wearable Sensing of Macro and Microscale Human Body Motions. Small 2024, 20, e2401201. [Google Scholar] [CrossRef]
- NajafiKhoshnoo, S.; Kim, T.; Tavares-Negrete, J.A.; Pei, X.; Das, P.; Lee, S.W.; Rajendran, J.; Esfandyarpour, R. A 3D Nanomaterials-Printed Wearable, Battery-Free, Biocompatible, Flexible, and Wireless PH Sensor System for Real-Time Health Monitoring. Adv. Mater. Technol. 2023, 8, 2201655. [Google Scholar] [CrossRef]
- Omar, R.; Saliba, W.; Khatib, M.; Zheng, Y.; Pieters, C.; Oved, H.; Silberman, E.; Zohar, O.; Hu, Z.; Kloper, V.; et al. Biodegradable, Biocompatible, and Implantable Multifunctional Sensing Platform for Cardiac Monitoring. ACS Sens. 2024, 9, 126–138. [Google Scholar] [CrossRef]
- Lin, S.; Hu, S.; Song, W.; Gu, M.; Liu, J.; Song, J.; Liu, Z.; Li, Z.; Huang, K.; Wu, Y.; et al. An Ultralight, Flexible, and Biocompatible All-Fiber Motion Sensor for Artificial Intelligence Wearable Electronics. NPJ Flex. Electron. 2022, 6, 27. [Google Scholar] [CrossRef]
- Lu, T.; Ji, S.; Jin, W.; Yang, Q.; Luo, Q.; Ren, T. Biocompatible and Long-Term Monitoring Strategies of Wearable, Ingestible and Implantable Biosensors: Reform the Next Generation Healthcare. Sensors 2023, 23, 27. [Google Scholar]
- Bidsorkhi, H.C.; D’aloia, A.G.; Tamburrano, A.; De Bellis, G.; Sarto, M.S. Waterproof Graphene-pvdf Wearable Strain Sensors for Movement Detection in Smart Gloves. Sensors 2021, 21, 5277. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Chen, G.; Pan, L.; Chen, D. Electrospun Flexible PVDF/GO Piezoelectric Pressure Sensor for Human Joint Monitoring. Diam. Relat. Mater. 2022, 129, 109358. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, Y.; Zhang, Y.; Zhu, P.; Mao, Y. Recent Advances of Stretchable Nanomaterial-Based Hydrogels for Wearable Sensors and Electrophysiological Signals Monitoring. Nanomaterials 2024, 14, 1398. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhong, M.; Li, S.; Qing, Z.; Xing, X.; Gong, G.; Yan, R.; Qin, W.; Shen, J.; Zhang, H.; et al. Flexible Wearable Strain Sensors Based on Laser-Induced Graphene for Monitoring Human Physiological Signals. Polymers 2023, 15, 3553. [Google Scholar] [CrossRef]
- Nan, X.; Wang, X.; Kang, T.; Zhang, J.; Dong, L.; Dong, J.; Xia, P.; Wei, D. Review of Flexible Wearable Sensor Devices for Biomedical Application. Micromachines 2022, 13, 1395. [Google Scholar] [CrossRef]
- Liu, T.; Liu, L.; Gou, G.Y.; Fang, Z.; Sun, J.; Chen, J.; Cheng, J.; Han, M.; Ma, T.; Liu, C.; et al. Recent Advancements in Physiological, Biochemical, and Multimodal Sensors Based on Flexible Substrates: Strategies, Technologies, and Integrations. ACS Appl. Mater. Interfaces 2023, 15, 21721–21745. [Google Scholar] [CrossRef] [PubMed]
- Meng, K.; Xiao, X.; Wei, W.; Chen, G.; Nashalian, A.; Shen, S.; Chen, J. Wearable Pressure Sensors for Pulse Wave Monitoring. Adv. Mater. 2022, 34, 2109357. [Google Scholar] [CrossRef] [PubMed]
- Min, S.; Kim, D.H.; Joe, D.J.; Kim, B.W.; Jung, Y.H.; Lee, J.H.; Lee, B.Y.; Doh, I.; An, J.; Youn, Y.N.; et al. Clinical Validation of a Wearable Piezoelectric Blood-Pressure Sensor for Continuous Health Monitoring. Adv. Mater. 2023, 35, e2301627. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.H.; Jafarizadeh, B.; Pala, N.; Wang, C. Wearable Capacitive Pressure Sensor for Contact and Non-Contact Sensing and Pulse Waveform Monitoring. Molecules 2022, 27, 6872. [Google Scholar] [CrossRef]
- Diaz Mena, V.; Romate, X.X.F.S.; Diaz, D.M.; Martinez, M.S.; Fernandez, A.U. Novel Smart Wearable Sensors Based on PVDF Reinforced with CNTs for Human Motion Monitoring. IEEE Sens. J. 2024, 24, 16902–16911. [Google Scholar] [CrossRef]
- Kim, M.J.; Song, Z.; Yun, T.G.; Kang, M.J.; Son, D.H.; Pyun, J.C. Wearable Fabric-Based ZnO Nanogenerator for Biomechanical and Biothermal Monitoring. Biosens. Bioelectron. 2023, 242, 115739. [Google Scholar] [CrossRef]
- Xiang, Q.; Zhao, G.; Tang, T.; Zhang, H.; Liu, Z.; Zhang, X.; Zhao, Y.; Tan, H. All-Carbon Piezoresistive Sensor: Enhanced Sensitivity and Wide Linear Range via Multiscale Design for Wearable Applications. Adv. Funct. Mater. 2025, 35, 2418706. [Google Scholar] [CrossRef]
- Li, R.; Wei, X.; Xu, J.; Chen, J.; Li, B.; Wu, Z.; Wang, Z.L. Smart Wearable Sensors Based on Triboelectric Nanogenerator for Personal Healthcare Monitoring. Micromachines 2021, 12, 352. [Google Scholar] [CrossRef]
- Yu, C.; Liu, K.; Xu, J.; Ye, M.; Yang, T.; Qi, T.; Zhang, Y.; Xu, H.; Zhang, H. High-Performance Multifunctional Piezoresistive/Piezoelectric Pressure Sensor with Thermochromic Function for Wearable Monitoring. Chem. Eng. J. 2023, 459, 141648. [Google Scholar] [CrossRef]
- Jafarizadeh, B.; Chowdhury, A.H.; Islam Sozal, M.S.; Cheng, Z.; Pala, N.; Wang, C. Wearable System Integrating Dual Piezoresistive and Photoplethysmography Sensors for Simultaneous Pulse Wave Monitoring. ACS Appl. Mater. Interfaces 2024, 16, 65402–65413. [Google Scholar] [CrossRef]
- Bijender; Kumar, A. Flexible and Wearable Capacitive Pressure Sensor for Blood Pressure Monitoring. Sens. Bio-Sens. Res. 2021, 33, 100434. [Google Scholar] [CrossRef]
- Pu, X.; An, S.; Tang, Q.; Guo, H.; Hu, C. Wearable Triboelectric Sensors for Biomedical Monitoring and Human-Machine Interface. iScience 2021, 24, 102027. [Google Scholar] [CrossRef]
- Li, M.; Aoyama, J.; Inayoshi, K.; Zhang, H. Wearable PZT Piezoelectric Sensor Device for Accurate Arterial Pressure Pulse Waveform Measurement. Adv. Electron. Mater. 2025, 11, 2400852. [Google Scholar] [CrossRef]
- Sharma, S.; Chhetry, A.; Sharifuzzaman, M.; Yoon, H.; Park, J.Y. Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition. ACS Appl. Mater. Interfaces 2020, 12, 22212–22224. [Google Scholar] [CrossRef] [PubMed]
- Gjoreski, M.; Kiprijanovska, I.; Stankoski, S.; Mavridou, I.; Broulidakis, M.J.; Gjoreski, H.; Nduka, C. Facial EMG Sensing for Monitoring Affect Using a Wearable Device. Sci. Rep. 2022, 12, 16876. [Google Scholar] [CrossRef]
- Kamga, P.; Mostafa, R.; Zafar, S. The Use of Wearable ECG Devices in the Clinical Setting: A Review. Curr. Emerg. Hosp. Med. Rep. 2022, 10, 67–72. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Zheng, Z.; Tang, S.; Cheng, B.; Zhang, Z.; Ma, R.; Chen, Z.; Zhuo, J.; Cao, L.; et al. Flexible Temperature Sensor with High Reproducibility and Wireless Closed-Loop System for Decoupled Multimodal Health Monitoring and Personalized Thermoregulation. Adv. Mater. 2024, 36, e2407859. [Google Scholar] [CrossRef]
- Taborri, J.; Keogh, J.; Kos, A.; Santuz, A.; Umek, A.; Urbanczyk, C.; van der Kruk, E.; Rossi, S. Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview. Appl. Bionics Biomech. 2020, 2020, 2041549. [Google Scholar] [CrossRef]
- Ullah, H.; Wahab, M.A.; Will, G.; Karim, M.R.; Pan, T.; Gao, M.; Lai, D.; Lin, Y.; Miraz, M.H. Recent Advances in Stretchable and Wearable Capacitive Electrophysiological Sensors for Long-Term Health Monitoring. Biosensors 2022, 12, 630. [Google Scholar] [CrossRef]
- Thiyagarajan, K.; Rajini, G.K.; Maji, D. Cost-Effective, Disposable, Flexible, and Printable MWCNT-Based Wearable Sensor for Human Body Temperature Monitoring. IEEE Sens. J. 2022, 22, 16756–16763. [Google Scholar] [CrossRef]
- Jiang, N.; Chen, G.; Zhou, F.; Ma, B.; Zhao, C.; Liu, H. A Dual-Mode Wearable Sensor with Electrophysiological and Pressure Sensing for Cuffless Blood Pressure Monitoring. J. Mater. Chem. C 2024, 12, 15915–15923. [Google Scholar] [CrossRef]
- Lee, M.S.; Paul, A.; Xu, Y.; Hairston, W.D.; Cauwenberghs, G. Characterization of Ag/AgCl Dry Electrodes for Wearable Electrophysiological Sensing. Front. Electron. 2022, 2, 700363. [Google Scholar] [CrossRef]
- Mahato, K.; Saha, T.; Ding, S.; Sandhu, S.S.; Chang, A.Y.; Wang, J. Hybrid Multimodal Wearable Sensors for Comprehensive Health Monitoring. Nat. Electron. 2024, 7, 735–750. [Google Scholar] [CrossRef]
- Cui, Y.; He, X.; Liu, W.; Zhu, S.; Zhou, M.; Wang, Q. Highly Stretchable, Sensitive, and Multifunctional Thermoelectric Fabric for Synergistic-Sensing Systems of Human Signal Monitoring. Adv. Fiber Mater. 2024, 6, 170–180. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, R.; Lin, H.; Zhao, Z.; Song, S.; Wang, Y. Nucleobase-Driven Wearable Ionogel Electronics for Long-Term Human Motion Detection and Electrophysiological Signal Monitoring. Adv. Funct. Mater. 2025, 35, 2412244. [Google Scholar] [CrossRef]
- Li, M.; Chen, J.; Zhong, W.; Luo, M.; Wang, W.; Qing, X.; Lu, Y.; Liu, Q.; Liu, K.; Wang, Y.; et al. Large-Area, Wearable, Self-Powered Pressure-Temperature Sensor Based on 3D Thermoelectric Spacer Fabric. ACS Sens. 2020, 5, 2545–2554. [Google Scholar] [CrossRef]
- Yuan, J.; Zhu, R. A Fully Self-Powered Wearable Monitoring System with Systematically Optimized Flexible Thermoelectric Generator. Appl. Energy 2020, 271, 115250. [Google Scholar] [CrossRef]
- Choi, Y.M.; Lim, H.; Lee, H.N.; Park, Y.M.; Park, J.S.; Kim, H.J. Selective Nonenzymatic Amperometric Detection of Lactic Acid in Human Sweat Utilizing a Multi-Walled Carbon Nanotube (MWCNT)-Polypyrrole Core-Shell Nanowire. Biosensors 2020, 10, 111. [Google Scholar] [CrossRef]
- Fan, B.; Wu, Y.; Guo, H.; Yu, F.; Liu, L.E.; Yu, S.; Wang, J.; Wang, Y. Self-Assembly of Cascade Nanoenzyme Glucose Oxidase Encapsulated in Copper Benzenedicarboxylate for Wearable Sweat-Glucose Colorimetric Sensors with Smartphone Readout. Anal. Chim. Acta 2024, 1316, 342852. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Firoozbakhtian, A.; Hosseini, M.; Karaman, O.; Kalikeri, S.; Raja, G.G.; Karimi-Maleh, H. Advancements in Wearable Technology for Monitoring Lactate Levels Using Lactate Oxidase Enzyme and Free Enzyme as Analytical Approaches: A Review. Int. J. Biol. Macromol. 2024, 254, 127577. [Google Scholar] [CrossRef] [PubMed]
- Abbasnia Tehrani, M.; Ahmadi, S.H.; Alimohammadi, S.; Sasanpour, P.; Batvani, N.; Kazemi, S.H.; Kiani, M.A. Continuous Glucose Monitoring Using Wearable Non-Enzymatic Sensors in a Physiological Environment. Biosens. Bioelectron. X 2024, 18, 100482. [Google Scholar] [CrossRef]
- Liu, H.; Gu, Z.; Zhao, Q.; Li, S.; Ding, X.; Xiao, X.; Xiu, G. Printed Circuit Board Integrated Wearable Ion-Selective Electrode with Potential Treatment for Highly Repeatable Sweat Monitoring. Sens. Actuators B Chem. 2022, 355, 131102. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Li, Y.; Wen, Z.; Peng, X.; He, Y.; Hou, Y.; Fan, J.; Zang, G.; Zhang, Y. A Wearable Non-Enzymatic Sensor for Continuous Monitoring of Glucose in Human Sweat. Talanta 2024, 278, 126499. [Google Scholar] [CrossRef]
- Liu, S.; Zhong, L.; Tang, Y.; Lai, M.; Wang, H.; Bao, Y.; Ma, Y.; Wang, W.; Niu, L.; Gan, S. Graphene Oxide-Poly(Vinyl Alcohol) Hydrogel-Coated Solid-Contact Ion-Selective Electrodes for Wearable Sweat Potassium Ion Sensing. Anal. Chem. 2024, 96, 8594–8603. [Google Scholar] [CrossRef]
- Baro, B.; Khimhun, S.; Das, U.; Bayan, S. ZnO Based Triboelectric Nanogenerator on Textile Platform for Wearable Sweat Sensing Application. Nano Energy 2023, 108, 108212. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, T.; Cai, J.; Xu, L.; He, T.; Wang, T.; Tian, Y.; Li, L.; Peng, Y.; Lee, C. Wearable Triboelectric Sensors Enabled Gait Analysis and Waist Motion Capture for IoT-Based Smart Healthcare Applications. Adv. Sci. 2022, 9, 2103694. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Wen, Y.; Zhang, L.; Liu, S.; Xie, W. Organic Photoplethysmography Sensors for Wearable Health Monitoring. Laser Photonics Rev. 2025, 19, 2401992. [Google Scholar] [CrossRef]
- Chen, Q.; Tang, L. A Wearable Blood Oxygen Saturation Monitoring System Based on Bluetooth Low Energy Technology. Comput. Commun. 2020, 160, 101–110. [Google Scholar] [CrossRef]
- Li, C.; Chen, H.; Zhang, S.; Yang, W.; Gao, M.; Huang, P.; Wu, M.; Sun, Z.; Wang, J.; Wei, X. Wearable and Biocompatible Blood Oxygen Sensor Based on Heterogeneously Integrated Lasers on a Laser-Induced Graphene Electrode. ACS Appl. Electron. Mater. 2022, 4, 1583–1591. [Google Scholar] [CrossRef]
- Lee, G.H.; Kang, H.; Chung, J.W.; Lee, Y.; Yoo, H.; Jeong, S.; Cho, H.; Kim, J.Y.; Kang, S.G.; Jung, J.Y.; et al. Stretchable PPG Sensor with Light Polarization for Physical Activity–Permissible Monitoring. Sci. Adv. 2022, 8, eabm3622. [Google Scholar] [CrossRef]
- Huang, X.; Xue, Y.; Ren, S.; Wang, F. Sensor-Based Wearable Systems for Monitoring Human Motion and Posture: A Review. Sensors 2023, 23, 9047. [Google Scholar] [CrossRef]
- Antwi-Afari, M.F.; Qarout, Y.; Herzallah, R.; Anwer, S.; Umer, W.; Zhang, Y.; Manu, P. Deep Learning-Based Networks for Automated Recognition and Classification of Awkward Working Postures in Construction Using Wearable Insole Sensor Data. Autom. Constr. 2022, 136, 104181. [Google Scholar] [CrossRef]
- Beigh, N.T.; Beigh, F.T.; Mallick, D. Machine Learning Assisted Hybrid Transduction Nanocomposite Based Flexible Pressure Sensor Matrix for Human Gait Analysis. Nano Energy 2023, 116, 108824. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.; Liu, Y.; Yang, C.; Liu, W.; Qi, M.; Zhang, D. PDMS Film-Based Flexible Pressure Sensor Array with Surface Protruding Structure for Human Motion Detection and Wrist Posture Recognition. ACS Appl. Mater. Interfaces 2024, 16, 2554–2563. [Google Scholar] [CrossRef]
- Hong, Z.; Hong, M.; Wang, N.; Ma, Y.; Zhou, X.; Wang, W. A Wearable-Based Posture Recognition System with AI-Assisted Approach for Healthcare IoT. Futur. Gener. Comput. Syst. 2022, 127, 286–296. [Google Scholar] [CrossRef]
- Lin, J.; Fu, R.; Zhong, X.; Yu, P.; Tan, G.; Li, W.; Zhang, H.; Li, Y.; Zhou, L.; Ning, C. Wearable Sensors and Devices for Real-Time Cardiovascular Disease Monitoring. Cell Rep. Phys. Sci. 2021, 2, 100541. [Google Scholar] [CrossRef]
- Khan, B.; Riaz, Z.; Ahmad, R.u.S.; Khoo, B.L. Advancements in Wearable Sensors for Cardiovascular Disease Detection for Health Monitoring. Mater. Sci. Eng. R Rep. 2024, 159, 100804. [Google Scholar] [CrossRef]
- Tocco, J.D.; Presti, D.L.; Zaltieri, M.; D’Alesio, G.; Filosa, M.; Massari, L.; Aliperta, A.; Di Rienzo, M.; Carrozza, M.C.; Ferrarin, M.; et al. A Wearable System Based on Flexible Sensors for Unobtrusive Respiratory Monitoring in Occupational Settings. IEEE Sens. J. 2021, 21, 14369–14378. [Google Scholar] [CrossRef]
- Wu, T.; Wu, F.; Qiu, C.; Redoute, J.M.; Yuce, M.R. A Rigid-Flex Wearable Health Monitoring Sensor Patch for IoT-Connected Healthcare Applications. IEEE Internet Things J. 2020, 7, 6932–6945. [Google Scholar] [CrossRef]
- Vicente, B.A.; Sebastião, R.; Sencadas, V. Wearable Devices for Respiratory Monitoring. Adv. Funct. Mater. 2024, 34, 2404348. [Google Scholar] [CrossRef]
- Hussain, T.; Ullah, S.; Fernández-García, R.; Gil, I. Wearable Sensors for Respiration Monitoring: A Review. Sensors 2023, 23, 7518. [Google Scholar] [CrossRef] [PubMed]
- Meng, K.; Xiao, X.; Liu, Z.; Shen, S.; Tat, T.; Wang, Z.; Lu, C.; Ding, W.; He, X.; Yang, J.; et al. Kirigami-Inspired Pressure Sensors for Wearable Dynamic Cardiovascular Monitoring. Adv. Mater. 2022, 34, e2202478. [Google Scholar] [CrossRef]
- Ma, Z.; Hua, H.; You, C.; Ma, Z.; Guo, W.; Yang, X.; Qiu, S.; Zhao, N.; Zhang, Y.; Ho, D.; et al. FlexiPulse: A Machine-Learning-Enabled Flexible Pulse Sensor for Cardiovascular Disease Diagnostics. Cell Rep. Phys. Sci. 2023, 4, 101690. [Google Scholar] [CrossRef]
- Kuruppuarachchi, C.; Kulsoom, F.; Ibrahim, H.; Khan, H.; Zahid, A.; Sher, M. Advancements in Plant Wearable Sensors. Comput. Electron. Agric. 2025, 229, 109778. [Google Scholar] [CrossRef]
- Besnoff, J.; Zhong, H.; Su, S.; Kaveti, R.; Maiya, N.; Krishna, S.; Garland, N.T.; Bandodkar, A.J.; Ricketts, D.S. Sweat-Powered, Mm-Scale, Continuous-Time Sensor Systems with Bluetooth Low Energy (BLE) Backscatter. IEEE Access 2024, 12, 190092–190101. [Google Scholar] [CrossRef]
- ISO 15197:2013; In Vitro Diagnostic Test Systems: Requirements for Blood-Glucose Monitoring Systems for Self-Testing in Managing Diabetes Mellitus. ISO: Geneva, Switzerland, 2013. Available online: https://www.iso.org/standard/54976.html (accessed on 25 September 2025).
- Krishnan, A.; Thiyagarajan, K.; Kodagoda, S.; Bhattacharjee, M. Wearable Flexible Temperature Sensor Suite for Thermal-Tactile Perception. IEEE Sens. J. 2024, 24, 39736–39743. [Google Scholar] [CrossRef]
- Zakaria, A.A.; Allam, A.; Abdelrahman, A.B. Microwave Based Non-Invasive Blood Glucose Sensors: Key Design Parameters and Case-Informed Evaluation. IEEE Access 2025, 13, 154695–154711. [Google Scholar] [CrossRef]
- Hussain Mian, S.; Ali Shah, I.; Zada, M.; Ul Abdin, Z.; Dinh Nguyen, T.; Yoo, H. A Novel Textile-Embedded Wearable Microwave Sensor for Noninvasive Sweat Glucose Monitoring. IEEE Trans. Instrum. Meas. 2025, 74, 4004811. [Google Scholar] [CrossRef]
Category | Representative Materials | Key Properties | Bio-Compatibility/Stability | Ref |
---|---|---|---|---|
Substrate Materials | Polyimide, PDMS, Ecoflex, Hydrogel, Textile, Paper | Flexibility, stretchability, lightweight, gas permeability | Thermally stable, not biodegradable, skin-friendly, long-term adhesion, good biocompatibility but dehydration issue | [14,30,40,45] |
Conductive Polymers | PEDOT:PSS, Polyaniline, Polypyrrole | High conductivity, tunable mechanical properties, solution processability | Generally biocompatible, widely used for skin-contact electrodes | [23,65] |
Carbon-Based Materials | Graphene, CNTs | High electrical conductivity, high surface area, mechanical robustness | Good skin compatibility, biocompatibility depends on functionalization | [47,67] |
2D Materials | Ti3C2Tx MXene and Derivatives | Metallic conductivity, hydrophilicity, high sensitivity | Surface prone to oxidation, stability improved by encapsulation | [54,56] |
Metal Nanostructures | Ag Nanowires, Au Nanoparticles | High conductivity, transparency, stretchability (Ag NW networks) | AuNPs biocompatible | [52,55] |
Functional Inorganic Materials | PVDF, ZnO, Bi2Te3, Metal Oxides (NiO, CuO) | Energy harvesting, pressure/temperature sensitivity | Less biocompatible, need encapsulation | [67,68] |
Composite Materials | Polymer–Nanomaterial Hybrids | Synergistic flexibility, conductivity, high sensitivity | Biocompatibility depends on polymer matrix, composites enhance stability | [63,69] |
Sensing Mechanism | Representative Materials/Structures | Figures of Merit | Application Domains | Representative Works |
---|---|---|---|---|
Piezoresistive | CNTs, graphene films, PEDOT:PSS composites, textile-integrated strain gauges | High sensitivity, fast response, simple readout | Motion tracking, gait analysis, pulse monitoring | [78,80,81] |
Capacitive | Microstructured elastomers (PDMS, Ecoflex), Ag NWs electrodes | High linearity, low hysteresis, stable under deformation | Pressure mapping, respiratory monitoring, tactile sensing | [25,75,90] |
Piezoelectric | PVDF, ZnO nanowires, PZT thin films | Self-powered sensing, high dynamic response | Pulse wave monitoring, voice recognition, joint motion detection | [74,77,84] |
Triboelectric | Micro/nanopatterned polymers, textile-integrated TENGs | Energy harvesting + sensing, broad material choices | Motion tracking, energy-autonomous sensors | [79,106,107] |
Thermoresistive | Metal thin films, PEDOT:PSS, Bi2Te3-based composites | Temperature resolution < 0.1 °C, passive operation | Body temperature monitoring, fever screening | [23,88,91] |
Electrochemical | MXenes, metal oxides (Ni, Cu, Co-based) | High stability, enzyme-free catalysis | Glucose, alcohol, electrolyte detection | [39,54,104] |
Bioelectrical (ECG/EMG) | Graphene electrodes, CNT yarns, PEDOT:PSS hydrogel | Low impedance (<10 kΩ), SNR > 20 dB | ECG, EMG, human–machine interface, rehabilitation | [12,17,25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Xue, N.; Zhou, W.; Qin, B.; Qiu, B.; Fang, G.; Sun, X. Recent Progress in Flexible Wearable Sensors for Real-Time Health Monitoring: Materials, Devices, and System Integration. Micromachines 2025, 16, 1124. https://doi.org/10.3390/mi16101124
Cheng J, Xue N, Zhou W, Qin B, Qiu B, Fang G, Sun X. Recent Progress in Flexible Wearable Sensors for Real-Time Health Monitoring: Materials, Devices, and System Integration. Micromachines. 2025; 16(10):1124. https://doi.org/10.3390/mi16101124
Chicago/Turabian StyleCheng, Jianqun, Ning Xue, Wenyi Zhou, Boqi Qin, Bocang Qiu, Gang Fang, and Xuguang Sun. 2025. "Recent Progress in Flexible Wearable Sensors for Real-Time Health Monitoring: Materials, Devices, and System Integration" Micromachines 16, no. 10: 1124. https://doi.org/10.3390/mi16101124
APA StyleCheng, J., Xue, N., Zhou, W., Qin, B., Qiu, B., Fang, G., & Sun, X. (2025). Recent Progress in Flexible Wearable Sensors for Real-Time Health Monitoring: Materials, Devices, and System Integration. Micromachines, 16(10), 1124. https://doi.org/10.3390/mi16101124