Research on Microstructure and Corrosion Behavior of Aluminum Alloy Laser-Welded Joints Assisted by Ultrasonic Vibration
Abstract
1. Introduction
2. Experimental Procedures
2.1. Material
2.2. Experimental Equipment and Method
2.3. Electrochemical Corrosion
3. Result and Discussion
3.1. Weld Surface Quality
3.2. Microstructural Characterization
3.3. Polarization Curve and Impedance Spectroscopy Analysis
3.4. Local Corrosion Behavior
3.5. Mechanical Performance Analysis
4. Conclusions
- The dominant acoustic streaming effect was found to alter the molten pool flow dynamics, overriding the Marangoni convection and resulting in a narrower weld with reduced undercut.
- The key mechanism for property enhancement is ultrasonic cavitation, which effectively fragments dendritic crystals and promotes homogeneous equiaxed grain formation. This microstructural refinement is identified as the primary factor in blocking corrosion penetration paths.
- The area and number of corrosion pits decreased with ultrasonic assistance. The optimal corrosion resistance was achieved at 80 W ultrasonic power, representing a 19.09% enhancement compared to ultrasonic treatment. This quantifies the substantial benefit of ultrasound for applications in corrosive environments.
- The grain refinement effect of ultrasonic treatment improved the tensile strength of the welded joint, while dimples became denser and deeper. This demonstrates the potential of ultrasonic assistance to produce welded joints that meet or exceed the performance requirements of critical lightweight structures.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, X.J.; Meng, J.B.; Hu, Y.Z.; Wei, X.T.; Luan, X.H.; Zhou, H.A. Fabrication of Self-Cleaning Superhydrophobic Surfaces with Improved Corrosion Resistance on 6061Aluminum Alloys. Micromachines 2020, 11, 159. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Huang, S.; Du, S.S.; Gao, T.; Zhang, Z.B.; Chen, X.H.; Huang, L. The Effects of Heat Treatment on Microstructure and Mechanical Properties of Selective Laser Melting 6061Aluminum Alloy. Micromachines 2022, 13, 1059. [Google Scholar] [CrossRef]
- Kittisak, C.; Sompob, P.; Ghit, L.; Amornsak, R. Fatigue characteristics of 6061 aluminum alloy subject to 3.5% NaCl environment. Fatigue 2020, 133, 105420. [Google Scholar] [CrossRef]
- Kim, Y.G.; Kim, M.H.; Joo, S.M. Experimental investigation on the laser welding characteristics of 6061-T6 aluminum alloy sheets. Mater. Trans. 2018, 59, 1446–1451. [Google Scholar] [CrossRef]
- Donatus, U.; Thompson, G.E.; Omotoyinbo, J.A.; Alaneme, K.K.; Aribo, S.; Agbabiala, O.G. Corrosion pathways in aluminium alloys. Trans. Nonferrous Met. Soc. China 2017, 27, 55–62. [Google Scholar] [CrossRef]
- Hou, J.; Li, R.; Xu, C.; Li, T.; Shi, Z. A comparative study on microstructure and properties of pulsed laser welding and continuous laser welding of Al-25Si-4Cu-Mg high silicon aluminum alloy. J. Manuf. Process. 2021, 68, 657–667. [Google Scholar] [CrossRef]
- Wang, J.; Fu, X.; Zhang, L.; Zhang, Z.; Liu, J.; Chen, S. A short review on laser welding/brazing of aluminum alloy to steel. Int. J. Adv. Manuf. Technol. 2021, 112, 2399–2411. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, J.; Chi, Z. Effect of Si content on laser welding performance of Al-Mn-Mg alloy. Trans. Nonferrous Met. Soc. China. 2014, 24, 2208–2213. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Wang, B.; Geng, Y.; Wang, Z. A new strategy for constructing 3D hybrid graphene/Au/rectangular pyramids PMMA on a flexible SERS substrate for trace molecule detection. Sens. Actuators B Chem. 2024, 410, 135711. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Z.; Huang, K.; Lin, C.; Huang, W.; Chen, X.; Xiao, J.; Xu, J. Field-assisted machining of difficult-to-machine materials. Int. J. Extrem. Manuf. 2024, 6, 032002. [Google Scholar] [CrossRef]
- Zhao, G.; Zhao, B.; Ding, W.; Xin, L.; Nian, Z.; Peng, J.; He, N.; Xu, J. Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: A comparative analysis. Int. J. Extrem. Manuf. 2024, 6, 022007. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, S.; Shi, G.; Xie, W.; Geng, Y.; Wang, Z. A study on a hybrid SERS substrates based on arrayed gold nanoparticle/graphene/copper cone cavities fabricated by a conical tip indentation. J. Mater. Res. Technol. 2023, 22, 1558–1571. [Google Scholar] [CrossRef]
- Wang, M.; Xia, P.; Guo, J.; Yin, Y.; Zhan, X.; Feng, X. Study on the microstructure and mechanical properties of continuous/pulsed hybrid laser shallow penetration welding joints of 6061 aluminium alloy. Opt. Laser Technol. 2025, 180, 111390. [Google Scholar] [CrossRef]
- Lei, Z.; Jiang, B.; Peng, L.; Qian, L.; Chen, Y.; Zhang, D. Melt flow and grain refining in ultrasonic vibration assisted laser welding process of az31b magnesium alloy. Opt. Laser Technol. 2018, 108, 409–417. [Google Scholar] [CrossRef]
- Teyeb, A.; Silva, J.; Kanfoud, J.; Carr, P.; Gan, T.H.; Balachandran, W. Improvements in the Microstructure and Mechanical Properties of Aluminium Alloys Using Ultrasonic-Assisted Laser Welding. Metals 2022, 12, 1041. [Google Scholar] [CrossRef]
- Jia, X.H.; Luo, J.L.; Li, K.; Wang, C.; Li, Z.; Wang, M.M.; Jiang, Z.Y.; Veiko, V.P.; Duang, J.A. Ultrafast laser welding of transparent materials: From principles to applications. Int. J. Extrem. Manuf. 2025, 7, 032001. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, S.; Xu, G.; Zhou, W.; Li, L.; Zhang, D.H.; Ren, N.; Xia, K.; Shi, C. Influence of Ultrasonic Vibration on Percussion Drilling Performance for Millisecond Pulsed Nd: YAG Laser. Opt. laser. Technol. 2018, 104, 133–139. [Google Scholar] [CrossRef]
- Nesvijski, E.G. Some aspects of ultrasonic testing of composites. Compos. Struct. 2000, 48, 151–155. [Google Scholar] [CrossRef]
- Takuya, Y.; Kazuki, K.; Sergey, V.K. Characterization of acoustic streaming in water and aluminum melt during ultrasonic irradiation. Ultrason. Sonochem. 2021, 71, 105381. [Google Scholar] [CrossRef]
- Wang, F.; Dmitry, E.; Jiawei, M.; Wang, C.N.; Billy, K.; Andrew, K.; Christina, R.; Thomas, C. A synchrotron X-radiography study of the fragmentation and refinement of primary intermetallic particles in an Al-35 Cu alloy induced by ultrasonic melt processing. Acta Mater. 2017, 141, 142–153. [Google Scholar] [CrossRef]
- Rai, R.; Kelly, S.M.; Martukanitz, R.P.; DebRoy, T. A convective heat- transfer model for partial and full penetration keyhole mode laser welding of a structural steel. Metall. Mater. Trans. A 2008, 39, 98–112. [Google Scholar] [CrossRef]
- Yang, Z.C.; Wang, S.H.; Zhu, L.D.; Ning, J.S.; Xin, B.; Dun, Y.C.; Yan, W.T. Manipulating molten pool dynamics during metal 3D printing by ultrasound. Appl. Phys. Rev. 2022, 9, 021416. [Google Scholar] [CrossRef]
- Sritharan, K.; Strobl, C.J.; Schneider, M.F.; Wixforth, A.; Guttenberg, Z. Acoustic mixing at low Reynold’s numbers. Appl. Phys. Lett. 2006, 88, 054102. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, H.Y.; Li, Z.; Cui, W.F.; Shi, Y. Effect of ultrasonic power on porosity, microstructure, mechanical properties of the aluminum alloy joint by ultrasonic assisted laser-MIG hybrid welding. Opt. Laser Technol. 2019, 119, 105619. [Google Scholar] [CrossRef]
- Sui, C.F.; Liu, Z.J.; Ai, X.Y.; Liu, C.J.; Zou, Z.X. Effect of Ultrasonic Vibration on Grain Size and Precipitated Phase Distribution of 6061 Aluminum Alloy Welded Joint. Crystals 2022, 12, 240. [Google Scholar] [CrossRef]
- Yang, C.; Guo, W.M.; Zhang, H.X.; Qiu, R.; Hou, J.; Fu, Y.B. Study on the corrosion behavior of 7A52 Al alloy welded joint by electrochemical method. Int. J. Electrochem. Sci. 2023, 8, 9308–9316. [Google Scholar] [CrossRef]
- Song, G. Theoretical analysis of the measurement of polarisation resistance in reinforced concrete. Cem. Concr. Compos. 2000, 22, 407–415. [Google Scholar] [CrossRef]
- Cuevas-Arteaga, C.; Porcayo-Calderon, J. Electrochemical noise analysis in the frequency domain and determination of corrosion rates for SS-304 stainless steel. Mater. Sci. Eng. A 2006, 435, 439–446. [Google Scholar] [CrossRef]
Element | Si | Cu | Fe | Mn | Zn | Mg | Cr | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
Content/% | 0.72 | 0.36 | 0.70 | 0.15 | 0.25 | 0.93 | 0.32 | 0.15 | Bal |
Sample Number | Laser Power/W | Welding Speed/m·s−1 | Defocus Amount/mm | Ultrasonic Power/W |
---|---|---|---|---|
A | 2800 | 0.03 | 0.4 | 0 |
B | 2800 | 0.03 | 0.4 | 60 |
C | 2800 | 0.03 | 0.4 | 80 |
D | 2800 | 0.03 | 0.4 | 100 |
Sample | Icorr/A·cm−2 | Ecorr/V | Rp/Ω·cm−2 |
---|---|---|---|
BM | 2.688 × 10−5 | −1.20 | 14,938 |
A | 4.511 × 10−5 | −1.06 | 7897 |
B | 4.021 × 10−5 | −1.13 | 9044 |
C | 3.650 × 10−5 | −1.11 | 12,628 |
D | 3.988 × 10−5 | −1.04 | 9078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, D.; Li, A.; Liu, J.; Shi, Y.; Zhang, H.; Yang, L. Research on Microstructure and Corrosion Behavior of Aluminum Alloy Laser-Welded Joints Assisted by Ultrasonic Vibration. Micromachines 2025, 16, 1118. https://doi.org/10.3390/mi16101118
Bai D, Li A, Liu J, Shi Y, Zhang H, Yang L. Research on Microstructure and Corrosion Behavior of Aluminum Alloy Laser-Welded Joints Assisted by Ultrasonic Vibration. Micromachines. 2025; 16(10):1118. https://doi.org/10.3390/mi16101118
Chicago/Turabian StyleBai, Di, Ao Li, Jia Liu, Yan Shi, Hong Zhang, and Li Yang. 2025. "Research on Microstructure and Corrosion Behavior of Aluminum Alloy Laser-Welded Joints Assisted by Ultrasonic Vibration" Micromachines 16, no. 10: 1118. https://doi.org/10.3390/mi16101118
APA StyleBai, D., Li, A., Liu, J., Shi, Y., Zhang, H., & Yang, L. (2025). Research on Microstructure and Corrosion Behavior of Aluminum Alloy Laser-Welded Joints Assisted by Ultrasonic Vibration. Micromachines, 16(10), 1118. https://doi.org/10.3390/mi16101118