Additive Manufacturing Techniques for Acoustic Hologram Lens Microfabrication
Abstract
1. Introduction
2. Background for Acoustic Holograms and Literature Survey
2.1. Design of Acoustic Holograms by Iterative Angular Spectrum Approach
2.2. Lituerature Survey Approach
3. Acoustic Hologram Microfabrication Methods
3.1. Material Jetting 3D Printing
3.2. Stereolithography
3.3. Fused Deposition Modeling
3.4. Nanoparticle–Epoxy Composite Molding
4. Summary and Discussion
- (1)
- Rapid, one-step fabrication: although post-processing steps such as cleaning and surface polishing are required, current photopolymer-based 3D printing techniques provide sufficiently high resolution (<50 µm) for the typical operating frequency range of 0.5–5 MHz. This resolution is competitive with conventional machining while offering greater accessibility, enabling engineers to fabricate lenses without specialized machining skills [31].
- (2)
- Reliable translation from design to performance: nearly all surveyed studies demonstrated successful realization of predefined multi-focal pressure fields. The accuracy of reconstruction strongly depends on operating frequency and axial alignment, yet both IASA- and ML-assisted design processes combined with 3D printing have proven reliable for custom transducer development, supporting their potential in future applications.
- (3)
- Limited material availability: despite ongoing advances in printable polymers, acoustically optimal material properties remain difficult to achieve with standard 3D printing resins. Workarounds such as NPEC molding illustrate that enhanced material control often comes at the expense of fabrication simplicity and speed [21].
- (4)
- Insufficient thermal stability data: Few studies report detailed thermal reliability of fabricated lenses. Photopolymers typically used in SLA exhibit glass transition temperatures (Tg) in the range of 50–120 °C [84]. Under long-duty, high-voltage operation, lens heating may approach Tg, raising concerns about performance stability in high-power applications. Systematic reliability testing is therefore needed.
- (1)
- High-power applications: for surgical ultrasound, materials processing, or acoustic manipulation [85,86], high-impedance lens materials (e.g., heavy-particle/epoxy composites, aluminum, stainless steel) may provide improved energy transmission. NPEC molding is one viable approach, while composite SLA or metal 3D printing hold promise for fabricating high-impedance hologram lenses [83,87]. Further analysis of averaged transmission coefficient values across all pixels on the hologram plane for different lens materials could provide useful insights for high-power lens design.
- (2)
- Multi-layered acoustic holograms: inspired by stackable hologram [51], lenses with gradient acoustic impedance across layers could enhance precision and pressure output. Integration with advanced 3D printing techniques may enable further optimization of acoustic transmission.
- (3)
- Dynamic morphing holograms: Additive microfabrication with tissue-like or stimulus-responsive materials could enable lenses capable of reconfigurable focusing. Acoustic properties sensitive to pressure, temperature, magnetic fields, or electric fields could be exploited to create dynamic, adaptive acoustic holograms building upon recent findings on wave speed variation by temperature change [30,88]. This functionality would unlock greater controllability of pressure field distributions at the target volume, expanding the scope of high-precision non-contact excitation applications.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SNR | Signal to noise ratio |
PSNR | Peak signal to noise ratio |
FWHM | Full width half maximum |
MSE | Mean square error |
RMSE | Root mean square error |
SSIM | Structural similarity index |
CSIM | Color similarity index |
PNP | Peak negative pressure |
MI | Mechanical index |
References
- Melde, K.; Mark, A.G.; Qiu, T.; Fischer, P. Holograms for Acoustics. Nature 2016, 537, 518–522. [Google Scholar] [CrossRef]
- Brown, M.D.; Cox, B.T.; Treeby, B.E. Design of Multi-Frequency Acoustic Kinoforms. Appl. Phys. Lett. 2017, 111, 244101. [Google Scholar] [CrossRef]
- Burstow, R.; Andrés, D.; Jiménez, N.; Camarena, F.; Thanou, M.; Pouliopoulos, A.N. Acoustic Holography in Biomedical Applications. Phys. Med. Biol. 2025, 70, 06TR01. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Gambín, S.; Jiménez, N.; Benlloch, J.M.; Camarena, F. Holograms to Focus Arbitrary Ultrasonic Fields through the Skull. Phys. Rev. Appl. 2019, 12, 014016. [Google Scholar] [CrossRef]
- Kim, J.; Kasoji, S.; Durham, P.G.; Dayton, P.A. Acoustic Holograms for Directing Arbitrary Cavitation Patterns. Appl. Phys. Lett. 2021, 118, 051902. [Google Scholar] [CrossRef]
- Ma, Z.; Melde, K.; Athanassiadis, A.G.; Schau, M.; Richter, H.; Qiu, T.; Fischer, P. Spatial Ultrasound Modulation by Digitally Controlling Microbubble Arrays. Nat. Commun. 2020, 11, 4537. [Google Scholar] [CrossRef] [PubMed]
- Melde, K.; Kremer, H.; Shi, M.; Seneca, S.; Frey, C.; Platzman, I.; Degel, C.; Schmitt, D.; Schölkopf, B.; Fischer, P. Compact Holographic Sound Fields Enable Rapid One-Step Assembly of Matter in 3D. Sci. Adv. 2023, 9, eadf6182. [Google Scholar] [CrossRef]
- Ma, Z.; Holle, A.W.; Melde, K.; Qiu, T.; Poeppel, K.; Kadiri, V.M.; Fischer, P. Acoustic Holographic Cell Patterning in a Biocompatible Hydrogel. Adv. Mater. 2020, 32, 1904181. [Google Scholar] [CrossRef]
- Ghanem, M.A.; Maxwell, A.D.; Dalecki, D.; Sapozhnikov, O.A.; Bailey, M.R. Phase Holograms for the Three-Dimensional Patterning of Unconstrained Microparticles. Sci. Rep. 2023, 13, 9160. [Google Scholar] [CrossRef]
- Glickstein, B.; Shaul, O.; Ilovitsh, T. Rationally Designed Acoustic Holograms for Uniform Nanodroplet-Mediated Tissue Ablation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2024, 71, 1606–1615. [Google Scholar] [CrossRef]
- Kim, J.; Kasoji, S.; Dayton, P.A. Acoustic Metastructure-Lensed Multi-Focal Sonicator Designs for High-Throughput Therapeutic Ultrasound Testing In Vitro. In Proceedings of the 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS), Taipei, Taiwan, 22–26 September 2024; pp. 1–4. [Google Scholar]
- Quan, H.; Zhang, T.; Xu, H.; Luo, S.; Nie, J.; Zhu, X. Photo-Curing 3D Printing Technique and Its Challenges. Bioact. Mater. 2020, 5, 110–115. [Google Scholar] [CrossRef]
- Bakhtiari-Nejad, M.; Elnahhas, A.; Hajj, M.R.; Shahab, S. Acoustic Holograms in Contactless Ultrasonic Power Transfer Systems: Modeling and Experiment. J. Appl. Phys. 2018, 124, 244901. [Google Scholar] [CrossRef]
- Cengiz, C.; Shahab, S. Holographic Thermal Mapping in Volumes Using Acoustic Lenses. J. Phys. D Appl. Phys. 2024, 57, 365501. [Google Scholar] [CrossRef]
- Brown, M.D.; Nikitichev, D.I.; Treeby, B.E.; Cox, B.T. Generating Arbitrary Ultrasound Fields with Tailored Optoacoustic Surface Profiles. Appl. Phys. Lett. 2017, 110, 094102. [Google Scholar] [CrossRef]
- Sanders, J.; Wei, X.; Pei, Z. Experimental Investigation of PolyJet 3D Printing: Effects of Sample Location and Volume on Power Consumption. Manuf. Lett. 2022, 31, 83–86. [Google Scholar] [CrossRef]
- Shakibania, S.; Khakbiz, M.; Bektas, C.K.; Ghazanfari, L.; Banizi, M.T.; Lee, K.-B. A Review of 3D Printing Technology for Rapid Medical Diagnostic Tools. Mol. Syst. Des. Eng. 2022, 7, 315–324. [Google Scholar] [CrossRef]
- Zhou, Q.; Cha, J.H.; Huang, Y.; Zhang, R.; Cao, W.; Shung, K.K. Alumina/Epoxy Nanocomposite Matching Layers for High-Frequency Ultrasound Transducer Application. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 213–219. [Google Scholar] [CrossRef]
- Zhou, Q.; Lam, K.H.; Zheng, H.; Qiu, W.; Shung, K.K. Piezoelectric Single Crystal Ultrasonic Transducers for Biomedical Applications. Prog. Mater. Sci. 2014, 66, 87–111. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kasoji, S.; Durham, P.G.; Dayton, P.A. Acoustic Hologram Lens Made of Nanoparticle-Epoxy Composite Molding for Directing Predefined Therapeutic Ultrasound Beams. In Proceedings of the 2022 IEEE International Ultrasonics Symposium (IUS), Venice, Italy, 10–13 October 2022; pp. 1–4. [Google Scholar]
- Kim, J.; Kasoji, S.; Durham, P.G.; Dayton, P.A. Nanoparticle-Epoxy Composite Molding for Undeformed Acoustic Holograms with Tailored Acoustic Properties. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2023, 70, 1554–1562. [Google Scholar] [CrossRef]
- Hsu, J.-C.; Alwi, H.; Wei, C.-H.; Liao, K.-L.; Huang, C.-T. Reflections of High-Frequency Pulsed Ultrasound by Underwater Acoustic Metasurfaces Composed of Subwavelength Phase-Gradient Slits. Crystals 2023, 13, 846. [Google Scholar] [CrossRef]
- Zeng, L.-S.; Shen, Y.-X.; Fang, X.-S.; Li, Y.; Zhu, X.-F. Experimental Realization of Ultrasonic Retroreflection Tweezing via Metagratings. Ultrasonics 2021, 117, 106548. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.-T.; Fu, W.-X.; Wang, Y.-F.; Wang, Y.-S. High-Efficiency Ultrathin Nonlocal Waterborne Acoustic Metasurface. Phys. Rev. Appl. 2021, 15, 44046. [Google Scholar] [CrossRef]
- Rossing, T.D. (Ed.) Handbook of Acoustics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Liu, D.-L.; Waag, R.C. Propagation and Backpropagation for Ultrasonic Wavefront Design. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1997, 44, 1–13. [Google Scholar] [CrossRef]
- Fushimi, T.; Yamamoto, K.; Ochiai, Y. Acoustic Hologram Optimisation Using Automatic Differentiation. Sci. Rep. 2021, 11, 12678. [Google Scholar] [CrossRef] [PubMed]
- Raymond, S.J.; Collins, D.J.; O’Rorke, R.; Tayebi, M.; Ai, Y.; Williams, J. A Deep Learning Approach for Designed Diffraction-Based Acoustic Patterning in Microchannels. Sci. Rep. 2020, 10, 8745. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, Z.; Wang, Y.; Zentgraf, T.; Li, Y.; Huang, L. Experimental Verification of the Acoustic Geometric Phase. Appl. Phys. Lett. 2022, 120, 211702. [Google Scholar] [CrossRef]
- Xu, M.; Wang, J.; Harley, W.S.; Lee, P.V.S.; Collins, D.J. Programmable Acoustic Holography Using Medium-Sound-Speed Modulation. Adv. Sci. 2023, 10, 2301489. [Google Scholar] [CrossRef]
- Kim, J.; Menichella, B.; Lee, H.; Dayton, P.A.; Pinton, G.F. A Rapid Prototyping Method for Sub-MHz Single-Element Piezoelectric Transducers by Using 3D-Printed Components. Sensors 2023, 23, 313. [Google Scholar] [CrossRef]
- Wang, S.; You, F.; Wang, X.; Xiao, H. A Knowledge-Driven Method for Real-Time Acoustic Holographic Field Reconstruction Using Physical Modeling and Semi-Supervised Neural Networks. Knowl.-Based Syst. 2025, 311, 113044. [Google Scholar] [CrossRef]
- Li, B.; Lu, M.; Liu, C.; Liu, X.; Ta, D. Acoustic Hologram Reconstruction with Unsupervised Neural Network. Front. Mater. 2022, 9, 916527. [Google Scholar] [CrossRef]
- Lee, M.H.; Lew, H.M.; Youn, S.; Kim, T.; Hwang, J.Y. Deep Learning-Based Framework for Fast and Accurate Acoustic Hologram Generation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 3353–3366. [Google Scholar] [CrossRef]
- Lin, Q.; Wang, J.; Cai, F.; Zhang, R.; Zhao, D.; Xia, X.; Wang, J.; Zheng, H. A Deep Learning Approach for the Fast Generation of Acoustic Holograms. J. Acoust. Soc. Am. 2021, 149, 2312–2322. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, R.; Cai, F.; Chen, Y.; Ye, J.; Wang, J.; Zheng, H.; Zhang, H. Multi-Frequency Acoustic Hologram Generation with a Physics-Enhanced Deep Neural Network. Ultrasonics 2023, 132, 106970. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J. Multiphysics Simulation of Acoustic Hologram-Lensed Piezoelectric Ultrasound Transducers. In Proceedings of the 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS), Taipei, Taiwan, 22–26 September 2024; pp. 1–4. [Google Scholar]
- Li, Z.; Yang, Y.; Lu, Q.; Wei, X.; Hou, C.; Quan, Y.; Lü, X.; Bao, W.; Yang, Y.; Fei, C. Dynamic Acoustic Holography: One-Shot High-Precision and High-Information Methodology. Micromachines 2024, 15, 1316. [Google Scholar] [CrossRef] [PubMed]
- Schein, D.; Grutman, T.; Ilovitsh, T. Deep Learning-Based Ultrasound Beam Shaping for Spatiotemporal Acoustic Holograms Generation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2023, 70, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.D.; Cox, B.T.; Treeby, B.E. Binary Volume Acoustic Holograms. Phys. Rev. Appl. 2023, 19, 44032. [Google Scholar] [CrossRef]
- Melde, K.; Choi, E.; Wu, Z.; Palagi, S.; Qiu, T.; Fischer, P. Acoustic Fabrication via the Assembly and Fusion of Particles. Adv. Mater. 2018, 30, 1704507. [Google Scholar] [CrossRef] [PubMed]
- Marzo, A.; Drinkwater, B.W. Holographic Acoustic Tweezers. Proc. Natl. Acad. Sci. USA 2019, 116, 84–89. [Google Scholar] [CrossRef]
- Zou, H.-Y.; Ge, Y.; Zhao, K.-Q.; Lu, Y.-J.; Si, Q.-R.; Yuan, S.-Q.; Chen, H.; Sun, H.-X.; Yang, Y.; Zhang, B. Acoustic Metagrating Holograms. Adv. Mater. 2024, 36, 2401738. [Google Scholar] [CrossRef]
- Gülcan, O.; Günaydın, K.; Tamer, A. The State of the Art of Material Jetting—A Critical Review. Polymers 2021, 13, 2829. [Google Scholar] [CrossRef]
- Pilipović, A.; Baršić, G.; Katić, M.; Rujnić Havstad, M. Repeatability and Reproducibility Assessment of a PolyJet Technology Using X-Ray Computed Tomography. Appl. Sci. 2020, 10, 7040. [Google Scholar] [CrossRef]
- Yao, X.; Piao, X.; Hong, S.; Ji, C.; Wang, M.; Wei, Y.; Xu, Z.; Pan, J.-J.; Pei, Y.; Cheng, B. Acoustic Hologram-Enabled Simultaneous Multi-Target Blood-Brain Barrier Opening (AH-SiMBO). Commun. Eng. 2025, 4, 99. [Google Scholar] [CrossRef] [PubMed]
- Cox, L.; Melde, K.; Croxford, A.; Fischer, P.; Drinkwater, B.W. Acoustic Hologram Enhanced Phased Arrays for Ultrasonic Particle Manipulation. Phys. Rev. Appl. 2019, 12, 64055. [Google Scholar] [CrossRef]
- Andrés, D.; Rivens, I.; Mouratidis, P.; Jiménez, N.; Camarena, F.; ter Haar, G. Holographic Focused Ultrasound Hyperthermia System for Uniform Simultaneous Thermal Exposure of Multiple Tumor Spheroids. Cancers 2023, 15, 2540. [Google Scholar] [CrossRef]
- Brown, M.D. Phase and Amplitude Modulation with Acoustic Holograms. Appl. Phys. Lett. 2019, 115, 053701. [Google Scholar] [CrossRef]
- Bakhtiari-Nejad, M. Multi-Focal Transmission Acoustic Phase Holograms in Contactless Ultrasonic Power Transfer Systems. Sens. Actuators A Phys. 2022, 340, 113551. [Google Scholar] [CrossRef]
- Brown, M.D.; Cox, B.T.; Treeby, B.E. Stackable Acoustic Holograms. Appl. Phys. Lett. 2020, 116, 261901. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, C.; Rufo, J.; Shen, C.; Wang, Z.; Huang, P.-H.; Fu, H.; Zhang, P.; Cummer, S.A.; Tian, Z.; et al. Acoustofluidic Holography for Micro- to Nanoscale Particle Manipulation. ACS Nano 2020, 14, 14635–14645. [Google Scholar] [CrossRef]
- Elkaseer, A.; Chen, K.J.; Janhsen, J.C.; Refle, O.; Hagenmeyer, V.; Scholz, S.G. Material Jetting for Advanced Applications: A State-of-the-Art Review, Gaps and Future Directions. Addit. Manuf. 2022, 60, 103270. [Google Scholar] [CrossRef]
- Xie, D.; Lv, F.; Yang, Y.; Shen, L.; Tian, Z.; Shuai, C.; Chen, B.; Zhao, J. A Review on Distortion and Residual Stress in Additive Manufacturing. Chinese J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100039. [Google Scholar] [CrossRef]
- Bakaric, M.; Miloro, P.; Javaherian, A.; Cox, B.T.; Treeby, B.E.; Brown, M.D. Measurement of the Ultrasound Attenuation and Dispersion in 3D-Printed Photopolymer Materials from 1 to 3.5 MHz. J. Acoust. Soc. Am. 2021, 150, 2798–2805. [Google Scholar] [CrossRef] [PubMed]
- Tumbleston, J.R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A.R.; Kelly, D.; Chen, K.; Pinschmidt, R.; Rolland, J.P.; Ermoshkin, A.; et al. Continuous Liquid Interface Production of 3D Objects. Science 2015, 347, 1349–1352. [Google Scholar] [CrossRef] [PubMed]
- Pagac, M.; Hajnys, J.; Ma, Q.-P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers 2021, 13, 598. [Google Scholar] [CrossRef]
- Sager, B.; Rosen, D.W.; Shilling, M.; Kurfess, T.R. Experimental Studies in Stereolithography Resolution; University of Texas at Austin: Austin, TX, USA, 2003. [Google Scholar]
- Andres, D.; Carrión García, A.; Camarena, F.; Jiménez, N. Methods to Design and Evaluate Transcranial Ultrasonic Lenses Using Acoustic Holography. Phys. Rev. Appl. 2023, 20, 044071. [Google Scholar] [CrossRef]
- Li, Z.; Danfeng, W.; Fei, C.; Jiang, P.; Zhang, S.; Chen, D.-D.; Di, L.; Zhen, C.; Wu, R.; Peng, X.; et al. Acoustic Hole-Hologram for Ultrasonic Focusing With High Sensitivity. IEEE Sens. J. 2021, 21, 8935–8942. [Google Scholar] [CrossRef]
- Derayatifar, M.; Habibi, M.; Bhat, R.; Packirisamy, M. Holographic Direct Sound Printing. Nat. Commun. 2024, 15, 6691. [Google Scholar] [CrossRef]
- Sallam, A.; Cengiz, C.; Pewekar, M.; Hoffmann, E.; Legon, W.; Vlaisavljevich, E.; Shahab, S. Gradient Descent Optimization of Acoustic Holograms for Transcranial Focused Ultrasound. J. Appl. Phys. 2024, 136, 144901. [Google Scholar] [CrossRef]
- Ellouzi, C.; Zabihi, A.; Aghdasi, F.; Kayes, A.; Rivera, M.; Zhong, J.; Miri, A.; Shen, C. Underwater Double Vortex Generation Using 3D Printed Acoustic Lens and Field Multiplexing. APL Mater. 2024, 12, 31130. [Google Scholar] [CrossRef]
- Jiménez-Gambín, S.; Jiménez, N.; Camarena, F. Transcranial Focusing of Ultrasonic Vortices by Acoustic Holograms. Phys. Rev. Appl. 2020, 14, 54070. [Google Scholar] [CrossRef]
- Zhou, M.-Q.; Li, Z.; Li, Y.; Wang, Y.-C.; Zhang, J.; Chen, D.-D.; Quan, Y.; Yang, Y.-T.; Fei, C.-L. Discrete Multi-Step Phase Hologram for High Frequency Acoustic Modulation. Chin. Phys. B 2024, 33, 014303. [Google Scholar] [CrossRef]
- Lin, Q.; Cai, F.; Ye, J.; Liu, Y.; Zhang, R.; Wang, J.; Chen, Y.; Zheng, H.; Zhang, H. Acoustic Encryption with Cascaded Acoustic Holography. Sci. China Phys. Mech. Astron. 2025, 68, 274311. [Google Scholar] [CrossRef]
- Andrés, D.; Jiménez-Gambín, S.; Jiménez, N.; Camarena, F. Multifocal Acoustic Holograms for Deep-Brain Neuromodulation and BBB Opening. In Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 7–11 September 2020; pp. 1–3. [Google Scholar]
- Andrés, D.; Vappou, J.; Jiménez, N.; Camarena, F. Ultrasonic Holograms to Enhance Hyperthermia Volumes. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 11–16 September 2021; pp. 1–4. [Google Scholar]
- Andrés, D.; Vappou, J.; Jiménez, N.; Camarena, F. Thermal Holographic Patterns for Ultrasound Hyperthermia. Appl. Phys. Lett. 2022, 120, 84102. [Google Scholar] [CrossRef]
- Namin, B.; Hojjat, Y. Design and Experimental Evaluation of a Non-Contact Ultrasonic Motor Using Acoustic Phase Holography. Eng. Res. Express 2024, 6, 045543. [Google Scholar] [CrossRef]
- Ghavami Namin, B.; Hojjat, Y. Remote Control of Fluid Motion in a Channel by Acoustic Holography. Ultrasonics 2024, 140, 107303. [Google Scholar] [CrossRef]
- Jiménez-Gambín, S.; Jiménez, N.; Pouliopoulos, A.N.; Benlloch, J.M.; Konofagou, E.E.; Camarena, F. Acoustic Holograms for Bilateral Blood-Brain Barrier Opening in a Mouse Model. IEEE Trans. Biomed. Eng. 2022, 69, 1359–1368. [Google Scholar] [CrossRef]
- Weerasinghe, G.; Servais, B.; Heath, D.; Martin, S.T.; Collins, D.J. Improved Acoustic Holograms Using Simulated Annealing. Biomicrofluidics 2025, 19, 24105. [Google Scholar] [CrossRef]
- Huang, J.; Qin, Q.; Wang, J. A Review of Stereolithography: Processes and Systems. Processes 2020, 8, 1138. [Google Scholar] [CrossRef]
- Bikas, H.; Stavropoulos, P.; Chryssolouris, G. Additive Manufacturing Methods and Modeling Approaches: A Critical Review. Int. J. Adv. Manuf. Technol. 2015, 83, 389–405. [Google Scholar] [CrossRef]
- Kristiawan, R.; Imaduddin, F.; Ariawan, D.; Sabino, U.; Arifin, Z. A Review on the Fused Deposition Modeling (FDM) 3D Printing: Filament Processing, Materials, and Printing Parameters. Open Eng. 2021, 11, 639–649. [Google Scholar] [CrossRef]
- Zhu, Q.; Bu, M.; Li, B.; Jiang, X.; Liu, X. Acoustic Holographic Lenses for Transcranial Focusing in an Ex Vivo Human Skull. Appl. Phys. Lett. 2024, 125, 194104. [Google Scholar] [CrossRef]
- Wang, T.-M.; Xi, J.-T.; Jin, Y. A Model Research for Prototype Warp Deformation in the FDM Process. Int. J. Adv. Manuf. Technol. 2007, 33, 1087–1096. [Google Scholar] [CrossRef]
- Antoniou, A.; Evripidou, N.; Giannakou, M.; Constantinides, G.; Damianou, C. Acoustical Properties of 3D Printed Thermoplastics. J. Acoust. Soc. Am. 2021, 149, 2854–2864. [Google Scholar] [CrossRef]
- Wang, H.; Ritter, T.A.; Cao, W.; Shung, K.K. High Frequency Properties of Passive Materials for Ultrasonic Transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 78–84. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, J.; Jia, Z.; Zhou, P. Design and Fabrication of an Epoxy/Glass Microbeads-Based 1-3 Piezoelectric Composite. Micromachines 2025, 16, 361. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Y.; Cheng, Y.; Liu, X. Acoustic Holography Using Composite Metasurfaces. Appl. Phys. Lett. 2020, 116, 30501. [Google Scholar] [CrossRef]
- Manapat, J.Z.; Chen, Q.; Ye, P.; Advincula, R.C. 3D Printing of Polymer Nanocomposites via Stereolithography. Macromol. Mater. Eng. 2017, 302, 1600553. [Google Scholar] [CrossRef]
- Ye, S.; Cramer, N.B.; Bowman, C.N. Relationship between Glass Transition Temperature and Polymerization Temperature for Cross-Linked Photopolymers. Macromolecules 2011, 44, 490–494. [Google Scholar] [CrossRef]
- Kondo, S.; Okubo, K. Mid-Air Acoustic Tweezers for Non-Contact Pick up Using Multi-Channel Controlled Ultrasonic Transducer Arrays. Jpn. J. Appl. Phys. 2021, 60, SDDD16. [Google Scholar] [CrossRef]
- Jiménez-Gambín, S.; Jiménez, N.; Benlloch, J.M.; Camarena, F. Generating Bessel Beams with Broad Depth-of-Field by Using Phase-Only Acoustic Holograms. Sci. Rep. 2019, 9, 20104. [Google Scholar] [CrossRef]
- Velásquez-García, L.F.; Kornbluth, Y. Biomedical Applications of Metal 3D Printing. Annu. Rev. Biomed. Eng. 2021, 23, 307–338. [Google Scholar] [CrossRef] [PubMed]
- Sayed Ahmed, M.; Shahab, S. Dynamic and Reconfigurable Acoustic Fields Enabled by Morphing Fluidic Holographic Lenses. Adv. Mater. Technol. 2025, e00741. [Google Scholar] [CrossRef]
Fab. Device | Lens Material | Acoustic Properties | Resolution | Excitation Frequency | Remark * | Ref. |
---|---|---|---|---|---|---|
Objet350 | Resin VeroBlack | ρ: 1190 kg/m3 v: 2495 m/s | N/A | 1.9 MHz 2.5 MHz 3.1 MHz | Multi-frequency kinoform Sim. and Exp. (Hydrophone) Metric: Crosstalk ratio | [2] |
Objet350 | Resin VeroClear | ρ: 1190 kg/m3 v: 2495 m/s | N/A | <6 MHz | Optoacoustic kinoform using a single optical pulse. Sim. and Exp. (Optical Scanner) Metric: Signal-to-noise ratio | [15] |
MJP 2500 | Resin Visjet M2R-WT | ρ: 1030 kg/m3 v: 2290 m/s α: 4.6 dB/cm | N/A | 1.5 MHz | Simultaneous multi-target blood-brain barrier opening Sim. and Exp. (Hydrophone) Metric: Full-width half-maximum | [46] |
Objet 260 | Resin VeroClear | N/A | N/A | 2 MHz | Combine phased array transducers and static acoustic hologram Sim. and Exp. (Thermochromic sheet) Metric: N/A | [47] |
Objet 260 | Resin VeroClear | N/A | N/A | 2.25 MHz | Particle assembly in 3D space Sim. and Exp. (Trapping microgels) Metric: N/A | [7] |
Objet 30 | Resin VeroWhite | ρ: 1181 kg/m3 v: 2525 m/s α: 1.65 dB/cm·MHz−1.1 | N/A | 1.66 MHz | Hyperthermia system for multiple Tumor spheroids Sim. and Exp. (Hydrophone/Thermocouple) Metric: Peak-positive-pressures, Temperature, FWHM | [48] |
Objet 30 | Resin VeroClear | ρ: 1191 kg/m3 v: 2312 m/s α: 3.06 dB/cm | Lateral: 100 µm Axial: 28 µm | 1.112 MHz | Focusing self-bending line, volumetric through the skull Sim. and Exp. (Hydrophone) Metric: Overlapping volume, lateral shift of the peak pressure | [4] |
Objet350 | Resin VeroClear | ρ: 1190 kg/m3 v: 2495 m/s | N/A | 2.7 MHz | Modulation phase and amplitude using acoustic hologram Sim. and Exp. (Hydrophone) Metric: amplitude/phase average variation, SNR | [49] |
Objet 30 | Resin VeroWhite | ρ: 1175 kg/m3 v: 2495 m/s | N/A | 2 MHz | Generation acoustic hologram using Deep-learning-based framework Sim. and Exp. (Hydrophone) Metric: CSIM, SSIM, uniformity, PSNR, efficiency | [34] |
Objet 260 | Resin VeroClear | v: 2424 m/s α: 5.5 dB/cm | N/A | 2 MHz | Generation acoustic hologram using Deep-learning-based framework Sim. and Exp. (Hydrophone) Metric: CSIM, SSIM, uniformity, PSNR, efficiency | [1] |
J750 | Resin VeroClear | ρ: 1185 kg/m3 v: 2424 m/s | 25 µm | 2.3 MHz | Making multifocal beam Sim. and Exp. (Hydrophone) Metric: SNR | [50] |
Objet350 | Resin TangoBlack and VeroClear | v1: 1937 m/s v2: 2495 m/s | N/A | 3.0 MHz | Generation of multiple pressure patterns by stacked holograms Sim. and Exp. (Hydrophone) Metric: Peak pressure distribution | [51] |
MJP3600 | N/A | ρ: 1220 kg/m3 v: 2350 ± 50 m/s | N/A | 1.65/1.75 MHz 7.21 MHz 15 MHz | Acoustofluidic holography (AFH) for particle manipulation Sim. and Exp. (Hydrophone and particle patterning test) Metric: MSE | [52] |
Fab. Device | Lens Material | Acoustic Properties | Resolution | Excitation Frequency | Remark * | Ref. |
---|---|---|---|---|---|---|
Form 2 | Resin Clear resin | ρ: 1178 kg/m3 v: 2594 m/s α: 2.92 dB/cm·MHz−1 | 25–100 µm | 1 MHz | Holographic thermal mapping in volumes Sim. and Exp. (Hydrophone and IR camera) Metric: PSNR, RMSE, SSIM | [14] |
Form 3 | Resin Clear resin | ρ: 1186 kg/m3 v: 2599 m/s α: 3.4 dB/cm·MHz-y | N/A | 500 kHz | Reconstruct 3D acoustic field using 2D measurement Sim. and Exp. (Hydrophone) Metric: Mean Field Difference | [62] |
Form 2 | Resin Clear resin | ρ: 1100 kg/m3 v: 2424 m/s | 50 µm | 1 MHz | Multi-focal contactless ultrasonic power transfer system Sim. and Exp. (Hydrophone) Metric: Power enhancement | [13] |
nanoArch s140 | Resin VeroClear | ρ: 1180 kg/m3 v: 2400 m/s | N/A | 1 MHz | Design acoustic hologram with hole Sim. and Exp. (Hydrophone) Metric: Focal length | [63] |
Form 2 & 3 | Resin Clear resin | v: 2430~2650 m/s | 125 µm | 1.5 MHz 4.5 MHz | Holographic Direct Sound Printing using acoustic hologram Sim. and Exp. (Hydrophone) Metric: PSNR, SSIM | [61] |
Form 3 | Resin Gray resin | ρ: 1178 kg/m3 v: 2591 m/s α: 2.922 dB/cm at 1 MHz | 25 µm | 444 kHz | Gradient descent optimization of acoustic holograms Sim. and Exp. (Hydrophone) Metric: Sonication volume, Peak focal pressure | [64] |
N/A | Resin | ρ: 1178 kg/m3 v: 2591 m/s | 25 µm | 1 MHz | Generation of acoustic double vortex in underwater environment Sim. and Exp. (Hydrophone) Metric: N/A | [65] |
Form 2 | Resin Clear resin | ρ: 1171 kg/m3 v: 2580 m/s α: 1.38 dB/cm | Lateral: 50 µm Axial: 100 µm | 0.5 MHz | Transcranial generation of a focused acoustic vortex with hologram lens Sim. and Exp. (Hydrophone) Metric: Normalized amp. and phase | [66] |
SLA600 | Resin VeroClear | ρ: 1300 kg/m3 v: 2400 m/s | 100 µm | 3 MHz | Overcoming the limitations of low-fidelity 3D printing with a discrete multi-step phase hologram Sim. and Exp. (Hydrophone) Metric: uniformity, MSE | [67] |
Form 3+ | Resin White resin | v: 2538 m/s | N/A | 2 MHz | Encryption of acoustic wave information using acoustic holograms Sim. and Exp. (Hydrophone) Metric: PSNR | [68] |
Form 2 | Resin Clear resin | ρ: 1171 kg/m3 v: 2580 m/s α: 1.38 dB/cm | 50 µm | 0.5 MHz | Bilateral focusing through an ex-vivo human skull Sim. amd Exp. (Hydrophone) Metric: Normalized pressure, sonicated volume | [69] |
Form 2 | Resin Clear resin | ρ: 1171 kg/m3 v: 2580 m/s α: 2.72 dB/cm·MHz-y y = 1.1 | 25 µm | 1 MHz | Design acoustic hologram for ultrasound-induced hyperthermia Sim. and Exp. (IR camera and Hydrophone) Metric: thermal pattern, temperature | [70,71] |
N/A | Resin ANY CUBIC Grey resin | ρ: 1150 kg/m3 v: 2352 m/s | XYZ 50 µm 50 µm 70 µm | 1.3 MHz | Non-contact rotary ultrasonic motor using acoustic hologram Sim. and Exp. (Motor) Metric: Torque | [72] |
N/A | Resin ANY CUBIC Grey resin | ρ: 1150 kg/m3 v: 2352 m/s | N/A | 1.3 MHz 1.6 MHz 1.9 MHz | Induce fluid motion using acoustic hologram Sim. and Exp. (Motion of particle) Metric: flow velocity, hydrodynamic force | [73] |
Form 2 | Resin Clear resin | ρ: 1100 kg/m3 v: 2424 m/s | <20 µm | 1 MHz | Cavitation control with acoustic hologram lens Sim. and Exp. (Hydrophone) Metric: MI | [5] |
Form 2 | Resin Clear resin | ρ: 1171 kg/m3 v: 2580 m/s α: 4.6 dB/cm@1.68 MHz | Lateral: 50 µm Axial: 100 µm | 1.68 MHz | Two symmetric foci in vivo for bilateral BBB opening Sim. and Exp. (Hydrophone) Metric: BBB opening volume, PNP, Pressure field distribution, FWHM, Position of focal spot | [60] |
Form 3+ | Resin UV Sensitive Basic | ρ: 1184 kg/m3 v: 2400 m/s | N/A | 2.26 MHz | For high-quality acoustic hologram, apply IASA method applying principles of simulated annealing Sim. and Exp. (Hydrophone and particle patterning) Metric: CSIM, MSE | [74] |
Fab. Device | Lens Material | Acoustic Properties | Resolution | Excitation Frequency | Remark * | Ref. |
---|---|---|---|---|---|---|
Ultimaker 3 Extended | N/A | ρ: 1127 kg/m3 v: 1818 m/s α: 13.72 dB/cm | 100 µm | 1.11 MHz | Focusing multiple focal points through a skull Sim. and Exp. (Hydrophone) Metric: N/A | [4] |
N/A | N/A | ρ: 1184 kg/m3 v: 2495 m/s α: 2.66 Np/cm | Lateral: 750 µm Vertical: 250 µm | 2 MHz | Generation single and dual focus transcranial ultrasound focusing Sim. and Exp. (Hydrophone) Metric: Target registration errors, FWHM (in target/out target ratio) | [77] |
Fab. Device | Lens Material | Acoustic Properties | Resolution | Excitation Frequency | Remark * | Ref. |
---|---|---|---|---|---|---|
Form 3 Silicone rubber mold | Alumina-Epoxy composite | ρ: 1680 kg/m3 v: 2763 m/s α: 0.42 dB/mm | <50 µm | 1.5 MHz | Lens thickness profile comparison: clear resin vs. NPEC Sim. and Exp. (Hydrophone) Metric: Cross-correlation, SSIM | [20,21] |
Form 3 Silicone rubber mold | Alumina-Epoxy composite | ρ: 1127 kg/m3 v: 1818 m/s | <50 µm | 0.8 MHz | Multi-focal 4 × 4 well pate sonicator prototype Sim. and Exp. (Hydrophone) Metric: Cross-correlation | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kang, H.; Choi, S.; Kim, D. Additive Manufacturing Techniques for Acoustic Hologram Lens Microfabrication. Micromachines 2025, 16, 1119. https://doi.org/10.3390/mi16101119
Kim J, Kang H, Choi S, Kim D. Additive Manufacturing Techniques for Acoustic Hologram Lens Microfabrication. Micromachines. 2025; 16(10):1119. https://doi.org/10.3390/mi16101119
Chicago/Turabian StyleKim, Jinwook, Hoseok Kang, Seok Choi, and Doyoon Kim. 2025. "Additive Manufacturing Techniques for Acoustic Hologram Lens Microfabrication" Micromachines 16, no. 10: 1119. https://doi.org/10.3390/mi16101119
APA StyleKim, J., Kang, H., Choi, S., & Kim, D. (2025). Additive Manufacturing Techniques for Acoustic Hologram Lens Microfabrication. Micromachines, 16(10), 1119. https://doi.org/10.3390/mi16101119