Optimization of Overdriving Pulse for Luminance Stability of Electrowetting Displays
Abstract
1. Introduction
2. Theory
2.1. Principle of EWD
2.2. EWD Simulation Model
2.2.1. Governing Equation
2.2.2. Boundary Conditions
2.2.3. Model Simulation
3. Experimental Results and Discussion
3.1. Experimental Platform
3.2. Pulse Design
3.3. Overdriving Phase Testing
3.4. Test for Switching Phases
3.5. Performance Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
| EWD | Electrowetting display |
References
- Sureshkumar, P.; Bhattacharyya, S.S. Display Applications of Electrowetting. J. Adhes. Sci. Technol. 2012, 26, 1947–1963. [Google Scholar] [CrossRef]
- Fan, S.K.; Chiu, C.P.; Huang, P.W. Transmittance tuning by particle chain polarization in electrowetting-driven droplets. Biomicrofluidics 2010, 4, 043011. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Steckl, A.J. Electrowetting on Paper for Electronic Paper Display. Acs Appl. Mater. Interfaces 2010, 2, 3318–3323. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.A.; Feenstra, B.J. Video-speed electronic paper based on electrowetting. Nature 2003, 425, 383–385. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Liang, C.C.; Chen, Y.C.; Lee, W.Y.; Chen, H.Y.; Wu, S.H. Accurate-gray-level and quick-response driving methods for high-performance electrowetting displays. J. Soc. Inf. Disp. 2011, 19, 741–748. [Google Scholar] [CrossRef]
- Tian, L.X.; Bai, P.F. A Combined Pulse Driving Waveform with Rising Gradient for Improving the Aperture Ratio of Electrowetting Displays. Front. Phys. 2021, 9, 709151. [Google Scholar] [CrossRef]
- Luo, Z.J.; Fan, J.J.; Xu, J.Z.; Zhou, G.F.; Liu, S.Y. A novel driving scheme for oil-splitting suppression in Electrowetting display. Opt. Rev. 2020, 27, 339–345. [Google Scholar] [CrossRef]
- Luo, Z.J.; Peng, C.L.; Liu, Y.J.; Liu, B.Q.; Zhou, G.F.; Liu, S.Y.; Chen, N.X. A Low-Cost Drive and Detection Scheme for Electrowetting Display. Processes 2023, 11, 586. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Wang, L.; Liu, L.W.; Li, W.; Wu, S.P.; Guo, J.Y.; Zhou, G.F. Optimizing Bipolar Reset Waveform to Improve Grayscale Stability in Active Matrix Electrowetting Displays. Micromachines 2024, 15, 1247. [Google Scholar] [CrossRef]
- Li, W.; Wang, L.; Zhou, G.F. Driving Waveform Design for Quick Response Electrowetting Displays Based on Asymmetric Pulse Width Modulation. J. Nanoelectron. Optoelectron. 2020, 15, 1293–1299. [Google Scholar]
- Jiang, C.D.; Tang, B.; Xu, B.J.; Groenewold, J.; Zhou, G.F. Oil Conductivity, Electric-Field-Induced Interfacial Charge Effects, and Their Influence on the Electro-Optical Response of Electrowetting Display Devices. Micromachines 2020, 11, 702. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.W.; Wu, Z.Y.; Wang, L.; Zhang, T.Y.; Li, W.; Lai, S.F.; Bai, P.F. Design of an AC Driving Waveform Based on Characteristics of Electrowetting Stability for Electrowetting Displays. Front. Phys. 2020, 8, 618752. [Google Scholar] [CrossRef]
- Li, S.X.; Xu, Y.J.; Zhan, Z.Y.; Du, P.Y.; Liu, L.W.; Li, Z.K.; Wang, H.W.; Bai, P.F. Dynamic Adaptive Display System for Electrowetting Displays Based on Alternating Current and Direct Current. Micromachines 2022, 13, 1791. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Deng, Y. Driving Waveform Design of Electrowetting Displays Based on a Reset Signal for Suppressing Charge Trapping Effect. Front. Phys. 2021, 9, 672541. [Google Scholar] [CrossRef]
- Lai, S.F.; Zhong, Q.H.; Sun, H.L. Driving Waveform Optimization by Simulation and Numerical Analysis for Suppressing Oil-Splitting in Electrowetting Displays. Front. Phys. 2021, 9, 720515. [Google Scholar] [CrossRef]
- Riahi, M.; Brakke, K.A.; Alizadeh, E.; Shahroosvand, H. Fabrication and characterization of an electrowetting display based on the wetting-dewetting in a cubic structure. Optik 2016, 127, 2703–2707. [Google Scholar] [CrossRef]
- Zhao, Q.; Tang, B.A.; Bai, P.F.; Zhou, R.; Li, H.; Li, F.H.; Groenewold, J.; Zhou, G.F. Dynamic simulation of bistable electrofluidic device based on a combined design of electrode and wettability patterning. J. Soc. Inf. Disp. 2018, 26, 27–35. [Google Scholar] [CrossRef]
- Chae, J.B.; Hong, J.; Lee, S.J.; Chung, S.K. Enhancement of response speed of viscous fluids using overdrive voltage. Sens. Actuators B-Chem. 2015, 209, 56–60. [Google Scholar] [CrossRef]
- Hong, S.J.; Hong, J.; Seo, H.W.; Lee, S.J.; Chung, S.K. Fast Electrically Driven Capillary Rise Using Overdrive Voltage. Langmuir 2015, 31, 13718–13724. [Google Scholar] [CrossRef]
- Supekar, O.D.; Zohrabi, M.; Gopinath, J.T.; Bright, V.M. Enhanced Response Time of Electrowetting Lenses with Shaped Input Voltage Functions. Langmuir 2017, 33, 4863–4869. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.J.; Yi, Z.C.; Zhao, Y.M.; Zeng, W.B.; Ma, S.M.; Zhou, X.C.; Feng, H.Q.; Liu, L.M.; Shui, L.L.; Zhang, C.F.; et al. Design of Driving Waveform Based on Overdriving Voltage for Shortening Response Time in Electrowetting Displays. Front. Phys. 2021, 9, 642682. [Google Scholar] [CrossRef]
- Liu, L.W.; Bai, P.F.; Yi, Z.C.A.; Zhou, G.F. A Separated Reset Waveform Design for Suppressing Oil Backflow in Active Matrix Electrowetting Displays. Micromachines 2021, 12, 491. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.X.; Li, H. Design Method of Equivalent Driving Waveform Based on Electrowetting Response Characteristics. Front. Phys. 2021, 9, 730078. [Google Scholar] [CrossRef]
- Long, Z.X.; Yi, Z.C.; Zhang, H.; Lv, J.P.; Liu, L.M.; Chi, F.; Shui, L.L.; Zhang, C.F. Toward Suppressing Oil Backflow Based on a Combined Driving Waveform for Electrowetting Displays. Micromachines 2022, 13, 948. [Google Scholar] [CrossRef]
- Tian, L.X.; Lai, S.F.; Zhang, T.Y.; Li, W.; Tang, B.A.; Zhou, G.F. A Multi-Electrode Pixel Structure for Quick-Response Electrowetting Displays. Micromachines 2022, 13, 1103. [Google Scholar] [CrossRef]
- Long, Z.X.; Yi, Z.C.; Zhang, H.; Liu, L.M.; Shui, L.L. Toward Suppressing Charge Trapping Based on a Combined Driving Waveform with an AC Reset Signal for Electro-Fluidic Displays. Membranes 2022, 12, 1072. [Google Scholar] [CrossRef]
- Xu, Y.J.; Li, S.X.; Wang, Z.Y.; Zhang, H.; Li, Z.K.; Xiao, B.; Guo, W.; Liu, L.W.; Bai, P.F. Design of Multi-DC Overdriving Waveform of Electrowetting Displays for Gray Scale Consistency. Micromachines 2023, 14, 684. [Google Scholar] [CrossRef]
- Xu, W.Z.; Yang, H.K.; Luo, D.X.; Wang, L.; Li, L.Y.; Li, X.X.; Zhou, G.F.; Yi, Z.C. Sampling function application in the driving waveform of electrowetting displays toward high performance. Appl. Opt. 2025, 64, 712–720. [Google Scholar] [CrossRef]
- Zhao, Q.; Tang, B.; Dong, B.Q.; Li, H.; Zhou, R.; Guo, Y.Y.; Dou, Y.Y.; Deng, Y.; Groenewold, J.; Henzen, A.V.; et al. Electrowetting on dielectric: Experimental and model study of oil conductivity on rupture voltage. J. Phys. D-Appl. Phys. 2018, 51, 195102. [Google Scholar] [CrossRef]
- Verheijen, H.J.J.; Prins, M.W.J. Reversible electrowetting and trapping of charge: Model and experiments. Langmuir 1999, 15, 6616–6620. [Google Scholar] [CrossRef]
- Jones, T.B.; Fowler, J.D.; Chang, Y.S.; Kim, C.J. Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation. Langmuir 2003, 19, 7646–7651. [Google Scholar] [CrossRef]
- Lai, S.F.; Tian, L.X.; Shen, S.T.; Yuan, D.; Tang, B. An arc multi-electrode pixel structure for improving the response speed of electrowetting displays. Front. Phys. 2022, 10, 975317. [Google Scholar] [CrossRef]
- Hsieh, W.L.; Lin, C.H.; Lo, K.L.; Lee, K.C.; Cheng, W.Y.; Chen, K.C. 3D electrohydrodynamic simulation of electrowetting displays. J. Micromech. Microeng. 2014, 24, 125024. [Google Scholar] [CrossRef]
- Malikov, Z.M.; Madaliev, M.E.; Chernyshev, S.L.; Ionov, A.A. Validation of a two-fluid turbulence model in comsol multiphysics for the problem of flow around aerodynamic profiles. Sci. Rep. 2024, 14, 2306. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.L.; Cheng, Y.K.; Zhang, J.H.; Tang, B.; Zhou, G.F. Research progress of physics of electrowetting display devices. Acta Phys. Sin. 2023, 72, 208501. [Google Scholar] [CrossRef]
- Yurkiv, V.; Yarin, A.L.; Mashayek, F. Modeling of Droplet Impact onto Polarized and Nonpolarized Dielectric Surfaces. Langmuir 2018, 34, 10169–10180. [Google Scholar] [CrossRef]
- Zhu, G.P.; Yao, J.; Zhang, L.; Sun, H.; Li, A.F.; Shams, B. Investigation of the Dynamic Contact Angle Using a Direct Numerical Simulation Method. Langmuir 2016, 32, 11736–11744. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhao, Q.; Tang, B.; Groenewold, J.; Hayes, R.A.; Zhou, G.F. Simplified dynamical model for optical response of electrofluidic displays. Displays 2017, 49, 26–34. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Li, W.; Li, J.X.; Yi, Z.Y.; Wan, Q.M.; Zhang, J.T.; Ma, P.C. Driving Scheme Optimization for Electrowetting Displays Based on Contact Angle Hysteresis to Achieve Precise Gray-Scales. Front. Phys. 2021, 9, 655547. [Google Scholar] [CrossRef]
- Chen, M.Z.; Lin, S.L.; Mei, T.; Xie, Z.Y.; Lin, J.P.; Lin, Z.X.; Guo, T.L.; Tang, B. Research on Hydrodynamic Characteristics of Electronic Paper Pixels Based on Electrowetting. Micromachines 2023, 14, 1918. [Google Scholar] [CrossRef]
- Zhang, X.M.; Bai, P.F.; Hayes, R.A.; Shui, L.L.; Jin, M.L.; Tang, B.; Zhou, G.F. Novel Driving Methods for Manipulating Oil Motion in Electrofluidic Display Pixels. J. Disp. Technol. 2016, 12, 200–205. [Google Scholar] [CrossRef]
- Oh, J.M.; Ko, S.H.; Kang, K.H. Shape oscillation of a drop in ac electrowetting. Langmuir 2008, 24, 8379–8386. [Google Scholar] [CrossRef] [PubMed]









| Parameters | Quantity | Value | Unit |
|---|---|---|---|
| Material | Density of oil | 763 | kg/m3 |
| Density of water | 998 | kg/m3 | |
| Dynamic viscosity of oil | 2 × 10−3 | Pa·s | |
| Dynamic viscosity of water | 1.01 × 10−3 | Pa·s | |
| Dielectric constant of oil | 4 | 1 | |
| Dielectric constant of water | 80 | 1 | |
| Dielectric constant of hydrophobic insulating layer | 1.934 | 1 | |
| Dielectric constant of pixel wall | 3.28 | 1 | |
| Structure | Width of pixel | 100 | μm |
| Height of pixel wall | 3.2 | μm | |
| Width of pixel wall | 10 | μm | |
| Thickness of hydrophobic insulating layer | 0.4 | μm | |
| Thickness of oil | 3.2 | μm | |
| Interfacial | Surface tension of oil | 0.02 | N/m |
| Contact angle at top of pixel wall | 100 | deg | |
| Contact angle on side of pixel wall | 64.8 | deg | |
| Contact angle of hydrophobic insulating layer | 35 | deg |
| Substrate | Hydrophobic Insulating Layer Thickness | FP Curing | Activation | Pixel Wall Height | Oil Color | Descum | Backflow |
|---|---|---|---|---|---|---|---|
| 0.55 mm UP ITO | 400 nm | 185 °C 30 min | Power 10 W Time 6 s | 3.5 μm | Magenta (R21 5%) | Power 100 W Time 100 s | 200 °C/1 h |
| PWM Pulse | Step Switching Pulse | Linear Switching Pulse | |
|---|---|---|---|
| The aperture ratio of area A (%). | 60.42 | 62.25 | 61.48 |
| The aperture ratio of area B (%). | 60.39 | 60.07 | 61.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Yi, Z.; Xu, W.; Wang, J.; Lu, Q.; Liu, Q.; Liu, L.; Chi, F. Optimization of Overdriving Pulse for Luminance Stability of Electrowetting Displays. Micromachines 2025, 16, 1085. https://doi.org/10.3390/mi16101085
Yang Y, Yi Z, Xu W, Wang J, Lu Q, Liu Q, Liu L, Chi F. Optimization of Overdriving Pulse for Luminance Stability of Electrowetting Displays. Micromachines. 2025; 16(10):1085. https://doi.org/10.3390/mi16101085
Chicago/Turabian StyleYang, Yanjun, Zichuan Yi, Wanzhen Xu, Jiashuai Wang, Qingsong Lu, Qifu Liu, Liming Liu, and Feng Chi. 2025. "Optimization of Overdriving Pulse for Luminance Stability of Electrowetting Displays" Micromachines 16, no. 10: 1085. https://doi.org/10.3390/mi16101085
APA StyleYang, Y., Yi, Z., Xu, W., Wang, J., Lu, Q., Liu, Q., Liu, L., & Chi, F. (2025). Optimization of Overdriving Pulse for Luminance Stability of Electrowetting Displays. Micromachines, 16(10), 1085. https://doi.org/10.3390/mi16101085

