Photoelectrochemical Oxidation and Etching Methods Used in Fabrication of GaN-Based Metal-Oxide-Semiconductor High-Electron Mobility Transistors and Integrated Circuits: A Review
Abstract
1. Introduction
2. Photoelectrochemical Oxidation and Etching Methods
3. Photoelectrochemical Fabrication Function in GaN-Based D-Mode MOSHEMTs
4. Photoelectrochemical Fabrication Function in GaN-Based E-Mode MOSHEMTs
5. GaN-Based Complementary MOSHEMTs and Monolithically Integrated Circuits
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langpoklakpam, C.; Hsiao, Y.K.; Chang, E.Y.; Lin, C.H.; Kuo, H.C. Analysis of breakdown voltage for GaN MIS-HEMT with various composite field plate configurations and passivation layers. Solid State Electron. 2024, 216, 108930. [Google Scholar] [CrossRef]
- Yang, F.; Xu, C.; Akin, B. Experimental evaluation and analysis of switching transient’s effect on dynamic on-resistance in GaN HEMTs. IEEE Trans. Power Electron. 2019, 34, 10121–10135. [Google Scholar] [CrossRef]
- Haziq, M.; Falina, S.; Manaf, A.A.; Kawarada, H.; Syamsul, M. Challenges and opportunities for high-power and high-frequency AlGaN/GaN high-electron-mobility transistor (HEMT) applications: A review. Micromachines 2022, 13, 2133. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.C.; Arias-Purdue, A.; Arkun, E.; Brown, D.; Buckwalter, J.F.; Coffie, R.L.; Corrion, A.; Denninghoff, D.J.; Elliott, M.; Fanning, D.; et al. A survey of GaN HEMT technologies for millimeter-wave low noise applications. IEEE J. Microw. 2023, 3, 1134–1146. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Huang, A.Q.; Zhang, L.; Lei, Y.; Yu, R.; Ma, Q.; Huang, Q.; Sen, S.; Jia, Y.; et al. Evaluation and analysis of temperature-dependent dynamic RDS,ON of GaN power devices considering high-frequency operation. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 111–123. [Google Scholar] [CrossRef]
- Borga, M.; De Santi, C.; Stoffels, S.; Bakeroot, B.; Li, X.; Zhao, M.; Van Hove, M.; Decoutere, S.; Meneghesso, G.; Meneghini, M.; et al. Modeling of the vertical leakage current in AlN/Si heterojunctions for GaN power applications. IEEE Trans. Electron Devices 2020, 67, 595–599. [Google Scholar] [CrossRef]
- Cui, P.; Zeng, Y. Scaling behavior of InAlN/GaN HEMTs on silicon for RF applications. Sci. Rep. 2022, 12, 16683. [Google Scholar] [CrossRef]
- Lee, H.P.; Bayram, C. Improving current on/off ratio and subthreshold swing of schottkygate AlGaN/GaN HEMTs by postmetallization annealing. IEEE Trans. Electron Devices 2020, 67, 2760–2764. [Google Scholar] [CrossRef]
- O’sullivan, B.; Rathi, A.; Alian, A.; Yadav, S.; Yu, H.; Sibaja-Hernandez, A.; Peralagu, U.; Parvais, B.; Chasin, A.; Collaert, N. Charge trapping and emission during bias temperature stressing of schottky gate GaN-on-silicon HEMT structures targeting RF/mm wave power amplifiers. Micromachines 2024, 15, 951. [Google Scholar] [CrossRef]
- Turuvekere, S.; Karumuri, N.; Rahman, A.A.; Bhattacharya, A.; DasGupta, A.; DasGupta, N. Gate leakage mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: Comparison and modeling. IEEE Trans. Electron Devices 2013, 60, 3157–3165. [Google Scholar] [CrossRef]
- Huang, H.; Sun, Z.; Cao, Y.; Li, F.; Zhang, F.; Wen, Z.; Zhang, Z.; Liang, Y.C.; Hu, L. Investigation of surface traps-induced current collapse phenomenon in AlGaN/GaN high electron mobility transistors with schottky gate structures. J. Phys. D Appl. Phys. 2018, 51, 345102. [Google Scholar] [CrossRef]
- Lee, C.T.; Chiou, Y.L.; Lee, C.S. AlGaN/GaN MOS-HEMTs with gate ZnO dielectric layer. IEEE Electron Device Lett. 2010, 31, 1220–1223. [Google Scholar] [CrossRef]
- Lee, H.Y.; Chang, T.W.; Lee, C.T. AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors using Ga2O3 gate dielectric layer grown by vapor cooling condensation system. J. Electron. Mater. 2021, 50, 3748–3753. [Google Scholar] [CrossRef]
- Liu, Z.H.; Ng, G.I.; Arulkumaran, S.; Maung, Y.K.T.; Teo, K.L.; Foo, S.C.; Sahmuganathan, V. Improved linearity for low-noise applications in 0.25-μm GaN MISHEMTs using ALD Al2O3 as gate dielectric. IEEE Electron Device Lett. 2010, 31, 803–805. [Google Scholar] [CrossRef]
- Lee, C.T.; Chiou, Y.L. Photoelectrochemical oxidation-treated AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors with oxidized layer/Ta2O5/Al2O3 gate dielectric stack. Appl. Phys. Lett. 2013, 103, 082104. [Google Scholar] [CrossRef]
- Finklea, H.O. Semiconductor Electrodes; Elsevier: Amsterdam, The Netherlands, 1988; ISBN 0-444-42926-3. [Google Scholar]
- Chiou, Y.L.; Huang, L.H.; Lee, C.T. GaN-based p-type metal-oxide–semiconductor devices with a gate oxide layer grown by a bias-assisted photoelectrochemical oxidation method. Semicond. Sci. Technol. 2010, 25, 045020. [Google Scholar] [CrossRef]
- Peng, L.H.; Liao, C.H.; Hsu, Y.C.; Jong, C.S.; Huang, C.N.; Ho, J.K.; Chiu, C.C.; Chen, C.Y. Photoenhanced wet oxidation of gallium nitride. Appl. Phys. Lett. 2000, 76, 511–513. [Google Scholar] [CrossRef]
- Lee, C.T.; Chen, H.W.; Hwang, F.T.; Lee, H.Y. Investigation of Ga oxide films grown on n-type GaN by photoelectrochemical oxidation using He-Cd laser. J. Electron. Mater. 2005, 34, 282–286. [Google Scholar] [CrossRef]
- Huang, L.H.; Lee, C.T. Investigation and analysis of AlGaN MOS devices with an oxidized layer grown using the photoelectrochemical oxidation method. J. Electrochem. Soci. 2007, 154, H862–H866. [Google Scholar] [CrossRef]
- Hashizume, T.; Alekseev, E.; Pavlidis, D.; Boutros, K.S.; Redwing, J. Capacitance–voltage characterization of AlN/GaN metal–insulator–semiconductor structures grown on sapphire substrate by metalorganic chemical vapor deposition. J. Appl. Phys. 2000, 88, 1983–1986. [Google Scholar] [CrossRef]
- Lin, Y.J.; Lee, C.T.; Chang, H.C. Changes in activation energies of donors and carrier concentration in Si-doped n-type GaN due to (NH4)2Sx treatment. Semicon. Sci. Technol. 2006, 21, 1167–1171. [Google Scholar] [CrossRef]
- Lee, C.T.; Chiou, Y.L.; Lee, H.Y.; Chang, K.J.; Lin, J.C.; Chuang, H.W. Performance improvement mechanisms of i-ZnO/(NH4)2Sx-treated AlGaN MOS diodes. Appl. Surf. Sci. 2012, 258, 8590–8594. [Google Scholar] [CrossRef]
- Lee, C.T.; Kao, H.W. Long-term thermal stability of Ti/Al/Pt/Au ohmic contacts to n-type GaN. Appl. Phys. Lett. 2000, 76, 2364–2366. [Google Scholar] [CrossRef]
- Chiou, Y.L.; Lee, C.S.; Lee, C.T. Frequency and noise performances of photoelectrochemically etched and oxidized gate-recessed AlGaN/GaN MOS-HEMTs. J. Electrochem. Soc. 2011, 158, H477–H481. [Google Scholar] [CrossRef]
- Chiou, Y.L.; Huang, L.H.; Lee, C.T. Photoelectrochemical function in gate-recessed AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors. IEEE Electron Device Lett. 2010, 31, 183–185. [Google Scholar] [CrossRef]
- Saidi, I.; Gassoumi, M.; Maaref, H.; Mejri, H.; Gaquière, C. Self-heating and trapping effects in AlGaN/GaN heterojunction field-effect transistors. J. Appl. Phys. 2009, 106, 054511. [Google Scholar] [CrossRef]
- Binari, S.C.; Ikossi, K.; Roussos, J.A.; Kruppa, W.; Park, D.; Dietrich, H.B.; Koleske, D.D.; Wickenden, A.E.; Henry, R.L. Trapping effects and microwave power performance in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2001, 48, 465–471. [Google Scholar] [CrossRef]
- Lee, C.T.; Guo, J.C. Fin-gated nanochannel array gate-recessed AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors. IEEE Trans. Electron Devices 2020, 67, 1939–1945. [Google Scholar] [CrossRef]
- Do, T.N.T.; Malmros, A.; Gamarra, P.; Lacam, C.; Forte-Poisson, M.-A.d.; Tordjman, M.; Hörberg, M.; Aubry, R.; Rorsman, N.; Kuylenstierna, D. Effects of surface passivation and deposition methods on the 1/f noise performance of AlInN/AlN/GaN high electron mobility transistors. IEEE Electron Device Lett. 2015, 36, 315–317. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Qin, Z.X.; Tong, Y.Z.; Ding, X.M.; Hu, X.D.; Yu, T.J.; Yang, Z.J.; Zhang, G.Y. Etching damage and its recovery in n-GaN by reactive ion etching. Phys. B Condens. Matter 2003, 334, 188–192. [Google Scholar] [CrossRef]
- Chen, K.J.; Häberlen, O.; Lidow, A.; Tsai, C.l.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si power technology: Devices and applications. IEEE Trans. Electron Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Cai, Y.; Zhou, Y.; Chen, K.J.; Lau, K.M. High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment. IEEE Electron Device Lett. 2005, 26, 435–437. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, K.; Deng, X.; Zhang, X.; Fan, Y.; Sun, S.; Song, L.; Xing, Z.; Huang, W.; Yu, G.; et al. Normally off AlGaN/GaN MIS-high-electron mobility transistors fabricated by using low pressure chemical vapor deposition Si3N4 gate dielectric and standard fluorine ion implantation. IEEE Electron Device Lett. 2015, 36, 1128–1131. [Google Scholar] [CrossRef]
- Wang, H.; Wei, J.; Xie, R.; Liu, C.; Tang, G.; Chen, K.J. Maximizing the performance of 650-V p-GaN gate HEMTs: Dynamic RON characterization and circuit design considerations. IEEE Trans. Power Electron. 2017, 32, 5539–5549. [Google Scholar] [CrossRef]
- Greco, G.; Iucolano, F.; Roccaforte, F. Review of technology for normally-off HEMTs with p-GaN gate. Mater. Sci. Semicond. Process. 2018, 78, 96–106. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, J.; Liu, Y.; Cai, J.; Liu, J.; Wang, M.; Yu, M.; Xie, B.; Wu, W.; Ma, X.; et al. Fabrication of normally off AlGaN/GaN MOSFET using a self-terminating gate recess etching technique. IEEE Electron Device Lett. 2013, 34, 855–857. [Google Scholar] [CrossRef]
- Lanford, W.B.; Tanaka, T.; Otoki, Y.; Adesida, I. Recessed-gate enhancement-mode GaN HEMT with high threshold voltage. Electron. Lett. 2005, 41, 449–450. [Google Scholar] [CrossRef]
- Kong, Y.C.; Xue, F.S.; Zhou, J.J.; Li, L.; Chen, C.; Li, Y.R. Ferroelectric polarization-controlled two-dimensional electron gas in ferroelectric/AlGaN/GaN heterostructure. Appl. Phys. A Mater. Sci. Process. 2009, 95, 703–706. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Jiang, J.; Lu, X.; Yang, L.; Hou, B.; Liao, M.; Zhou, Y.; Ma, X.; Hao, Y. Ferroelectric gate AlGaN/GaN e-mode HEMTs with high transport and sub-threshold performance. IEEE Electron Device Lett. 2018, 39, 79–82. [Google Scholar] [CrossRef]
- Hung, T.H.; Park, P.S.; Krishnamoorthy, S.; Nath, D.N.; Rajan, S. Interface charge engineering for enhancement-mode GaN MISHEMTs. IEEE Electron Device Lett. 2014, 35, 312–314. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Y.; Zhang, K.; Zou, X.; Wang, J.; Kong, Y.; Chen, T.; Jiang, C.; Fang, G.; Liu, C.; et al. Positive shift in threshold voltage induced by CuO and NiOx gate in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2017, 64, 3139–3144. [Google Scholar] [CrossRef]
- Liu, C.; Yang, S.; Liu, S.; Tang, Z.; Wang, H.; Jiang, Q.; Chen, K.J. Thermally stable enhancement-mode GaN metal-isolator-semiconductor high-electron-mobility transistor with partially recessed fluorine-implanted barrier. IEEE Electron Device Lett. 2015, 36, 318–320. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Y.; Liang, Y.; Mitrovic, I.Z.; Wen, H.; Liu, W.; Zhao, C. Low on-state resistance normally-off AlGaN/GaN MIS-HEMTs with partially recessed gate and ZrOx charge trapping layer. IEEE Trans. Electron Devices 2021, 68, 4310–4316. [Google Scholar] [CrossRef]
- Hao, L.; Zhu, J.; Liu, Y.; Liao, X.; Wang, S.; Zhou, J.; Kong, C.; Zeng, H.; Zhang, Y.; Zhang, W.; et al. Normally-off characteristics of LiNbO3/AlGaN/GaN ferroelectric field-effect transistor. Thin Solid Film. 2012, 520, 6313–6317. [Google Scholar] [CrossRef]
- Chen, L.; Wang, H.; Hou, B.; Liu, M.; Shen, L.; Lu, X.; Ma, X.; Hao, Y. Hetero-integration of quasi two-dimensional PbZr0.2Ti 0.8O3 on AlGaN/GaN HEMT and non-volatile modulation of two-dimensional electron gas. Appl. Phys. Lett. 2019, 115, 193505. [Google Scholar] [CrossRef]
- Li, G.; Li, X.; Liu, X.; Gao, A.; Zhao, J.; Yan, F.; Zhu, Q. Heteroepitaxy of Hf0.5Zr0.5O2 ferroelectric gate layer on AlGaN/GaN towards normally-off HEMTs. Appl. Surf. Sci. 2022, 597, 153709. [Google Scholar] [CrossRef]
- Hao, L.Z.; Zhu, J.; Li, Y.R. Integration between LiNbO3 ferroelectric film and AlGaN/GaN system. Mater. Sci. Forum. 2011, 687, 303–308. [Google Scholar] [CrossRef]
- Hansen, P.J.; Terao, Y.; Wu, Y.; York, R.A.; Mishra, U.K.; Speck, J.S. LiNbO3 thin film growth on (0001)-GaN. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2005, 23, 162–167. [Google Scholar] [CrossRef][Green Version]
- Hao, L.Z.; Zhu, J.; Luo, W.B.; Zeng, H.Z.; Li, Y.R.; Zhang, Y. Electron trap memory characteristics of LiNbO3 film/AlGaN/GaN heterostructure. Appl. Phys. Lett. 2010, 96, 032103. [Google Scholar] [CrossRef]
- Lee, C.T.; Yang, C.L.; Tseng, C.Y.; Chang, J.H.; Horng, R.H. GaN-based enhancement-mode metal-oxide-semiconductor high-electron mobility transistors using LiNbO3 ferroelectric insulator on gate-recessed structure. IEEE Trans. Electron Devices 2015, 62, 2481–2487. [Google Scholar] [CrossRef]
- Smorchkova, I.P.; Elsass, C.R.; Ibbetson, J.P.; Vetury, R.; Heying, B.; Fini, P.; Haus, E.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 1999, 86, 4520–4526. [Google Scholar] [CrossRef]
- Wu, C.-H.; Han, P.-C.; Liu, S.-C.; Hsieh, T.-E.; Lumbantoruan, F.J.; Ho, Y.-H.; Chen, J.-Y.; Yang, K.-S.; Wang, H.-C.; Lin, Y.-K.; et al. High-performance normally-off GaN MIS-HEMTs using hybrid ferroelectric charge trap gate stack (FEG-HEMT) for power device applications. IEEE Electron Device Lett. 2018, 39, 991–994. [Google Scholar] [CrossRef]
- Liu, J.; Wang, D.; Hasan, T.; Mondal, S.; Manassa, J.; Shen, J.M.; Wang, D.; Tanim, M.H.; Yang, S.; Hovden, R.; et al. E-mode AlGaN/GaN HEMT with ScAlN/ScN charge trap-coupled ferroelectric gate stacks. Appl. Phys. Lett. 2025, 126, 013509. [Google Scholar] [CrossRef]
- Wu, J.S.; Lee, C.C.; Wu, C.H.; Huang, C.J.; Liang, Y.K.; Weng, Y.C.; Chang, E.Y. Hf-based and Zr-based charge trapping layer engineering for E-mode GaN MIS-HEMT using ferroelectric charge trap gate stack. IEEE J. Electron Devices Soc. 2022, 10, 525–531. [Google Scholar] [CrossRef]
- Jiang, Y.; Du, F.; Wen, K.; He, J.; Wang, P.; Li, M.; Tang, C.; Zhang, Y.; Wang, Z.; Wang, Q.; et al. Charge trapping layer enabled high-performance E-mode GaN HEMTs and monolithic integration GaN inverters. Appl. Phys. Lett. 2024, 124, 242102. [Google Scholar] [CrossRef]
- Lee, H.Y.; Lin, C.H.; Wei, C.C.; Yang, J.C.; Chang, E.Y.; Lee, C.T. AlGaN/GaN enhancement-mode MOSHEMTs utilizing hybrid gate-recessed structure and ferroelectric charge trapping/storage stacked LiNbO3/HfO2/Al2O3 structure. IEEE Trans. Electron Devices 2021, 68, 3768–3774. [Google Scholar] [CrossRef]
- Duan, J.; Zhang, Y.; Liang, Y.; Cai, Y.; Liu, W. Investigation of normally-OFF AlGaN/GaN MISHEMTs with Al2O3/ZrOx/Al2O3 charge trapping. In Proceedings of the International Conference on IC Design and Technology (ICICDT), Hanoi, Vietnam, 21–23 September 2022; pp. 89–92. [Google Scholar]
- Lee, B.; Kirkpatrick, C.; Choi, Y.; Yang, X.; Huang, A.Q.; Misra, V. Normally-off AlGaN/GaN MOSHFET using ALD SiO2 tunnel dielectric and ALD HfO2 charge storage layer for power device application. Phys. Status Solidi C 2012, 9, 868–870. [Google Scholar] [CrossRef]
- Hori, Y.; Mizue, C.; Hashizume, T. Process conditions for improvement of electrical properties of Al2O3/n-GaN structures prepared by atomic layer deposition. Jpn. J. Appl. Phys. 2010, 49, 080201. [Google Scholar] [CrossRef]
- Wei, Y.; Nukala, P.; Salverda, M.; Matzen, S.; Zhao, H.J.; Momand, J.; Everhardt, A.S.; Agnus, G.; Blake, G.R.; Lecoeur, P.; et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat. Mater. 2018, 17, 1095–1100. [Google Scholar] [CrossRef]
- Roul, B.; Kumar, M.; Rajpalke, M.K.; Bhat, T.N.; Krupanidhi, S.B. Binary group III-nitride based heterostructures: Band offsets and transport properties. J. Phys. D Appl. Phys. 2015, 48, 423001. [Google Scholar] [CrossRef]
- Coan, M.R.; Woo, J.H.; Johnson, D.; Gatabi, I.R.; Harris, H.R. Band offset measurements of the GaN/dielectric interfaces. J. Appl. Phys. 2012, 112, 024508. [Google Scholar] [CrossRef]
- Yang, W.C.; Rodriguez, B.J.; Gruverman, A.; Nemanich, R.J. Polarization-dependent electron affinity of LiNbO3 surfaces. Appl. Phys. Lett. 2004, 85, 2316–2318. [Google Scholar] [CrossRef]
- Tao, M.; Liu, S.; Xie, B.; Wen, C.P.; Wang, J.; Hao, Y.; Wu, W.; Cheng, K.; Shen, B.; Wang, M. Characterization of 880 V normally off GaN MOSHEMT on silicon substrate fabricated with a plasma-free, self-terminated gate recess process. IEEE Trans. Electron Devices 2018, 65, 1453–1457. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, Y.C.; Niu, J.S.; Lour, W.S.; Tsai, J.H.; Liu, W.C. High-performance AlGaN/GaN enhancement-mode high electron mobility transistor by two-step gate recess and electroless-plating approaches. Sci. Adv. Mater. 2021, 13, 30–35. [Google Scholar] [CrossRef]
- Jiang, H.; Tang, C.W.; Lau, K.M. Enhancement-mode GaN MOSHEMTs with recess-free barrier engineering and high-K ZrO2 gate dielectric. IEEE Electron Device Lett. 2018, 39, 405–408. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Huang, C.-C.; Lee, C.-S.; Hsu, W.-C. High-performance normally-off AlGaN/GaN fin-MISHEMT on silicon with low work function metal-source contact ledge. IEEE Trans. Electron Devices 2020, 67, 5434–5440. [Google Scholar] [CrossRef]
- Hao, L.; Li, Y.; Zhu, J.; Wu, Z.; Deng, J.; Zeng, H.; Zhang, J.; Liu, X.; Zhang, W. Enhancing electrical properties of LiNbO3/AlGaN/GaN transistors by using ZnO buffers. J. Appl. Phys. 2013, 114, 027022. [Google Scholar] [CrossRef]
- Klein, B.A.; Douglas, E.A.; Armstrong, A.M.; Allerman, A.A.; Abate, V.M.; Fortune, T.R.; Baca, A.G. Enhancement-mode Al0.85Ga0.15N/Al0.7Ga0.3N high electron mobility transistor with fluorine treatment. Appl. Phys. Lett. 2019, 114, 112104. [Google Scholar] [CrossRef]
- Chen, H.; Wang, M.; Chen, K.J. Enhancement-mode AlGaN/GaNHEMTs fabricated by standard fluorine ion implantation with a Si3N4 energy-absorbing layer. Electrochem. Solid State Lett. 2011, 14, H229–H231. [Google Scholar] [CrossRef]
- Wang, Y.H.; Liang, Y.C.; Samudra, G.S.; Huang, H.; Huang, B.J.; Huang, S.H.; Chang, T.F.; Huang, C.F.; Kuo, W.H.; Lo, G.Q. 6.5 V high threshold voltage AlGaN/GaN power metal-insulator-semiconductor high electron mobility transistor using multilayer fluorinated gate stack. IEEE Electron Device Lett. 2015, 36, 381–383. [Google Scholar] [CrossRef]
- Jiang, H.; Lyu, Q.; Zhu, R.; Xiang, P.; Cheng, K.; Lau, K.M. 1300 V normally-off p-GaN gate HEMTs on Si with high on-state drain current. IEEE Trans. Electron Devices 2021, 68, 653–657. [Google Scholar] [CrossRef]
- Zhu, M.; Erine, C.; Ma, J.; Nikoo, M.S.; Nela, L.; Sohi, P.; Matioli, E. P-GaN tri-gate MOS structure for normally-off GaN power transistors. IEEE Electron Device Lett. 2021, 42, 82–85. [Google Scholar] [CrossRef]
- Kondo, T.; Akazawa, Y.; Iwata, N. Effects of p-GaN gate structures and fabrication process on performances of normally-off AlGaN/GaN high electron mobility transistors. Jpn. J. Appl. Phys. 2020, 59, SAAD02. [Google Scholar] [CrossRef]
- Yu, C.J.; Hsu, C.W.; Wu, M.C.; Hsu, W.C.; Chuang, C.Y.; Liu, J.Z. Improved DC and RF performance of novel MIS p-GaN-gated HEMTs by gate-all-around structure. IEEE Electron Device Lett. 2020, 41, 673–676. [Google Scholar] [CrossRef]
- Yang, J.Y.; Oh, S.Y.; Yeom, M.J.; Kim, S.; Lee, G.; Lee, K.; Kim, S.; Yoo, G. Pulsed E-/D-mode switchable GaN HEMTs with a ferroelectric AlScN gate dielectric. IEEE Electron Device Lett. 2023, 44, 1260–1263. [Google Scholar] [CrossRef]
- He, J.; Wen, K.; Wang, P.; He, M.; Du, F.; Jiang, Y.; Tang, C.; Tao, N.; Wang, Q.; Li, G.; et al. Interface charge engineering on an in situ SiNx/AlGaN/GaN platform for normally off GaN MIS-HEMTs with improved breakdown performance. Appl. Phys. Lett. 2023, 123, 103502. [Google Scholar] [CrossRef]
- Gao, J.; Jin, Y.; Hao, Y.; Xie, B.; Wen, C.P.; Shen, B.; Wang, M. Gate-recessed normally off GaN MOSHEMT with high-temperature oxidation/wet etching using LPCVD Si3N4 as the mask. IEEE Trans. Electron Devices. 2018, 65, 1728–1733. [Google Scholar] [CrossRef]
- Quan, S.; Hao, Y.; Ma, X.; Xie, Y.; Ma, J. Enhancement-mode AlGaN/GaN HEMTs fabricated by fluorine plasma treatment. J. Semicond. 2009, 30, 124002. [Google Scholar] [CrossRef]
- Choi, W.; Ryu, H.; Seok, O.; Kim, M.; Cha, H.Y.; Seo, K.S. High-performance normally-off GaN MIS-HEMTs with dual gate insulator employing PEALD SiNx interfacial layer and RF-sputtered HfO2. In Proceedings of the CS MANTECH Conference, Denver, CO, USA, 19–22 May 2014; pp. 149–152. [Google Scholar]
- Li, A.; Shen, Y.; Li, Z.; Li, F.; Sun, R.; Mitrovic, I.Z.; Wen, H.; Lam, S.; Liu, W. A 4-transistor monolithic solution to highly linear on-chip temperature sensing in GaN power integrated circuits. IEEE Electron Device Lett. 2023, 44, 333–336. [Google Scholar] [CrossRef]
- Okada, H.; Miwa, K.; Yokoyama, T.; Yamane, K.; Wakahara, A.; Sekiguchi, H. GaN-based monolithic inverter consisting of enhancement- and depletion-mode MOSFETs by Si ion implantation. Phys. Status Solidi A 2020, 217, 1900550. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, L.; Song, W.; Feng, S.; Xu, H.; Sun, J.; Yang, S.; Chen, T.; Wei, J.; Chen, K.J. Gallium nitride-based complementary logic integrated circuits. Nat. Electron. 2021, 4, 595–603. [Google Scholar] [CrossRef]
- Wang, R.; Cai, Y.; Tang, W.C.W.; Lau, K.M.; Chen, K.J. Integration of enhancement and depletion-mode AlGaN/GaN MIS-HFETs by fluoride-based plasma treatment. Phys. Stat. Sol. 2007, 204, 2023–2027. [Google Scholar] [CrossRef]
- Lee, C.T.; Lee, H.Y.; Chang, J.H. Integrated monolithic inverter using gate-recessed GaN-based enhancement-mode and depletion-mode metal-oxide-semiconductor high-electron mobility transistors. ECS J. Solid State Sci. Technol. 2017, 6, Q123–Q126. [Google Scholar] [CrossRef]
- Hsieh, H.J.; Lee, H.Y.; Lee, C.T. Monolithic inverter using GaN-based CMOS-HEMTs with depletion-mode and enhancement-mode of ferroelectric charge trap gate stacked oxide layers. Mater. Sci. Semicond. Process 2024, 169, 107908. [Google Scholar] [CrossRef]
Current Ratio β | VOL (V) | Output Swing (V) | NMH (V) | NML (V) | Vin as Vout = VDD/2 (V) |
---|---|---|---|---|---|
5.0 | 0.45 | 4.55 | 1.44 | 1.48 | 2.80 |
8.0 | 0.28 | 4.72 | 1.80 | 1.62 | 2.60 |
22.0 | 0.10 | 4.90 | 1.99 | 1.73 | 2.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-T.; Lee, H.-Y. Photoelectrochemical Oxidation and Etching Methods Used in Fabrication of GaN-Based Metal-Oxide-Semiconductor High-Electron Mobility Transistors and Integrated Circuits: A Review. Micromachines 2025, 16, 1077. https://doi.org/10.3390/mi16101077
Lee C-T, Lee H-Y. Photoelectrochemical Oxidation and Etching Methods Used in Fabrication of GaN-Based Metal-Oxide-Semiconductor High-Electron Mobility Transistors and Integrated Circuits: A Review. Micromachines. 2025; 16(10):1077. https://doi.org/10.3390/mi16101077
Chicago/Turabian StyleLee, Ching-Ting, and Hsin-Ying Lee. 2025. "Photoelectrochemical Oxidation and Etching Methods Used in Fabrication of GaN-Based Metal-Oxide-Semiconductor High-Electron Mobility Transistors and Integrated Circuits: A Review" Micromachines 16, no. 10: 1077. https://doi.org/10.3390/mi16101077
APA StyleLee, C.-T., & Lee, H.-Y. (2025). Photoelectrochemical Oxidation and Etching Methods Used in Fabrication of GaN-Based Metal-Oxide-Semiconductor High-Electron Mobility Transistors and Integrated Circuits: A Review. Micromachines, 16(10), 1077. https://doi.org/10.3390/mi16101077