Water-Immersible MEMS Mirror with a Large Optical Aperture
Abstract
1. Introduction
2. Design and Fabrication
2.1. Mirror Design
2.2. Fabrication and Assembly
3. Characterization
4. Cavitation Damage
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, J.; Guo, S.; Wu, L.; Liu, L.; Choe, S.-W.; Sorg, B.S.; Xie, H. 3D In Vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror. Opt. Express 2010, 18, 12065–12075. [Google Scholar] [CrossRef] [PubMed]
- Gu-Stoppel, S.; Lisec, T.; Fichtner, S.; Funck, N.; Claus, M.; Wagner, B.; Lofink, F. AlScN based MEMS quasi-static mirror matrix with large tilting angle and high linearity. Sens. Actuators A Phys. 2020, 312, 112107. [Google Scholar] [CrossRef]
- Hofmann, U.; Senger, F.; Soerensen, F.; Stenchly, V.; Janes, J. Biaxial resonant 7mm-MEMS mirror for automotive LIDAR application. In Proceedings of the International Conference on Optical Mems & Nanophotonics, Banff, AB, Canada, 6–9 August 2012. [Google Scholar]
- Wang, D.; Watkins, C.; Xie, H. MEMS Mirrors for LiDAR: A Review. Micromachines 2020, 11, 456. [Google Scholar] [CrossRef]
- Tauscher, J.; Davis, W.O.; Brown, D.; Ellis, M.; Ma, Y.; Sherwood, M.E.; Bowman, D.; Helsel, M.P.; Coy, J.W. Evolution of MEMS scanning mirrors for laser projection in compact consumer electronics. In Proceedings of the SPIE Conference on MOEMS and Miniaturized Systems, San Francisco, CA, USA, 23–28 January 2010. [Google Scholar]
- Liu, Y.; Wang, L.; Su, Y.; Zhang, Y.; Wang, Y.; Wu, Z. AlScN Piezoelectric MEMS Mirrors with Large Field of View for LiDAR Application. Micromachines 2022, 13, 1550. [Google Scholar] [CrossRef]
- Wu, M.C.; Solgaard, O.; Ford, J.E. Optical MEMS for Lightwave Communication. J. Light. Technol. 2006, 24, 4433–4454. [Google Scholar] [CrossRef]
- Dobbelaere, P.D.; Falta, K.; Gloeckner, S.; Patra, S. Digital MEMS for optical switching. IEEE Commun. Mag. 2002, 40, 88–95. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J.Y.; Kim, C. Recent Progress on Photoacoustic Imaging Enhanced with Microelectromechanical Systems (MEMS) Technologies. Micromachines 2018, 9, 584. [Google Scholar] [CrossRef]
- Milanovic, V.; Kasturi, A. Novel fluidic packaging of gimbal-less MEMS mirrors for increased optical resolution and overall performance. In Proceedings of the Micro- and Nanotechnology Sensors, Systems, and Applications VIII, Baltimore, MD, USA, 17–21 April 2016. [Google Scholar]
- Duan, X.; Li, S.; Medellin, A.; Ma, C.; Zou, J. A two-axis water-immersible micro scanning mirror using hybrid polymer and elastomer hinges. Sens. Actuators A Phys. 2020, 312, 112108. [Google Scholar] [CrossRef]
- Kim, J.; Lee, C.; Park, K.; Lim, G.; Kim, C. A PDMS-Based 2-Axis Waterproof Scanner for Photoacoustic Microscopy. Sensors 2015, 15, 9815–9826. [Google Scholar] [CrossRef]
- Xi, L.; Sun, J.; Zhu, Y.; Wu, L.; Xie, H.; Jiang, H. Photoacoustic imaging based on MEMS mirror scanning. Biomed. Opt. Express 2010, 1, 1278–1283. [Google Scholar] [CrossRef]
- Xu, S.; Li, S.; Zou, J. A micromachined water-immersible scanning mirror using BoPET hinges. Sens. Actuators A Phys. 2019, 298, 111564. [Google Scholar] [CrossRef]
- Xu, S.; Zou, J. Two-axis water-immersible microscanning mirror for scanning optics and acoustic microscopy. J. Micro/Nanolithography MEMS MOEMS 2016, 15, 045005. [Google Scholar] [CrossRef]
- Huang, C.H.; Yao, J.; Wang, L.V.; Zou, J. A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications. Microsyst. Technol. 2013, 19, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Vyasarayani, C.; Abdel-Rahman, E.; McPhee, J. Modeling of Contact and Stiction in Electrostatic Microcantilever Actuators. J. Nanotechnol. Eng. Med. 2012, 3, 011003. [Google Scholar] [CrossRef]
- Lin, L.Y.; Keeler, E.G. Progress of MEMS Scanning Micromirrors for Optical Bio-Imaging. Micromachines 2015, 6, 1675–1689. [Google Scholar] [CrossRef]
- Meinel, K.; Melzer, M.; Stoeckel, C.; Shaporin, A.; Kuhn, H. 2D Scanning Micromirror with Large Scan Angle and Monolithically Integrated Angle Sensors Based on Piezoelectric Thin Film Aluminum Nitride. Sensors 2020, 20, 6599. [Google Scholar] [CrossRef]
- Shao, J.; Li, Q.; Feng, C.; Li, W.; Yu, H. AlN based piezoelectric micromirror. Opt. Lett. 2018, 43, 987–990. [Google Scholar] [CrossRef] [PubMed]
- Gu-Stoppel, S.; Lisec, T.; Fichtner, S.; Funck, N.; Müller-Groeling, A. A highly linear piezoelectric quasi-static MEMS mirror with mechanical tilt angles of larger than 10°. In Proceedings of the MOEMS and Miniaturized Systems XVIII, San Francisco, CA, USA, 2–7 February 2019. [Google Scholar]
- Zhang, Y.; Liu, Y.; Wang, L.; Su, Y.; Zhang, Y.; Yu, Z.; Zhu, W.; Wang, Y.; Wu, Z. Resolution adjustable Lissajous scanning with piezoelectric MEMS mirrors. Opt. Express 2022, 31, 2846–2859. [Google Scholar] [CrossRef]
- Baran, U.; Brown, D.; Holmstrom, S.; Balma, D.; Davis, W.O.; Muralt, P.; Urey, H. Resonant PZT MEMS Scanner for High-Resolution Displays. J. Microelectromech. Syst. 2012, 21, 1303–1310. [Google Scholar] [CrossRef]
- Lei, H.; Wen, Q.; Yu, F.; Li, D.; Shang, Z.; Huang, J.; Wen, Z. AlN film based piezoelectric large-aperture MEMS scanning micromirror integrated with angle sensors. J. Micromech. Microeng. 2018, 28, 115012. [Google Scholar] [CrossRef]
- Kanno, I. Piezoelectric MEMS: Ferroelectric thin films for MEMS applications. Jpn. J. Appl. Phys. 2018, 57, 040101. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Wang, L.; Liu, Y.; Chen, H.; Wu, Z. Process Control Monitor (PCM) for Simultaneous Determination of the Piezoelectric Coefficients d31 and d33 of AlN and AlScN Thin Films. Micromachines 2022, 13, 581. [Google Scholar] [CrossRef]
- Su, Y.; Liu, Y.; Fei, Y.; Wang, L.; Cai, J.; Chen, S.; Wu, Z. A two-step wet etching process of PZT thin film with ultra-low undercut for MEMS applications. Sens. Actuators A Phys. 2023, 394, 114014. [Google Scholar] [CrossRef]
- Hofmann, U.; Janes, J.; Quenzer, H.-J. High-Q MEMS Resonators for Laser Beam Scanning Displays. Micromachines 2012, 3, 509–528. [Google Scholar] [CrossRef]
- Mishra, C.; Peles, Y. Cavitation in flow through a micro-orifice inside a silicon microchannel. Phys. Fluids 2004, 17, 013601. [Google Scholar] [CrossRef]
- Caupin, F.; Herbert, E. Cavitation in water: A review. Comptes Rendus Phys. 2006, 7, 1000–1017. [Google Scholar] [CrossRef]
- Dular, M.; Bachert, B.; Stoffel, B.; Širok, B. Relationship between cavitation structures and cavitation damage. Wear 2004, 257, 1176–1184. [Google Scholar] [CrossRef]
Ref. | Mirror Size | Actuating Method | Chip size |
---|---|---|---|
[10] | D = 2 mm | electrostatic | 5.2 × 5.2 × 0.6 mm3 |
[11] | 5 × 3 mm2 | electromagnetic | 15 × 13 × 12 mm3 * |
[12] | 12 × 4 mm2 * | electromagnetic | 15 × 15 × 15 mm3 |
[13] | 1 × 1 mm2 | electrothermal | 2 × 2 × 3 mm3 |
[15] | 6 × 4 mm2 | electromagnetic | 16 × 16 × 13 mm3 |
this work | D = 10 mm | piezoelectric | 25 × 25 × 1 mm3 |
Parameter | Value |
---|---|
mirror diameter | 10 mm |
actuator thickness | |
mirror thickness | |
frame width | 2.5 mm |
chip size | 25 mm × 25 mm × 1 mm |
chip mass | 0.5 g |
Parameter | Value |
---|---|
resonant frequency in air | 1011 Hz |
resonant frequency in water | 297 Hz |
tilting angle under DC driving | ±0.18° |
tilting angle under AC driving at resonant frequency | ±5.5° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Liu, Y.; Su, Y.; Wang, Y.; Zhang, Y.; Chen, H.; Wang, L.; Wu, Z. Water-Immersible MEMS Mirror with a Large Optical Aperture. Micromachines 2024, 15, 235. https://doi.org/10.3390/mi15020235
Yang Y, Liu Y, Su Y, Wang Y, Zhang Y, Chen H, Wang L, Wu Z. Water-Immersible MEMS Mirror with a Large Optical Aperture. Micromachines. 2024; 15(2):235. https://doi.org/10.3390/mi15020235
Chicago/Turabian StyleYang, Yi, Yichen Liu, Yongquan Su, Yang Wang, Yonggui Zhang, Hao Chen, Lihao Wang, and Zhenyu Wu. 2024. "Water-Immersible MEMS Mirror with a Large Optical Aperture" Micromachines 15, no. 2: 235. https://doi.org/10.3390/mi15020235
APA StyleYang, Y., Liu, Y., Su, Y., Wang, Y., Zhang, Y., Chen, H., Wang, L., & Wu, Z. (2024). Water-Immersible MEMS Mirror with a Large Optical Aperture. Micromachines, 15(2), 235. https://doi.org/10.3390/mi15020235