Recent Advancements in 2D Material-Based Memristor Technology Toward Neuromorphic Computing
Abstract
:1. Introduction
2. Two-Dimensional Material-Based Memristors: A Promise to Innovation
2.1. Mechanism of 2D Material-Based Memristors
2.2. Various 2D Material-Based Memristor Devices
2.2.1. α-In2Se3-Based Memristor
2.2.2. SnSe-Based Memristor
2.2.3. h−BN−Based Memristor
2.2.4. HfSe2−Based Memristor
2.3. Hybrid Structure−Type 2D Material−Based Memristors
2.3.1. rGO/GO/rGO−Based Memristor
2.3.2. ZnO/WS2−Based Memristor
2.3.3. Graphene/h−BN/Graphen−Based Memristor
2.3.4. Robust Graphene/MoS2−xOx/Graphene (GMG)−Based Memristor
2.4. Two−DimensionalMaterial−Based Memristors for Neuromorphic Computing
2.4.1. PdSeOx/PdSe2−Based Memristor
2.4.2. Wafer−Scale MoS2−Based Memristor
3. Summary and Challenges
Author Contributions
Funding
Conflicts of Interest
References
- Wunderlich, T.; Kungl, A.F.; Müller, E.; Hartel, A.; Stradmann, Y.; Aamir, S.A.; Grübl, A.; Heimbrecht, A.; Schreiber, K.; Stöckel, D. Demonstrating advantages of neuromorphic computation: A pilot study. Front. Neurosci. 2019, 13, 260. [Google Scholar] [CrossRef] [PubMed]
- Csaba, G.; Porod, W. Coupled oscillators for computing: A review and perspective. Appl. Phys. Rev. 2020, 7, 011302. [Google Scholar] [CrossRef]
- Gentili, P.L.; Zurlo, M.P.; Stano, P. Neuromorphic engineering in wetware: The state of the art and its perspectives. Front. Neurosci. 2024, 18, 1443121. [Google Scholar] [CrossRef] [PubMed]
- Ielmini, D.; Wong, H.-S.P. In-memory computing with resistive switching devices. Nat. Electron. 2018, 1, 333–343. [Google Scholar] [CrossRef]
- Verma, N.; Jia, H.; Valavi, H.; Tang, Y.; Ozatay, M.; Chen, L.-Y.; Zhang, B.; Deaville, P. In-memory computing: Advances and prospects. IEEE Solid-State Circuits Mag. 2019, 11, 43–55. [Google Scholar] [CrossRef]
- Sebastian, A.; Le Gallo, M.; Khaddam-Aljameh, R.; Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 2020, 15, 529–544. [Google Scholar] [CrossRef]
- Khan, A.I.; Daus, A.; Islam, R.; Neilson, K.M.; Lee, H.R.; Wong, H.-S.P.; Pop, E. Ultralow–switching current density multilevel phase-change memory on a flexible substrate. Science 2021, 373, 1243–1247. [Google Scholar] [CrossRef]
- Oh, S.; Huang, Z.; Shi, Y.; Kuzum, D. The impact of resistance drift of phase change memory (PCM) synaptic devices on artificial neural network performance. IEEE Electron Device Lett. 2019, 40, 1325–1328. [Google Scholar] [CrossRef]
- Almeida, T.P.; Lequeux, S.; Palomino, A.; Sousa, R.C.; Fruchart, O.; Prejbeanu, I.-L.; Dieny, B.; Masseboeuf, A.; Cooper, D. Quantitative visualization of thermally enhanced perpendicular shape anisotropy STT-MRAM nanopillars. Nano Lett. 2022, 22, 4000–4005. [Google Scholar] [CrossRef]
- Kateel, V.; Krizakova, V.; Rao, S.; Cai, K.; Gupta, M.; Monteiro, M.G.; Yasin, F.; Sorée, B.; De Boeck, J.; Couet, S. Field-free spin–orbit torque driven switching of perpendicular magnetic tunnel junction through bending current. Nano Lett. 2023, 23, 5482–5489. [Google Scholar] [CrossRef]
- Mishra, D.; Mokurala, K.; Kumar, A.; Seo, S.G.; Jo, H.B.; Jin, S.H. Light-mediated multi-level flexible copper iodide resistive random access memory for forming-free, ultra-low power data storage application. Adv. Funct. Mater. 2023, 33, 2211022. [Google Scholar] [CrossRef]
- Celano, U.; Nagashima, K.; Koga, H.; Nogi, M.; Zhuge, F.; Meng, G.; He, Y.; De Boeck, J.; Jurczak, M.; Vandervorst, W. All-nanocellulose nonvolatile resistive memory. NPG Asia Mater. 2016, 8, e310. [Google Scholar] [CrossRef]
- Maiti, D.K.; Debnath, S.; Nawaz, S.M.; Dey, B.; Dinda, E.; Roy, D.; Ray, S.; Mallik, A.; Hussain, S.A. Composition-dependent nanoelectronics of amido-phenazines: Non-volatile RRAM and WORM memory devices. Sci. Rep. 2017, 7, 13308. [Google Scholar] [CrossRef]
- Lee, M.-J.; Lee, C.B.; Lee, D.; Lee, S.R.; Chang, M.; Hur, J.H.; Kim, Y.-B.; Kim, C.-J.; Seo, D.H.; Seo, S. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 2011, 10, 625–630. [Google Scholar] [CrossRef]
- Wang, H.; Yan, X. Overview of resistive random access memory (RRAM): Materials, filament mechanisms, performance optimization, and prospects. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2019, 13, 1900073. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, Y.; Tang, X.; Zhang, N.; Zhang, W. Enhanced Resistive Switching Performance through Air-Stable Cu2AgSbI6 Thin Films for Flexible and Multilevel Storage Application. ACS Appl. Mater. Interfaces 2022, 14, 53990–53998. [Google Scholar] [CrossRef]
- Liu, B.; Lai, J.; Wu, D.; Li, L.; Kang, K.; Hu, W.; Tang, X. High-Performance Resistive Random Access Memories Based on Two-Dimensional HAPbI4 Organic–Inorganic Hybrid Perovskite. J. Phys. Chem. Lett. 2022, 13, 7653–7659. [Google Scholar] [CrossRef]
- Bala, A.; Pujar, P.; Daw, D.; Cho, Y.; Naqi, M.; Cho, H.; Gandla, S.; Kim, S. Transparent and Flexible Copper Iodide Resistive Memories Processed with a Dissolution-Recrystallization Solution Technique. ACS Appl. Electron. Mater. 2022, 4, 3973–3979. [Google Scholar] [CrossRef]
- Ismail, M.; Mahata, C.; Kim, S. Electronic synaptic plasticity and analog switching characteristics in Pt/TiOx/AlOx/AlTaON/TaN multilayer RRAM for artificial synapses. Appl. Surf. Sci. 2022, 599, 153906. [Google Scholar] [CrossRef]
- Naqi, M.; Cho, Y.; Bala, A.; Kim, S. The trend of synthesized 2D materials toward artificial intelligence: Memory technology and neuromorphic computing. Mater. Today Electron. 2023, 5, 100052. [Google Scholar] [CrossRef]
- Naqi, M.; Kang, M.S.; Liu, N.; Kim, T.; Baek, S.; Bala, A.; Moon, C.; Park, J.; Kim, S. Multilevel artificial electronic synaptic device of direct grown robust MoS2 based memristor array for in-memory deep neural network. Npj 2D Mater. Appl. 2022, 6, 53. [Google Scholar] [CrossRef]
- Cavallini, M.; Gentili, D. Atomic vacancies in transition metal dichalcogenides: Properties, fabrication, and limits. ChemPlusChem 2022, 87, e202100562. [Google Scholar] [CrossRef] [PubMed]
- Hus, S.M.; Ge, R.; Chen, P.-A.; Liang, L.; Donnelly, G.E.; Ko, W.; Huang, F.; Chiang, M.-H.; Li, A.-P.; Akinwande, D. Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol. 2021, 16, 58–62. [Google Scholar] [CrossRef]
- Wu, X.; Ge, R.; Akinwande, D.; Lee, J.C. Understanding of multiple resistance states by current sweeping in MoS2-based non-volatile memory devices. Nanotechnology 2020, 31, 465206. [Google Scholar] [CrossRef] [PubMed]
- Butler, S.Z.; Hollen, S.M.; Cao, L.; Cui, Y.; Gupta, J.A.; Gutiérrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.; Ismach, A.F. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926. [Google Scholar] [CrossRef]
- Fatima, S.; Bin, X.; Mohammad, M.A.; Akinwande, D.; Rizwan, S. Graphene and MXene Based Free-Standing Carbon Memristors for Flexible 2D Memory Applications. Adv. Electron. Mater. 2022, 8, 2100549. [Google Scholar] [CrossRef]
- Onofrio, N.; Guzman, D.; Strachan, A. Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. Nat. Mater. 2015, 14, 440–446. [Google Scholar] [CrossRef]
- Liang, H.; Ke, C.; Sun, B.; Zhu, S.; Wang, J.; Yang, C.; Mao, S.; Zhao, Y. Resistive switching characteristics of Ag2O/TiO2 bilayer film based memristor. J. Mol. Struct. 2023, 1287, 135717. [Google Scholar] [CrossRef]
- Chen, H.; Kang, Y.; Pu, D.; Tian, M.; Wan, N.; Xu, Y.; Yu, B.; Jie, W.; Zhao, Y. Introduction of defects in hexagonal boron nitride for vacancy-based 2D memristors. Nanoscale 2023, 15, 4309–4316. [Google Scholar] [CrossRef]
- Wei, T.; Lu, Y.; Zhang, F.; Tang, J.; Gao, B.; Yu, P.; Qian, H.; Wu, H. Three-Dimensional Reconstruction of Conductive Filaments in HfOx-Based Memristor. Adv. Mater. 2023, 35, 2209925. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.H.; Kim, S.H.; Park, Y.; Jeong, U.; Lee, D. First-Principles Investigations on the Semiconductor-to-Metal Phase Transition of 2D Si2Te3 for Reversible Resistive Switching. ACS Appl. Mater. Interfaces 2023, 15, 22212–22218. [Google Scholar] [CrossRef]
- Kim, G.; Son, S.; Song, H.; Jeon, J.B.; Lee, J.; Cheong, W.H.; Choi, S.; Kim, K.M. Retention Secured Nonlinear and Self-Rectifying Analog Charge Trap Memristor for Energy-Efficient Neuromorphic Hardware. Adv. Sci. 2023, 10, 2205654. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Sorkin, V.; Chen, S.; Yu, Z.; Ang, K.W.; Zhang, Y.W. Design-Dependent Switching Mechanisms of Schottky-Barrier-Modulated Memristors based on 2D Semiconductor. Adv. Electron. Mater. 2023, 9, 2201252. [Google Scholar] [CrossRef]
- Blades, W.H.; Frady, N.J.; Litwin, P.M.; McDonnell, S.J.; Reinke, P. Thermally induced defects on WSe2. J. Phys. Chem. C 2020, 124, 15337–15346. [Google Scholar] [CrossRef]
- Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P.M.; Yakobson, B.I.; Idrobo, J.-C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622. [Google Scholar] [CrossRef]
- Xue, F.; Hu, W.; Lee, K.C.; Lu, L.S.; Zhang, J.; Tang, H.L.; Han, A.; Hsu, W.T.; Tu, S.; Chang, W.H. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv. Funct. Mater. 2018, 28, 1803738. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Chen, H.; Ma, T.; Lu, X.; Loh, K.P. Analog and Digital Mode α-In2Se3 Memristive Devices for Neuromorphic and Memory Applications. Adv. Electron. Mater. 2021, 7, 2100609. [Google Scholar] [CrossRef]
- Arun, N.; Nageswara Rao, S.; Pathak, A. Effects of Bottom Electrode Materials on the Resistive Switching Characteristics of HfO2-Based RRAM Devices. J. Electron. Mater. 2023, 52, 1541–1551. [Google Scholar] [CrossRef]
- Chiang, T.-H.; Wager, J.F. Electronic conduction mechanisms in insulators. IEEE Trans. Electron Devices 2017, 65, 223–230. [Google Scholar] [CrossRef]
- Emtage, P.; Tantraporn, W. Schottky emission through thin insulating films. Phys. Rev. Lett. 1962, 8, 267. [Google Scholar] [CrossRef]
- Guo, J.; Wang, L.; Liu, Y.; Zhao, Z.; Zhu, E.; Lin, Z.; Wang, P.; Jia, C.; Yang, S.; Lee, S.-J. Highly reliable low-voltage memristive switching and artificial synapse enabled by van der Waals integration. Matter 2020, 2, 965–976. [Google Scholar] [CrossRef]
- Jariwala, D.; Marks, T.J.; Hersam, M.C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Q.; Su, Y.; Gao, Z.; Fang, Z.; Wu, S. The mechanism of strain influence on interpolation induced systematic errors in digital image correlation method. Opt. Lasers Eng. 2019, 121, 323–333. [Google Scholar] [CrossRef]
- Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Gramling, H.M.; Towle, C.M.; Desai, S.B.; Sun, H.; Lewis, E.C.; Nguyen, V.D.; Ager, J.W.; Chrzan, D.; Yeatman, E.M.; Javey, A. Spatially precise transfer of patterned monolayer WS2 and MoS2 with features larger than 104 μm2 directly from multilayer sources. ACS Appl. Electron. Mater. 2019, 1, 407–416. [Google Scholar] [CrossRef]
- Seo, D.M.; Lee, J.-H.; Lee, S.; Seo, J.; Park, C.; Nam, J.; Park, Y.; Jin, S.; Srivastava, S.; Kumar, M. Ultrafast excitonic behavior in two-dimensional metal–semiconductor heterostructure. ACS Photonics 2019, 6, 1379–1386. [Google Scholar] [CrossRef]
- Wu, X.; Ge, R.; Chen, P.A.; Chou, H.; Zhang, Z.; Zhang, Y.; Banerjee, S.; Chiang, M.H.; Lee, J.C.; Akinwande, D. Thinnest nonvolatile memory based on monolayer h-BN. Adv. Mater. 2019, 31, 1806790. [Google Scholar] [CrossRef]
- Zobelli, A.; Ewels, C.; Gloter, A.; Seifert, G. Vacancy migration in hexagonal boron nitride. Phys. Rev. B 2007, 75, 094104. [Google Scholar] [CrossRef]
- Pan, C.; Ji, Y.; Xiao, N.; Hui, F.; Tang, K.; Guo, Y.; Xie, X.; Puglisi, F.M.; Larcher, L.; Miranda, E. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Funct. Mater. 2017, 27, 1604811. [Google Scholar] [CrossRef]
- Huang, B.; Lee, H. Defect and impurity properties of hexagonal boron nitride: A first-principles calculation. Phys. Rev. B 2012, 86, 245406. [Google Scholar] [CrossRef]
- Ge, R.; Wu, X.; Kim, M.; Shi, J.; Sonde, S.; Tao, L.; Zhang, Y.; Lee, J.C.; Akinwande, D. Atomristor: Nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 2018, 18, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Frenkel, J. On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 1938, 54, 647. [Google Scholar] [CrossRef]
- Fiorenza, P.; Greco, G.; Giannazzo, F.; Lo Nigro, R.; Roccaforte, F. Poole-Frenkel emission in epitaxial nickel oxide on AlGaN/GaN heterostructures. Appl. Phys. Lett. 2012, 101, 172901. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Huang, X.; Chen, J.; Yang, Z.; Xue, K.H.; Xu, M.; Chen, H.; Zhou, P.; Miao, X. Low-Power Memristive Logic Device Enabled by Controllable Oxidation of 2D HfSe2 for In-Memory Computing. Adv. Sci. 2021, 8, 2005038. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, H.; Liu, S.; Song, B.; Liu, H.; Liu, Q.; Li, Q. Short-Term and Long-Term Plasticity Mimicked in Low-Voltage Ag/GeSe/TiN Electronic Synapse. IEEE Electron Device Lett. 2018, 39, 492–495. [Google Scholar] [CrossRef]
- Lee, H.; Chen, P.; Wu, T.; Chen, Y.; Wang, C.; Tzeng, P.; Lin, C.; Chen, F.; Lien, C.; Tsai, M.-J. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM. In Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 14–17 December 2008; pp. 1–4. [Google Scholar]
- Kim, W.; Park, S.; Zhang, Z.; Yang-Liauw, Y.; Sekar, D.; Wong, H.; Wong, S. 2011 Symp. VLSI Technology–Digest of Technical Papers; IEEE: New York, NY, USA, 2011. [Google Scholar]
- Zhang, K.; Sun, K.; Wang, F.; Han, Y.; Jiang, Z.; Zhao, J.; Wang, B.; Zhang, H.; Jian, X.; Wong, H.P. Ultra-low power Ni/HfO2/TiOx/TiN resistive random access memory with sub-30-nA reset current. IEEE Electron Device Lett. 2015, 36, 1018–1020. [Google Scholar] [CrossRef]
- Qian, M.; Pan, Y.; Liu, F.; Wang, M.; Shen, H.; He, D.; Wang, B.; Shi, Y.; Miao, F.; Wang, X. Tunable, ultralow-power switching in memristive devices enabled by a heterogeneous graphene-oxide interface. Adv. Mater. 2014, 26, 3275–3281. [Google Scholar] [CrossRef]
- Kim, K.M.; Zhang, J.; Graves, C.; Yang, J.J.; Choi, B.J.; Hwang, C.S.; Li, Z.; Williams, R.S. Low-Power, Self-Rectifying, and Forming-Free Memristor with an Asymmetric Programing Voltage for a High-Density Crossbar Application. Nano Lett. 2016, 16, 6724–6732. [Google Scholar] [CrossRef]
- Zhao, H.; Dong, Z.; Tian, H.; DiMarzi, D.; Han, M.G.; Zhang, L.; Yan, X.; Liu, F.; Shen, L.; Han, S.J. Atomically thin femtojoule memristive device. Adv. Mater. 2017, 29, 1703232. [Google Scholar] [CrossRef]
- Wang, K.; Li, L.; Zhao, R.; Zhao, J.; Zhou, Z.; Wang, J.; Wang, H.; Tang, B.; Lu, C.; Lou, J. A pure 2H-MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator. Adv. Electron. Mater. 2020, 6, 1901342. [Google Scholar] [CrossRef]
- Wang, M.; Cai, S.; Pan, C.; Wang, C.; Lian, X.; Zhuo, Y.; Xu, K.; Cao, T.; Pan, X.; Wang, B.; et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 2018, 1, 130–136. [Google Scholar] [CrossRef]
- Lee, J.; Du, C.; Sun, K.; Kioupakis, E.; Lu, W.D. Tuning Ionic Transport in Memristive Devices by Graphene with Engineered Nanopores. ACS Nano 2016, 10, 3571–3579. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhao, Q.; Chen, A.P.; Zhao, J.; Zhou, Z.; Wang, J.; Wang, H.; Zhang, L.; Li, X.; Xiao, Z.; et al. Vacancy-Induced Synaptic Behavior in 2D WS2 Nanosheet-Based Memristor for Low-Power Neuromorphic Computing. Small 2019, 15, e1901423. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, H.; Chen, P.; Gu, P.; Chen, C.; Lin, W.; Liu, W.; Hsu, Y.; Sheu, S.; Chiang, P. Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009; pp. 1–4. [Google Scholar]
- Li, Z.; Tian, B.; Xue, K.-H.; Wang, B.; Xu, M.; Lu, H.; Sun, H.; Miao, X. Coexistence of Digital and Analog Resistive Switching With Low Operation Voltage in Oxygen-Gradient HfOx Memristors. IEEE Electron Device Lett. 2019, 40, 1068–1071. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y.-X.; Xu, L.; Lu, K.; Wang, Z.-R.; Duan, N.; Jiang, L.; Cheng, L.; Chang, T.-C.; Chang, K.-C. Realization of functional complete stateful Boolean logic in memristive crossbar. ACS Appl. Mater. Interfaces 2016, 8, 34559–34567. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.-Y.; Li, Y.; Cheng, L.; Wang, Z.-R.; Chang, T.-C.; Sze, S.M.; Miao, X.-s. Reconfigurable Boolean logic in memristive crossbar: The principle and implementation. IEEE Electron Device Lett. 2018, 40, 200–203. [Google Scholar] [CrossRef]
- Ki Hong, S.; Eun Kim, J.; Kim, S.O.; Jin Cho, B. Analysis on switching mechanism of graphene oxide resistive memory device. J. Appl. Phys. 2011, 110, 044506. [Google Scholar] [CrossRef]
- Schranghamer, T.F.; Oberoi, A.; Das, S. Graphene memristive synapses for high precision neuromorphic computing. Nat. Commun. 2020, 11, 5474. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Kim, J.Y.; Kim, J.W.; Hwang, J.O.; Kim, J.-E.; Lee, J.Y.; Yoon, T.H.; Cho, B.J.; Kim, S.O.; Ruoff, R.S. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 2010, 10, 4381–4386. [Google Scholar] [CrossRef]
- Fatima, M.; Fatheema, J.; Monir, N.B.; Siddique, A.H.; Khan, B.; Islam, A.; Akinwande, D.; Rizwan, S. Nb-doped MXene with enhanced energy storage capacity and stability. Front. Chem. 2020, 8, 168. [Google Scholar] [CrossRef]
- Chakrabarti, B.; Roy, T.; Vogel, E.M. Nonlinear switching with ultralow reset power in graphene-insulator-graphene forming-free resistive memories. IEEE Electron Device Lett. 2014, 35, 750–752. [Google Scholar] [CrossRef]
- Li, L. Tunable memristic characteristics based on graphene oxide charge-trap memory. Micromachines 2019, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Santini, C.A.; Sebastian, A.; Marchiori, C.; Jonnalagadda, V.P.; Dellmann, L.; Koelmans, W.W.; Rossell, M.D.; Rossel, C.P.; Eleftheriou, E. Oxygenated amorphous carbon for resistive memory applications. Nat. Commun. 2015, 6, 8600. [Google Scholar] [CrossRef] [PubMed]
- Fatheema, J.; Shahid, T.; Mohammad, M.A.; Islam, A.; Malik, F.; Akinwande, D.; Rizwan, S. A comprehensive investigation of MoO3 based resistive random access memory. RSC Adv. 2020, 10, 19337–19345. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.K.; Xiao, B.; Mishra, S.; Killam, A.; Pradhan, A.K. Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application. Sci. Rep. 2016, 6, 26763. [Google Scholar] [CrossRef]
- Sun, B.; Xiao, M.; Zhou, G.; Ren, Z.; Zhou, Y.; Wu, Y. Non–zero-crossing current-voltage hysteresis behavior in memristive system. Mater. Today Adv. 2020, 6, 100056. [Google Scholar] [CrossRef]
- Zhu, S.; Zhou, G.; Yuan, W.; Mao, S.; Yang, F.; Fu, G.; Sun, B. Non-zero-crossing current-voltage hysteresis behavior induced by capacitive effects in bio-memristor. J. Colloid Interface Sci. 2020, 560, 565–571. [Google Scholar] [CrossRef]
- Liu, C.-F.; Tang, X.-G.; Wang, L.-Q.; Tang, H.; Jiang, Y.-P.; Liu, Q.-X.; Li, W.-H.; Tang, Z.-H. Resistive switching characteristics of HfO2 thin films on mica substrates prepared by sol-gel process. Nanomaterials 2019, 9, 1124. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Zeng, K.; Zhou, K.; Li, Z.; Zhou, Y.; Zhai, Y.; Zhou, L.; Chen, X.; Han, S.-T. Configurable multi-state non-volatile memory behaviors in Ti3C2 nanosheets. Nanoscale 2019, 11, 7102–7110. [Google Scholar] [CrossRef]
- Kumar, M.; Ban, D.K.; Kim, S.M.; Kim, J.; Wong, C.P. Vertically aligned WS2 layers for high-performing memristors and artificial synapses. Adv. Electron. Mater. 2019, 5, 1900467. [Google Scholar] [CrossRef]
- Kumar, M.; Abbas, S.; Kim, J. All-oxide-based highly transparent photonic synapse for neuromorphic computing. ACS Appl. Mater. Interfaces 2018, 10, 34370–34376. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.; Yi, M.; Nagai, M.; Xie, L.; Wang, L.; Hu, B.; Huang, W. Controllable Organic Resistive Switching Achieved by One-Step Integration of Cone-Shaped Contact. Adv. Mater. 2017, 29, 1701333. [Google Scholar] [CrossRef] [PubMed]
- Huh, W.; Jang, S.; Lee, J.Y.; Lee, D.; Lee, D.; Lee, J.M.; Park, H.G.; Kim, J.C.; Jeong, H.Y.; Wang, G. Synaptic barristor based on phase-engineered 2D heterostructures. Adv. Mater. 2018, 30, 1801447. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cheng, B.; Wang, C.; Dai, S.; Lu, H.; Zhou, Y.; Chen, Z.; Yang, G. Reduction of leakage current by Co doping in Pt/Ba0.5Sr0.5TiO3/Nb–SrTiO3 capacitor. Appl. Phys. Lett. 2004, 84, 4116–4118. [Google Scholar] [CrossRef]
- Lee, M.; Lee, W.; Choi, S.; Jo, J.W.; Kim, J.; Park, S.K.; Kim, Y.H. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv. Mater. 2017, 29, 1700951. [Google Scholar] [CrossRef]
- Niu, G.; Calka, P.; Auf der Maur, M.; Santoni, F.; Guha, S.; Fraschke, M.; Hamoumou, P.; Gautier, B.; Perez, E.; Walczyk, C. Geometric conductive filament confinement by nanotips for resistive switching of HfO2-RRAM devices with high performance. Sci. Rep. 2016, 6, 25757. [Google Scholar] [CrossRef]
- Wu, C.; Kim, T.W.; Choi, H.Y.; Strukov, D.B.; Yang, J.J. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. Nat. Commun. 2017, 8, 752. [Google Scholar] [CrossRef]
- Zhu, K.; Liang, X.; Yuan, B.; Villena, M.A.; Wen, C.; Wang, T.; Chen, S.; Hui, F.; Shi, Y.; Lanza, M. Graphene–boron nitride–graphene cross-point memristors with three stable resistive states. ACS Appl. Mater. Interfaces 2019, 11, 37999–38005. [Google Scholar] [CrossRef]
- Shi, Y.; Liang, X.; Yuan, B.; Chen, V.; Li, H.; Hui, F.; Yu, Z.; Yuan, F.; Pop, E.; Wong, H.-S.P. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 2018, 1, 458–465. [Google Scholar] [CrossRef]
- Hui, F.; Grustan-Gutierrez, E.; Long, S.; Liu, Q.; Ott, A.K.; Ferrari, A.C.; Lanza, M. Graphene and related materials for resistive random access memories. Adv. Electron. Mater. 2017, 3, 1600195. [Google Scholar] [CrossRef]
- Lanza, M.; Wang, Y.; Gao, T.; Bayerl, A.; Porti, M.; Nafria, M.; Zhou, Y.; Jing, G.; Zhang, Y.; Liu, Z. Electrical and mechanical performance of graphene sheets exposed to oxidative environments. Nano Res. 2013, 6, 485–495. [Google Scholar] [CrossRef]
- Goldhirsch, I.; Ronis, D. Theory of thermophoresis. I. General considerations and mode-coupling analysis. Phys. Rev. A 1983, 27, 1616. [Google Scholar] [CrossRef]
- Kempers, L. A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid. J. Chem. Phys. 2001, 115, 6330–6341. [Google Scholar] [CrossRef]
- Wong, H.-S.P.; Lee, H.-Y.; Yu, S.; Chen, Y.-S.; Wu, Y.; Chen, P.-S.; Lee, B.; Chen, F.T.; Tsai, M.-J. Metal–oxide RRAM. Proc. IEEE 2012, 100, 1951–1970. [Google Scholar] [CrossRef]
- Molina, J.; Valderrama, R.; Zuniga, C.; Rosales, P.; Calleja, W.; Torres, A.; Hidalga, J.D.; Gutierrez, E. Influence of the surface roughness of the bottom electrode on the resistive-switching characteristics of Al/Al2O3/Al and Al/Al2O3/W structures fabricated on glass at 300 C. Microelectron. Reliab. 2014, 54, 2747–2753. [Google Scholar] [CrossRef]
- Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R.T.; Ciraci, S. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys. Rev. B 2009, 80, 155453. [Google Scholar] [CrossRef]
- Miró, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014, 43, 6537–6554. [Google Scholar] [CrossRef]
- Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Yao, J.; Lin, J.; Dai, Y.; Ruan, G.; Yan, Z.; Li, L.; Zhong, L.; Natelson, D.; Tour, J.M. Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene. Nat. Commun. 2012, 3, 1101. [Google Scholar] [CrossRef]
- Lee, G.-H.; Yu, Y.-J.; Cui, X.; Petrone, N.; Lee, C.-H.; Choi, M.S.; Lee, D.-Y.; Lee, C.; Yoo, W.J.; Watanabe, K. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 2013, 7, 7931–7936. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, S.; Yu, Z.; Li, S.; Xiong, Y.; Pam, M.E.; Zhang, Y.W.; Ang, K.W. In-Memory Computing using Memristor Arrays with Ultrathin 2D PdSeOx/PdSe2 Heterostructure. Adv. Mater. 2022, 34, 2201488. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-Y.; Peng, X.; Yu, S. NeuroSim: A circuit-level macro model for benchmarking neuro-inspired architectures in online learning. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 3067–3080. [Google Scholar] [CrossRef]
- Jeong, D.S.; Kim, K.M.; Kim, S.; Choi, B.J.; Hwang, C.S. Memristors for energy-efficient new computing paradigms. Adv. Electron. Mater. 2016, 2, 1600090. [Google Scholar] [CrossRef]
- Burr, G.W.; Shelby, R.M.; Sebastian, A.; Kim, S.; Kim, S.; Sidler, S.; Virwani, K.; Ishii, M.; Narayanan, P.; Fumarola, A. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2017, 2, 89–124. [Google Scholar] [CrossRef]
- Tang, B.; Veluri, H.; Li, Y.; Yu, Z.G.; Waqar, M.; Leong, J.F.; Sivan, M.; Zamburg, E.; Zhang, Y.-W.; Wang, J. Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 2022, 13, 3037. [Google Scholar] [CrossRef]
- Chang, C.-C.; Liu, J.-C.; Shen, Y.-L.; Chou, T.; Chen, P.-C.; Wang, I.-T.; Su, C.-C.; Wu, M.-H.; Hudec, B.; Chang, C.-C. Challenges and opportunities toward online training acceleration using RRAM-based hardware neural network. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 11.16. 11–11.16. 14. [Google Scholar]
- Yao, P.; Wu, H.; Gao, B.; Tang, J.; Zhang, Q.; Zhang, W.; Yang, J.J.; Qian, H. Fully hardware-implemented memristor convolutional neural network. Nature 2020, 577, 641–646. [Google Scholar] [CrossRef]
- Wu, W.; Wu, H.; Gao, B.; Yao, P.; Zhang, X.; Peng, X.; Yu, S.; Qian, H. A methodology to improve linearity of analog RRAM for neuromorphic computing. In Proceedings of the 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 18–22 June 2018; pp. 103–104. [Google Scholar]
- Chand, U.; Fang, Z.; Chun-Kuei, C.; Luo, Y.; Veluri, H.; Sivan, M.; Feng, L.J.; Tsai, S.-H.; Wang, X.; Chakraborty, S. 2-kbit array of 3-D monolithically-stacked IGZO FETs with low SS-64mV/dec, ultra-low-leakage, competitive μ-57 cm2/Vs performance and novel nMOS-only circuit demonstration. In Proceedings of the 2021 Symposium on VLSI Technology, Kyoto, Japan, 13–19 June 2021; pp. 1–2. [Google Scholar]
- Sivan, M.; Li, Y.; Veluri, H.; Zhao, Y.; Tang, B.; Wang, X.; Zamburg, E.; Leong, J.F.; Niu, J.X.; Chand, U. All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nat. Commun. 2019, 10, 5201. [Google Scholar] [CrossRef]
- Singh, J.; Astarini, N.A.; Tsai, M.L.; Venkatesan, M.; Kuo, C.C.; Yang, C.S.; Yen, H.W. Growth of Wafer-Scale Single-Crystal 2D Semiconducting Transition Metal Dichalcogenide Monolayers. Adv. Sci. 2024, 11, 2307839. [Google Scholar] [CrossRef]
- Kim, K.S.; Lee, D.; Chang, C.S.; Seo, S.; Hu, Y.; Cha, S.; Kim, H.; Shin, J.; Lee, J.-H.; Lee, S. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 2023, 614, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Serna, M.I.; Mohan, S.; Londoño-Calderon, A.; Ahmed, T.; Huang, Y.; Lee, J.; Walia, S.; Pettes, M.T.; Liechti, K.M. Sulfurization Engineering of One-Step Low-Temperature MoS2 and WS2 Thin Films for Memristor Device Applications. Adv. Electron. Mater. 2022, 8, 2100515. [Google Scholar] [CrossRef]
Material | Switching Type | On/Off Ratio | SET and RESET Voltage | Endurance | Retention Time | Switching Speed | Recognition Accuracy | Ref. |
---|---|---|---|---|---|---|---|---|
α−In2Se3 | Digital | >103 | SET: 3 V RESET: −3 V | 100 cycles | >5000 s | 10 ns | 93.20% | [32] |
SnSe | Digital | >103 | SET: 0.4 V RESET: −0.1 V | 4000 cycles | 105 s | − | − | [36] |
h−BN | Digital | >107 | − | >50 cycles | >105 s | <15 ns | − | [42] |
HfSe2 | Digital | 103 | SET: 2.32 V RESET: −0.7 V | >40 cycles | 15,000 s | <50 ns | − | [49] |
Graphene oxide | Analog | − | − | 2400 cycles | 10⁴ s | − | − | [21] |
Graphene oxide | Analog | − | − | 2400 cycles | − | − | − | [21] |
ZnO/WS2 | Analog | 300 by 100 pulses | − | 104 cycles | − | − | − | [79] |
h−BN | Digital | > 10 | SET: 2.5 V RESET: −1 V | 100 cycles | − | − | − | [87] |
MoS2−xOx | Digital | 10 | SET: 3 V RESET: −4 V | 107 cycles | 105 s | <100 ns | − | [59] |
PdSeOx/PdSe2 | Digital | ~102 | SET: 0.58 V RESET: −0.71 V | >700 cycles | >80,000 s | − | 93.19% | [101] |
MoS2 | Digital | >10 | SET: 3 V RESET: −4 V | 107 cycles | 105 s | − | 98.02% | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Naqi, M.; Lee, N.; Park, S.; Hong, S.; Lee, B.H. Recent Advancements in 2D Material-Based Memristor Technology Toward Neuromorphic Computing. Micromachines 2024, 15, 1451. https://doi.org/10.3390/mi15121451
Park S, Naqi M, Lee N, Park S, Hong S, Lee BH. Recent Advancements in 2D Material-Based Memristor Technology Toward Neuromorphic Computing. Micromachines. 2024; 15(12):1451. https://doi.org/10.3390/mi15121451
Chicago/Turabian StylePark, Sungmin, Muhammad Naqi, Namgyu Lee, Suyoung Park, Seongin Hong, and Byeong Hyeon Lee. 2024. "Recent Advancements in 2D Material-Based Memristor Technology Toward Neuromorphic Computing" Micromachines 15, no. 12: 1451. https://doi.org/10.3390/mi15121451
APA StylePark, S., Naqi, M., Lee, N., Park, S., Hong, S., & Lee, B. H. (2024). Recent Advancements in 2D Material-Based Memristor Technology Toward Neuromorphic Computing. Micromachines, 15(12), 1451. https://doi.org/10.3390/mi15121451